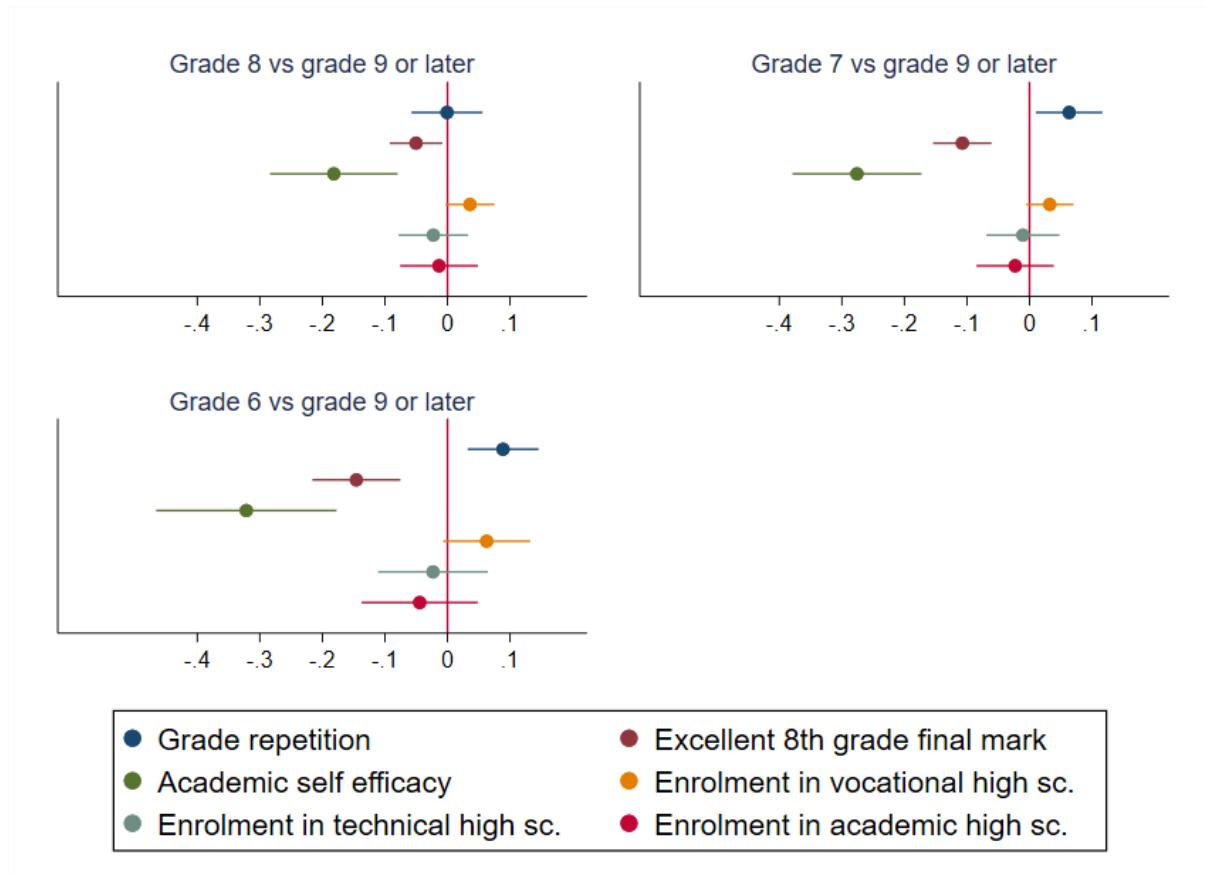


1 Appendix 1 – Additional tables and figures

2 Figure A1 – Effect of early use of social networks on school marks in grade 8

3

4 Note: The coefficients display the interaction parameters between treatment status and grade in a
5 student fixed-effects model. Matching method: entropy balancing. Errors clustered at the individual
6 level. N in models comparing the 6th grade early users group to the late users group: 5,458 observations,
7 1,935 students (mathematics); 5,461 observations, 1,936 students (Italian language). N in models
8 comparing the 7th grade early users group to the late users group: 5,004 observations, 1,771 students
9 (mathematics); 5,008 observations, 1,772 students (Italian language). N in models comparing the 8th
10 grade early users group to the late users group: 4,235 observations, 1,497 students (mathematics);
11 4,238 observations, 1,498 students (Italian language).


12

13

14

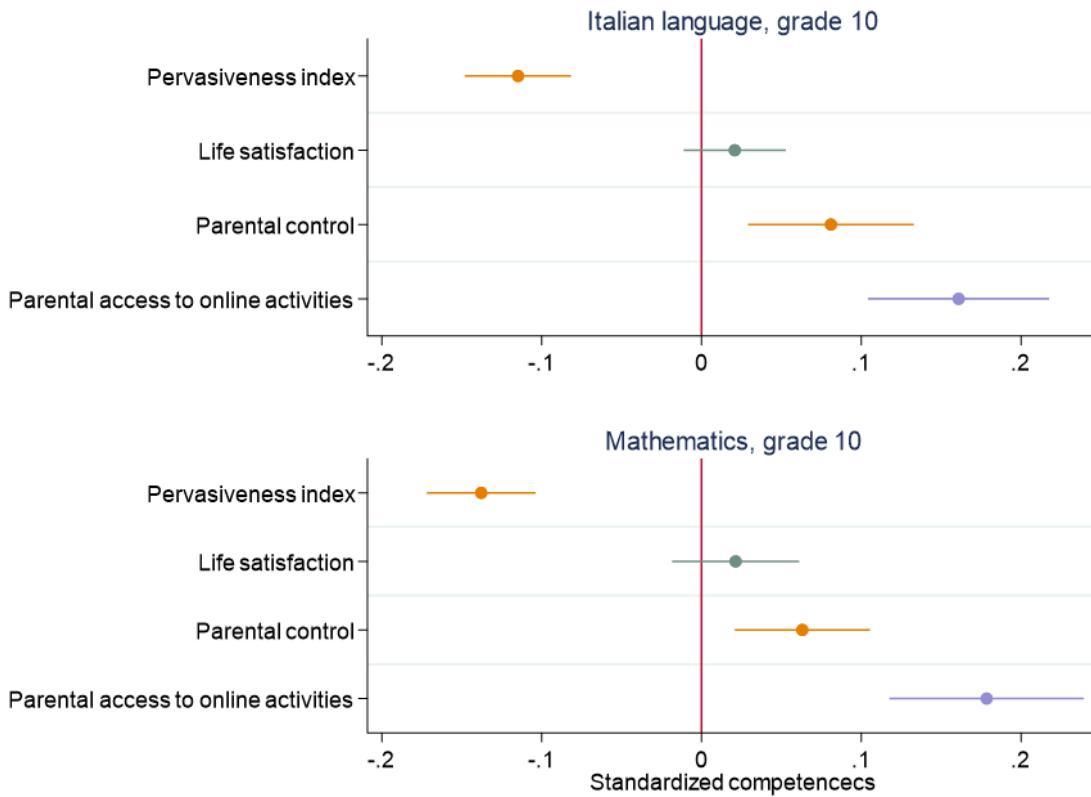
15

16 Figure A2 – Effect of early use of social networks on additional academic outcomes

17

18 Note: Entropy balancing weights used. Errors clustered at the school level. Outcomes expressed in
 19 terms of probability except academic self-efficacy, which is expressed in terms of standard deviations.
 20 N for models on marks, self-efficacy and enrolment: 1,956 for models on 6th graders, 1,797 for models
 21 on 7th graders, 1,511 for models on 8th graders. N for models on grade repetition (estimated on the 2007
 22 cohort only): 965 for models on 6th graders, 870 for models on 7th graders, 723 for models on 8th graders.

23


24

25

26

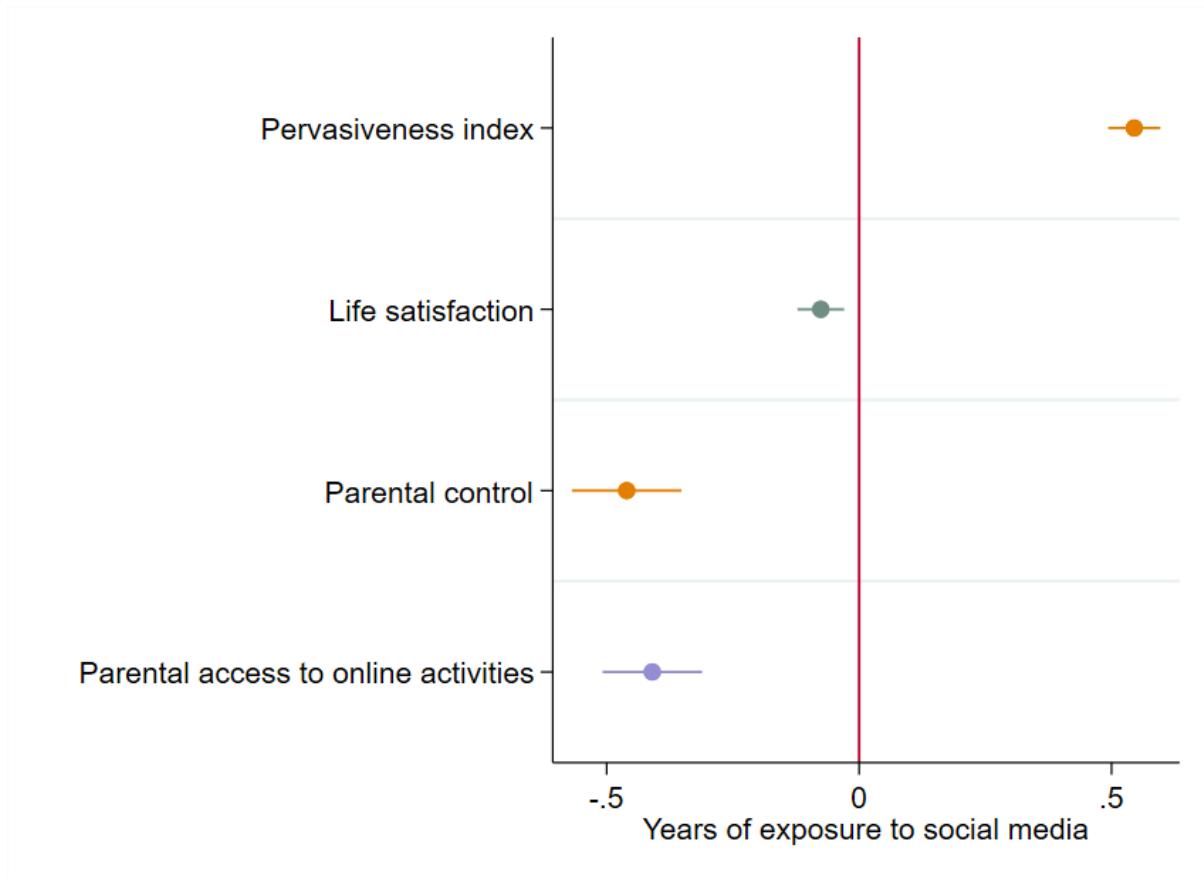
27

28 Figure A3 – Association between potential mediators and academic competences in
29 grade 10

30
31 Note: errors clustered at the school level; N: 4,383 for the model on mathematics and 4,414 for the
32 model on Italian. Models estimated separately for each outcome and potential mediator.

33

34


35

36

37

38

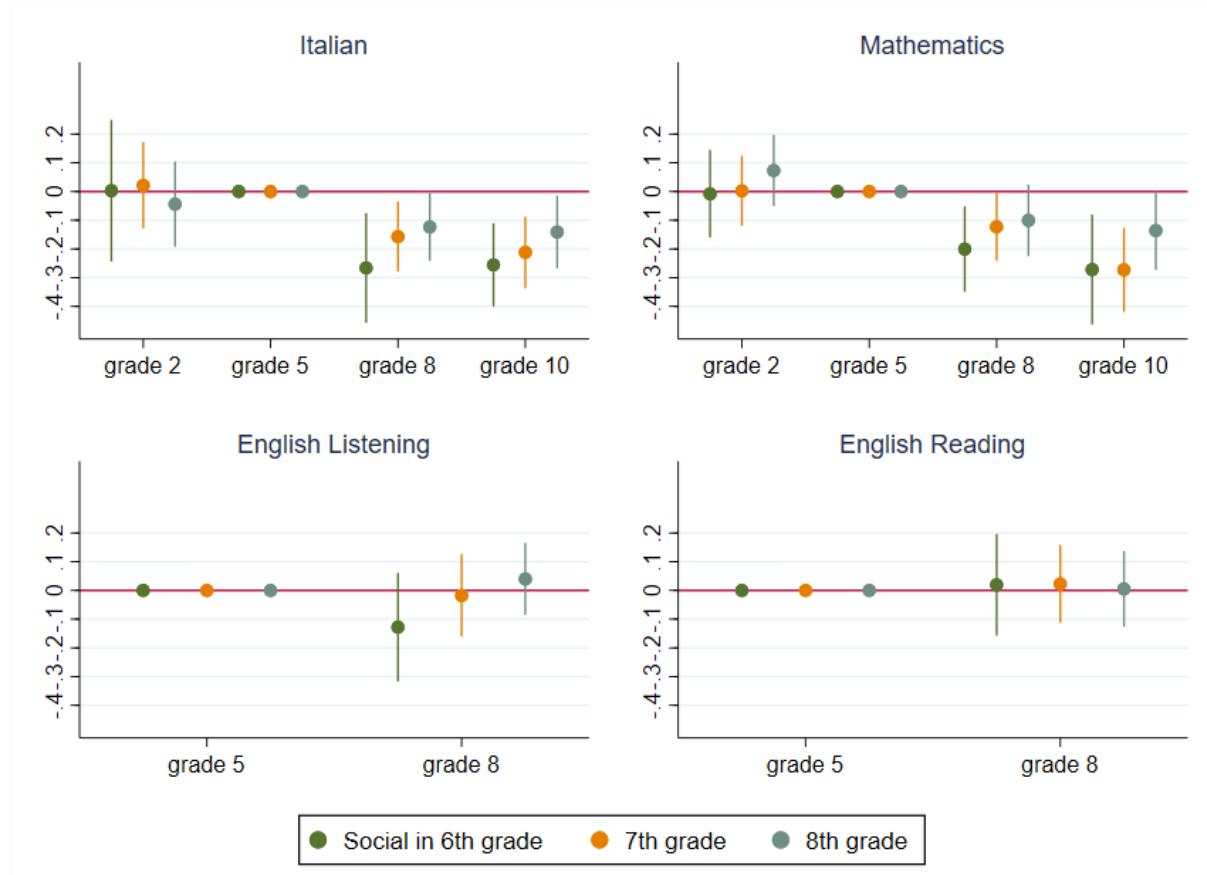
39 Figure A4 – Association between potential mediators and years of exposure to social
40 media by grade 10

41
42 Note: errors clustered at the school level; N: 4,589. Models estimated separately for each outcome and
43 potential mediator.

44

45

46

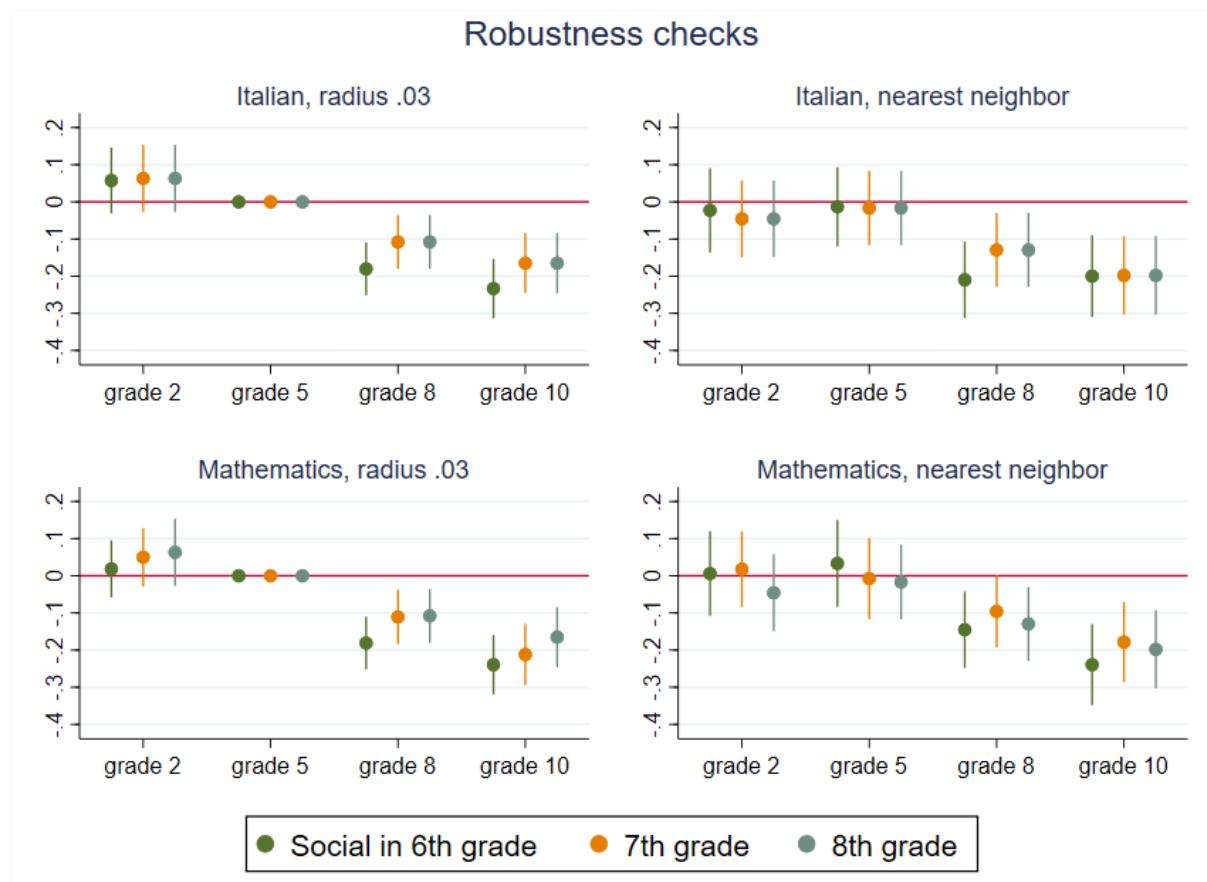

47

48

49

50 Figure A5 – Effect of early use of social networks on competences in grades 8 and 10.

51 2007 cohort only.


62

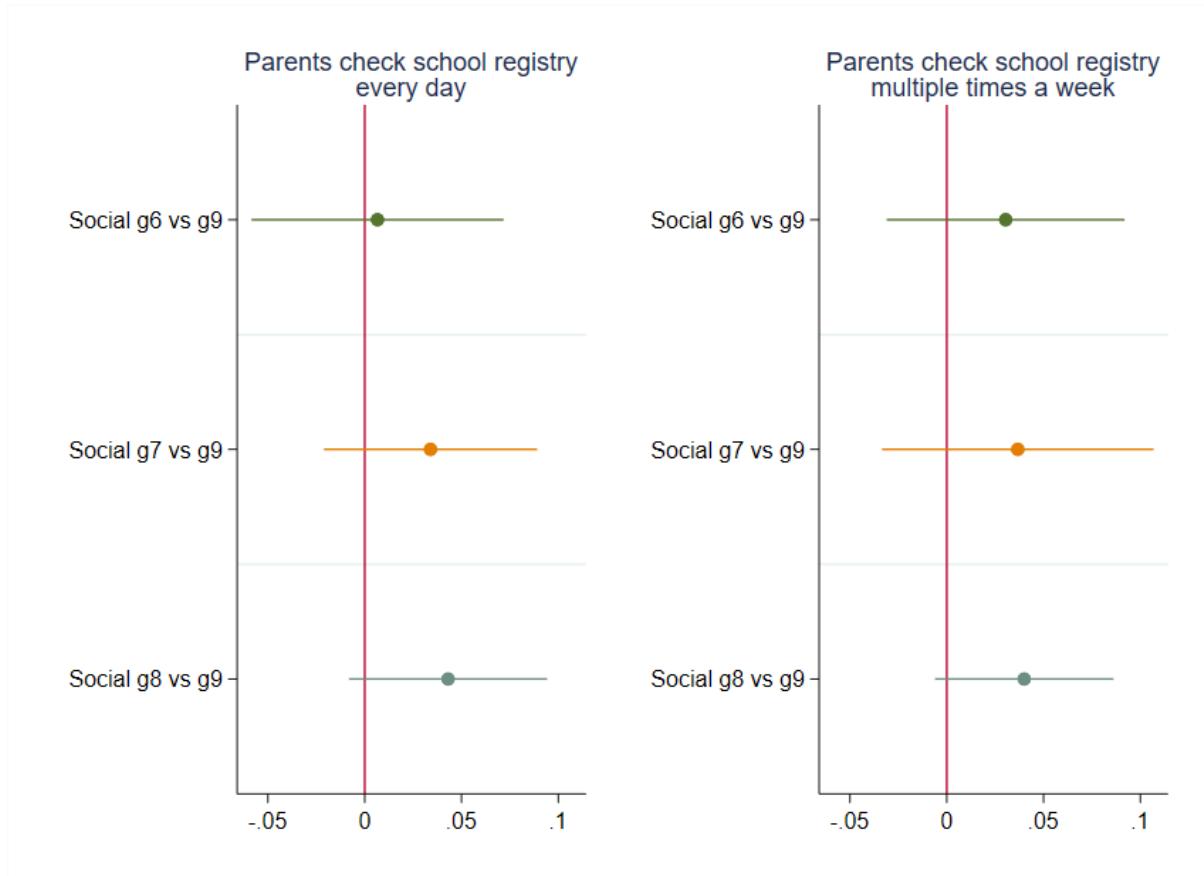
63

64

65

66 Figure A6 – Effect of early use of social networks on competences in grades 8 and 10,
67 alternative specifications

69 Note: The coefficients display the interaction parameters between treatment status and grade. Models
70 using radius matching: student fixed-effects models. Models using nearest neighbor matching:
71 matched-pairs fixed-effects models. Errors clustered at the individual level. N in models comparing the
72 6th grade early users group with the late users group: radius matching 7,570 observations, 1,947
73 students; nearest neighbor matching 4,157 observations, 1,068 students. N in models comparing the
74 7th grade early users group with the late users group: radius matching 6,955 observations, 1,794
75 students; nearest neighbor matching 4,827 observations, 1,240 students. N in models comparing the
76 8th grade early users group with the late users group: radius matching 5,874 observations, 1,507
77 students; nearest neighbor matching 4,911 observations, 1,258 students.


78

79

80

81

82 Figure A7 – Equivalence between groups in parental frequency of access to online
83 school register; matching technique: entropy balancing.

84

85
86 Note: errors clustered at the school level. N for models on marks, self-efficacy and enrolment: 1,956 for
87 models on 6th graders, 1,797 for models on 7th graders, and 1,511 for models on 8th graders.
88

89

90

91 Table A1 - Sample representativeness

Track	All selected provinces	EYES UP starting sample	EYES UP final sample
Academic	51	47	49
Technical	33	33	33
Vocational	16	20	18
Total	100	100	100
Total (N students)	99,815	7,083	6,150

93 Note: we had to exclude students enrolled in three-year vocational programs courses (459 students in
 94 our final sample), that are not present in national registers from this table (see footnote 17 for further
 95 clarification). Starting sample: students enrolled in the sampled classrooms. Final sample: respondents.

96 Table A2 - Congruence between effect estimated on different samples

Comparison	Effect estimate d at grade	Estimate d effect	Difference in the effects against "late users"	Difference in point estimates
(1)	(2)	(3)	(4)	(5)
Italian				
7th vs 8th grade	8	-0,040	-0,034	-0,006
	10	-0,092	-0,060	-0,032
6th vs 8th grade	8	-0,130	-0,116	-0,014
	10	-0,188	-0,115	-0,073
6th vs 7th grade	8	-0,090	-0,082	-0,008
	10	-0,059	-0,055	-0,004
Mathematics				
7th vs 8th grade	8	-0,032	-0,026	-0,007
	10	-0,095	-0,104	0,009
6th vs 8th grade	8	-0,109	-0,105	-0,004
	10	-0,125	-0,162	0,037
6th vs 7th grade	8	-0,081	-0,079	-0,001
	10	-0,042	-0,058	0,016

99 Note: all effects estimated using entropy balancing matching by means of student fixed-effect models.
 100 Column 3 reports the effects of the comparison between the groups described in column 1, at the grade
 101 specified in column 2. Column 4 reports the difference between the effects estimated against late users
 102 of the two groups described in column1 (e.g. the effect of 8th grade against late users minus the effect
 103 of 7th grade against late users). Column 5 is calculated by subtracting column 3 from column 4 and
 104 highlights the similarity of results by means of different and independent estimation methods.

105

106

107

108 **Appendix 2 – Scales**

109 **2.1 Smartphone Pervasiveness Scale for Adolescents (SPS-A)**

110 **2.1.1 Literature**

111 Smartphone pervasiveness in students' daily lives was measured through the extended
112 Smartphone Pervasiveness Scale for Adolescence (SPS-A), which was first validated on a
113 sample of 3,289 Italian upper secondary school students (Gerosa et al., 2022). The scale
114 assesses the subjective frequency of smartphone use in key daily-life moments that could
115 affect adolescents' social and physiological well-functioning (e.g. during mealtimes with family,
116 while spending time with friends and on waking up). When assessing non-pathological
117 problematic smartphone use, the SPS-A has been proved to be both a valuable alternative to
118 smartphone addiction scales and a good predictor of smartphone duration of use with respect
119 to self-reported measures (Chakraborty et al., 2024). Students were asked to report on a five-
120 point Likert scale ranging from "Never" to "Always" (Never = 1, Rarely = 2, Sometimes = 3,
121 Often = 4, Always = 5) how frequently they usually make use of their smartphones during
122 seven key moments of the day (see *Table A3*).

123

124 **2.1.2 Reliability and construct validity**

125

126 In terms of inter-item reliability, the items included in the analysis displayed an acceptable
127 degree of internal consistency (Cronbach's alpha = 0.74). Corrected item-total correlations,
128 i.e. the relationship between single items and the overall scale when the concerned item is
129 removed, were investigated: the values were all positive and above the 0.3 threshold.

130 Construct validity was assessed by means of a Confirmatory Factor Analysis (CFA) on the
131 entire sample, verifying the unidimensionality of the latent construct, i.e., Smartphone
132 Pervasiveness. The Weighted Least Square Mean and Variance estimation method (WLSMV)
133 was adopted, being one of the best performing estimators when dealing with ordinal data
134 (Brown, 2006). In accordance with the rules of thumb provided in the literature (Hu & Bentler,
135 1999, Browne and Cudek, 1993, MacCallum et al., 1996) the model specification results in an
136 acceptable fit (RMSEA = 0.072 [0.068-0.076], SRMR = 0.047, CFI = 0.936 , TLI = 0.915). The
137 standardized factor loadings were all positive, significant and above the 0.4 threshold (Brown,
138 2006) (see Table A4 for further details).

139

140 **2.1.3 Items and computation**

141 The pervasiveness index is computed by taking the mean of the nine items composing the
142 SPS-A scale.

143

144 Table A3 - Smartphone Pervasiveness Scale for adolescents (SPS-A); *Italian version in*
 145 *brackets*

How often do you find yourself using your smartphone during the following everyday situations? (Quanto spesso ti capita di usare lo smartphone durante le seguenti situazioni quotidiane?)
1 - During meals with my family (<i>Durante i pasti con i miei familiari</i>)
2 - While I'm with friends (<i>Mentre sono con gli amici</i>)
3 - While doing homework (<i>Durante lo svolgimento dei compiti a casa</i>)
4* - The evening before falling asleep (<i>La sera prima di prendere sonno</i>)
5 - At night if I wake up (<i>Di notte se mi sveglio</i>)
6 - In the morning as soon as I wake up (<i>La mattina appena mi sveglio</i>)
7 - During lessons at school, including when we are not supposed to be using devices (<i>Durante le lezioni a scuola, anche quando non è previsto l'utilizzo di dispositivi</i>)
8 - While watching a series, a film or TV (<i>Mentre guardo una serie, un film o la TV</i>)
9* - While doing physical activities (e.g. sports, trips, housework) (<i>Mentre svolgo attività di movimento (es. sport, gite, lavori in casa)</i>)

146 *Items added to the SPS-A scale.

147

148 Table A4 - Descriptive Statistics, factor loadings of the one-factor CFA model and factorial
 149 validity of the SPS-A latent construct.

Item	n	Mean	Std dev	Skewness	Excess kurtosis	Factor Loadings
1	6609	1.877	1.074	1.148	0.527	0.475
2	6609	3.03	0.912	0.047	-0.338	0.470
3	6609	3.299	1.031	-0.284	-0.352	0.531
4	6609	4.271	1.072	-1.571	1.744	0.676
5	6609	2.234	1.427	0.830	-0.713	0.664
6	6609	3.462	1.416	-0.381	-1.214	0.599
7	6609	2.664	1.174	0.200	-0.811	0.489
8	6609	2.921	1.179	0.007	-0.875	0.530
9	6609	2.037	1.164	0.922	-0.136	0.444

Fit Indices (WLSMV estimation method) – one factor CFA						
2	df	p-value	RMSEA	CFI	TLI	SRMR
958.673	27	0.000	0.072 [0.068-0.076]	0.936	0.915	0.047

150

151

152

153

154

155 2.2 Subjective well-being

156

157 2.2.1 Literature

158

159 The Subjective well-being scale was first developed to assess one of the seven core
160 theoretical dimensions of psychological well-being, measured by means of the
161 Comprehensive Inventory of Thriving for Children (CTI) (Su et al., 2014). Subjective well-being
162 has been defined as “an internal barometer of how life is going” and it is articulated in 3 facets,
163 i.e. life satisfaction, positive feelings and negative feelings. Each subscale is defined by 3
164 indicators answered on a 5 point-Likert scale ranging from “Strongly disagree” to “Strongly
165 agree” (*Strongly disagree = 1, Disagree = 2, Neither agree nor disagree = 3, Agree = 4,*
166 *Strongly agree = 5*) (see Table A5). The psychometric features of the Italian adaptation of the
167 CIT have been evaluated in previous research (Andolfi et al., 2017), providing evidence of the
168 validity and reliability of the instrument.

169

170 2.2.2 Reliability and construct validity

171

172 Concerning inter-item reliability, the items included in the analysis displayed a good/excellent
173 degree of internal consistency with respect to both the total SWB scale (Cronbach's alpha =
174 0.91) and the single subscales (Life satisfaction Cronbach's alpha = 0.85, Positive feelings
175 Cronbach's alpha = 0.90, Negative feelings Cronbach's alpha = 0.83). Corrected item-total
176 correlations values with respect to both the total scale and the subscales were all positive and
177 above the 0.3 threshold.

178 The three facets of psychological well-being are assumed to be unidimensional and
179 distinguishable from each other: a CFA was conducted on the whole sample to test the posited
180 factor structure. A 3-factor model was specified: single items loaded on the hypothesized latent
181 variable and factors were allowed to correlate with each other. The Weighted Least Square
182 Mean and Variance estimation method (WLSMV) was adopted, being one of the best
183 performing estimators when dealing with ordinal data (Brown, 2006). Missing values were
184 treated through listwise deletion, i.e., removing individual records with missing values from the
185 analysis. In accordance with the rules of thumb provided in the literature (Hu & Bentler, 1999,
186 Browne and Cudek, 1993, MacCallum et al., 1996) the model specification results in an
187 acceptable fit (RMSEA = 0.065 [0.061-0.069], SRMR = 0.019, CFI = 0.995 , TLI = 0.993). The
188 standardized factor loadings were all positive, significant and above the 0.4 threshold (Brown,
189 2006) (see Table A6). Factor correlations were all below the 0.8 threshold ([0.62 – 0.79]
190 range), supporting the notion that the three subscales represent related yet distinguishable
191 latent constructs (Brown, 2006).

192

193 2.2.3 Scale computation

194

195 As reported in Appendix A on the website of the first author of the CIT development and
196 validation paper, the score on each subscale is computed by averaging the responses across
197 three items on the scale.

198

199

200

201

202 Table A5 - Subjective well-being; *Italian version in brackets*

Please indicate your agreement or disagreement with each of the following statements using the scale below (1 Strongly Disagree, 2 Disagree, 3 Neither Agree nor Disagree, 4 Agree, 5 Strongly Agree). (Indica quanto sei d'accordo con ciascuna delle seguenti frasi, selezionando la tua scelta sulla seguente scala che va da 1 "Per niente d'accordo" a "Molto d'accordo".)

- 1 - In most ways my life is close to my ideal (*In molte cose la mia vita è come la vorrei*)
- 2 - I am satisfied with my life (*Sono contento/a della mia vita*)
- 3 - My life is going well (*La mia vita va bene*)
- 4 - I feel positive most of the time (*La maggior parte delle volte mi sento contento/a*)
- 5 - I feel happy most of the time (*La maggior parte delle volte mi sento felice*)
- 6 - I feel good most of the time (*La maggior parte delle volte mi sento di buon umore*)
- 7 - I feel negative most of the time (*La maggior parte delle volte mi sento triste*)
- 8 - I experience unhappy feelings most of the time (*La maggior parte delle volte mi sento infelice*)
- 9 - I feel bad most of the time (*La maggior parte delle volte mi sento di cattivo umore*)

203

204 **Table A6. Descriptive Statistics, factor loadings of the 3-factor CFA model.**

Item	n	Mean	Std dev	Skewness	Excess kurtosis	Subscale	Factor Loadings
1	6599	3.334	1.050	-0.396	-0.516	Life satisfaction	0.750
2	6587	3.653	1.057	-0.703	-0.064		0.922
3	6551	3.664	1.051	-0.697	-0.031		0.887
4	6585	3.473	1.037	-0.429	-0.375	Positive feelings	0.928
5	6584	3.422	1.046	-0.373	-0.44		0.939
6	6588	3.355	1.035	-0.324	-0.455		0.841
7	6581	3.322	1.037	-0.344	-0.475	Negative feelings	0.867
8	6577	3.488	1.098	-0.424	-0.549		0.889
9	6601	3.195	1.144	-0.234	-0.749		0.748
Fit Indices (WLSMV estimation method) – three factors CFA							
2	df	p-value	RMSEA	CFI	TLI	SRMR	
674.946	24	0.000	0.065 [0.061-0.069]	0.995	0.993	0.019	

205

206

207

208

209

210

211

212

213

214 2.3 Self-efficacy

215

216 2.3.1 Literature

217

218 Perceived self-efficacy is defined as the “belief in one’s capabilities to organize and execute
219 the courses of action required to produce given attainments (Bandura, 1997). Self-efficacy is
220 supposed to play a general role on mental health, determining how people feel, think, motivate
221 themselves and behave and therefore sustaining personal accomplishments, reducing stress
222 and lowering vulnerability to depression and anxiety (Tahmassian & Jalali Moghadam, 2011,
223 Muris, 2002). It has been posited that three different domains of self-efficacy are involved in
224 the regulation of negative affect: academic, social and emotional self-efficacy (Muris, 2001).
225 Academic self-efficacy refers to the individual’s perceived ability to control their learning
226 behaviours, master subjects and meet educational expectations. Social self-efficacy refers to
227 the individual’s perceived ability to be authentic and assertive in peer relationships. Emotional
228 self-efficacy refers to the individual’s perceived ability to cope with negative emotions (Muris,
229 2001). The self-efficacy questionnaire for children was developed to account for the above-
230 mentioned domains, each of which was originally defined by eight items. Due to optimization
231 reasons related to the length of the questionnaire, not all the original items were adopted in
232 the questionnaire. First, one item per subscale was removed considering Muris’s (2001) EFA,
233 which provided evidence that some of the items considered did not indeed load convincingly
234 on their intended factor. Second, of the seven remaining items per domain, four were selected
235 and implemented in the questionnaire. The choice relied on the combination of three main
236 criteria: i) research objectives, ii) avoidance of overlapping items, i.e., items similar in meaning
237 items and iii) the higher factor loadings value according to Muris (2001).

238 The final 12-item scale was measured on a 5-point Likert scale, with values ranging from “Not
239 at all” to “Very well” (*Not at all* = 1, *Very well* = 5).

240

241 2.3.2 Reliability and construct validity

242

243 Analysis of the inter-item reliability of subscales suggested removing one item from the social
244 self-efficacy subscale and one item from the emotional self-efficacy subscale, as the two items
245 were both associated with an increase in reliability following their respective drop. To produce
246 further evidence supporting the removal of the two items, an exploratory analysis was
247 conducted to investigate item clustering in greater detail. The sample was randomly divided
248 into two halves: EFA was conducted on the first half, while CFA was then implemented on the
249 second half. According to the literature, parallel analysis suggested the retention of three
250 factors, which were extracted by means of Principal Axis Factoring and obliquely rotated
251 (oblimin rotation). As both the items concerned did not load convincingly on the intended
252 factor, the research team agreed on their removal. Following the above-mentioned
253 adjustment, the indicators displayed acceptable/good degree of internal consistency with
254 respect to both the total self-efficacy scale (Cronbach’s alpha = 0.71) and the single subscales
255 (academic self-efficacy Cronbach’s alpha = 0.74, social self-efficacy Cronbach’s alpha = 0.63,
256 emotional self-efficacy Cronbach’s alpha = 0.78). Corrected item-total correlations values with
257 respect to both the total scale and the subscales were all positive and above the 0.3 threshold.
258 The three self-efficacy domains are assumed to be unidimensional and distinguishable from
259 each other: a CFA was conducted on the whole sample to test the posited factor structure. A
260 3-factor model was specified: single items loaded on the hypothesized latent variable and

261 factors were allowed to correlate with each other. The Weighted Least Square Mean and
262 Variance estimation method (WLSMV) was adopted, being one of the best performing
263 estimators when dealing with ordinal data (Brown, 2006). In accordance with the rules of
264 thumb provided in the literature (Hu & Bentler, 1999, Browne and Cudek, 1993, MacCallum et
265 al., 1996) the model specification results in an acceptable fit (RMSEA = 0.056 [0.052-0.060],
266 SRMR = 0.035, CFI = 0.977 , TLI = 0.968). The standardized factor loadings were all positive,
267 significant and above the 0.4 threshold (Brown, 2006) (see *Table A8* for further details). Factor
268 correlations were all far below the 0.8 threshold ([0.12 – 0.51] range), supporting the notion
269 that the three subscales represent distinguishable latent constructs (Brown, 2006).

270

271 **2.3.3 Scale computation**

272

273 The score on each subscale is computed by averaging the responses across the items on the
274 scale.

275

276 Table A7 - Self-efficacy; *Italian version in brackets*

How well can you... (1 - "Not at all", 5 - "Very well") (Indica con un valore compreso tra 1 "Per niente" e 5 "Molto", scegliendo la risposta appropriata per ciascun elemento. Quanto riesci a...)
1 – Can you study when there are other interesting things to do? (<i>Studiare quanto ci sono altre cose interessanti da fare?</i>)
2 – Can you express your opinions when other classmates disagree with you? (<i>Esprimere le tue opinioni quando altri compagni di classe non sono d'accordo con te?</i>)
3 – Do you succeed in cheering yourself up when an unpleasant event has happened? (<i>Tirarti su di morale quando è accaduto un evento spiacevole?</i>)
4 – Can you study a chapter for a test? (<i>Studiare un capitolo per una verifica-interrogazione?</i>)
5 – Can you become friends with other children? (<i>Fare amicizia con gli altri coetanei?</i>)
6 – Do you succeed in suppressing unpleasant thoughts? (<i>Scacciare pensieri spiacevoli?</i>)
7 – Do you succeed in finishing all your homework every day? (<i>Finire tutti i tuoi compiti ogni giorno?</i>)
9 – Can you give yourself a pep talk when you feel low (<i>Darti una carica positiva quando ti senti giù?</i>)
10 – Can you pay attention during every class? (<i>Prestare attenzione durante ogni lezione?</i>)
11 – Can you tell other children that they are doing something that you don't like? (<i>Dire ai tuoi coetanei che stanno facendo qualcosa che non ti piace?</i>)

| 1 – Can you study when there are other interesting things to do? (*Studiare quanto ci sono altre cose interessanti da fare?*) |
| 2 – Can you express your opinions when other classmates disagree with you? (*Esprimere le tue opinioni quando altri compagni di classe non sono d'accordo con te?*) |
| 3 – Do you succeed in cheering yourself up when an unpleasant event has happened? (*Tirarti su di morale quando è accaduto un evento spiacevole?*) |
| 4 – Can you study a chapter for a test? (*Studiare un capitolo per una verifica-interrogazione?*) |
| 5 – Can you become friends with other children? (*Fare amicizia con gli altri coetanei?*) |
| 6 – Do you succeed in suppressing unpleasant thoughts? (*Scacciare pensieri spiacevoli?*) |
| 7 – Do you succeed in finishing all your homework every day? (*Finire tutti i tuoi compiti ogni giorno?*) |
| 9 – Can you give yourself a pep talk when you feel low (*Darti una carica positiva quando ti senti giù?*) |
| 10 – Can you pay attention during every class? (*Prestare attenzione durante ogni lezione?*) |
| 11 – Can you tell other children that they are doing something that you don't like? (*Dire ai tuoi coetanei che stanno facendo qualcosa che non ti piace?*) |

277

Removed items:

278 Social self-efficacy subscale: 8 – Can you work in harmony with your classmates? (*Lavorare in armonia con i tuoi*

compagni di classe?)

280 Emotional self-efficacy subscale: 12 – Do you succeed in not worrying about things that might happen? (*Vivere le*

cose che potrebbero accadere senza preoccupazione?)

282

283

284

285

286

287 Table A8 - Descriptive Statistics, factor loadings of the 3-factor CFA model.

Item	n	Mean	Std dev	Skewness	Excess kurtosis	Subscale	Factor Loadings
1	6609	2.47	1.06	0.37	-0.43		0.643
4	6609	3.47	1.16	-0.44	-0.62	Academic	0.717
7	6609	3.00	1.34	0.00	-1.19	self-efficacy	0.705
10	6609	3.03	1.06	-0.06	-0.60		0.655
2	6609	3.30	1.27	-0.22	-1.00		0.666
5	6609	3.41	1.15	-0.32	-0.71	Social	0.605
11	6609	3.25	1.21	-0.20	-0.88	self-efficacy	0.659
3	6609	2.98	1.21	0.04	-0.91		0.759
6	6609	2.71	1.18	0.27	-0.78	Emotional	0.684
9	6609	2.95	1.20	0.06	-0.86	self-efficacy	0.856
Fit Indices (WLSMV estimation method) – three factors CFA							
2	df	p-value	RMSEA	CFI	TLI	SRMR	
695.467	32	0.000	0.056 [0.052- 0.060]	0.977	0.968	0.035	

288