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FIG. S1. Illustration of an ideal Ruddlesden-Popper (RP) type layered perovskite. The crystal structure for an
ideal An+1BnO3n+1 (n = 2) structure. Three distinct anion sites (apical, equatorial, and bridging) are present.
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FIG. S2. Magnetization curves of Pb3Fe2O5F2. The magnetization curves of Pb3Fe2O5F2 collected at 5, 300, and 400 K.
A weak ferromagnetic behavior was observed below the Néel temperature of 490 K.
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FIG. S3. TEM study for Pb3Fe2O5F2. (a) Electron diffraction (ED) patterns collected at room temperature (LT phase)
and 500 K (HT phase). The top and middle panels show the observed and simulated patterns using our P21/m structure
model for the LT phase. The bottom panel is the ED pattern of the HT phase showing appearance of the super structure. (b)
TEM image showing stacking fault along the c-axis.
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FIG. S4. Temperature evolution of the refined magnetic moment. The refined magnetic moment of Fe3+ obtained by
Rietveld refinement of neutron powder diffraction (NPD) patterns.
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FIG. S5. Temperature dependence of the dielectric constant (ε′) and loss (D) of Pb3Fe2O5F2. The dielectric loss
keeps the magnitude lower than 1 below 400 K, indicating insulating nature.
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TABLE I. The refined 57Fe Mössbauer parameters for Pb3Fe2O5F2. The abbreviations IS, HF, QS, and FWHM denote
isomer shift, hyperfine field, quadrupole splitting, and full width at half maximum, respectively.

Temperature (K) IS (mm/s) HF (T) QS (mm/s) FWHM (mm/s) Area ratio
78 0.51 53.5 ∗-0.32 0.31 1
RT 0.40 43.7 ∗-0.31 0.31 1

400
0.32 29.5 ∗-0.34 0.50 1

450
0.28 20.4 ∗-0.34 0.66 0.86
0.28 0 0.67 0.60 0.14

500 0.24 0 0.68 0.38 1

∗ (S2 − S1)/2. S1 and S2 are the separations of the two outer peaks on the lower and higher velocity side of the
sextet, respectively. The ‘S1–S2’ of –0.34 mm/s at 400 K in the sextet is nearly half of the magnitude of quadruple
splitting (QS) in the paramagnetic state, indicating ⊥ z spin alignment in the HT phase, where the magnetization
vector is perpendicular to the electric filed gradient along the c-axis.

TABLE II. The refined crystallographic parameters for Pb3Fe2O5F2. The refined crystallographic parameters were
obtained using SXRD patterns at 100 and 550 K.

The LT phase (100 K)
S.G. P21/m, a = 3.94060(5) Å, b = 3.94164(5) Å, c = 21.4002(2) Å, γ = 89.8157(8)◦

Atom Site x y z Biso/Å
2 BVS∗

Pb1 4f 0.2464(7) 0.3445(4) 0.07531(5) 0.30(3) 2.35
Pb2 2e 0.2270(9) 0.3297(6) 1/4 0.62(5) 1.94
Fe 4f 0.757(2) 0.8711(13) 0.1590(3) 0.46(10) 2.92
O1 4f 0.622(9) 0.380(10) 0.1564(17) 6.4(6) 2.03
O2 4f 0.216(15) 0.905(9) 0.1384(14) 6.4 2.06
O3 4f 0.722(11) 0.949(7) 1/4 0.2(8) 1.88
F 2e 0.780(7) 0.861(5) 0.0630(6) 0.2(8) 0.94

The HT phase (550 K)
S.G.: P42/nbc, a = 7.89769(2) Å, c = 21.8851(1) Å

Atom Site x y z Biso/Å
2 BVS∗

Pb1 8i -0.0006(15) 1/4 1/2 3.16(3) 1.95
Pb2 16k 0.0008 0.7485(7) 0.32776(3) 1.92(2) 2.01
Fe 16k -0.0013(19) 0.7566(18) 0.91121(12) 1.18(6) 2.75
O1 8h 0.064(3) 1/4 0 2.0(4) 1.91
O2 8f 1/4 1/4 0.1167 1.6(4) 2.13
O3 8g 3/4 1/4 0.097(3) 1.6 1.88
O4 16k -0.013(6) 0.049(3) 0.4086(14) 1.6 1.97
F 16k -0.008(7) 0.751(7) 0.8109(4) 2.0 0.80

∗ Bond valence sums (BVS) were calculated assuming complete O/F order.
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MAGNETIC STRUCTURE ANALYSIS

We employed group theoretical analysis based upon irreducible representation to identify the magnetic structure for
both high- and low-temperature phases. For the high-temperature phase at T = 400 K, all magnetic peak positions
can be indexed by a propagation wave vector, qhigh

m = (0, 0, 0). Basis vectors (BVs) of the irreducible representations
(irreps) for the wave vector are summarised in Table III.

There are 10 irreps in total, and each irrep consists of 3–12 BVs giving relations of magnetic moment directions.
First, we sorted out all BVs by comparing magnetic R-factor and found ψ14 in Γ5 has the best fit with Rmag = 19.8 %.
The second best refinement was achieved by ψ7 in Γ3 with 20.5 %, and the others poorly describe our data (Rmag >
25 %). The magnetic transition in the high-temperature phase is of second order, allowing the adoption of multiple
BVs within the same irrep to describe the magnetic structure. We then tested the potential involving of BVs for all
the irreps including Γ3, however, they cannot improve fitting quality. The magnetic structure with ψ14 is depicted in
Fig. 4b in the main text.

For the low-temperature phase at T = 4 K, additional peaks are found, and they can be indexed by a propagation
wave vector, qlow

m = (1/2, 0,−1/2) in the P21/m space group. Table IV summarises BVs of the irreps for the wave
vector qlow

m .
There are allowed 4 irreps, and each irrep consists of 3 BVs. We likewise sorted out all BVs by comparing magnetic

R-factor and found ψ5 in Γ2 has the best fit with Rmag = 16.8 %. The second best refinement was by ψ8 in Γ3

(16.9 %). These results from ψ5 and ψ8 are actually very close, and the difference is only found in the stacking
sequence along the b-axis. Since the low-temperature phase is after the first order transition, the magnetic structure
could be described by arbitrary combinations of BVs. We tested all of them, and found that either ψ5 or ψ8 plus the
participation of small moments within the ac-plane would improve the fitting quality. However, refinements of tiny
moments based upon powder data are very difficult, and the resultant magnetic structure can be approximated as
the G-type with the moments along the b-axis. Future refinements with a single crystalline sample would be able to
evaluate tiny ac-moments. For the low-temperature phase, the magnetic structure with ψ5 is depicted in Fig. 4d in
the main text.

FIRST PRINCIPLES CALCULATION

We used the Perdew-Burke-Ernzerhof parametrization of the generalized gradient approximation [1] and the pro-
jector augmented wave method [2] as implemented in the Vienna Ab initio Simulation Package [3–6]. The crystal
structure parameters listed on Supplementary Table 2 were used in our calculation. The plane-wave cutoff energy of
450 eV was used. We used 14 × 14 × 3, 16 × 16 × 4, 8 × 8 × 3, 10 × 10 × 4 k-meshes for the self-consistent-field
calculation of LT structure, DOS calculation of LT structure, those for HT structure, respectively. The G-type anti-
ferromagnetic order was assumed. Since we perturbatively interpreted the spin-orbit coupling for understanding the
magnetic anisotropy, the energy levels used in our discussion as the non-perturbative states were calculated without
including the spin-orbit coupling.

[1] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[2] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[3] G. Kresse and J. Hafner, Phys. Rev. B 47, 558(R) (1993).
[4] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
[5] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
[6] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
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TABLE III. Basis vectors (BVs) of irreducible representations (irreps) for the space group P42/nbc with the magnetic wave
vector qm = (0, 0, 0). Superscirpts show the moment direction. Columns for positions represent #1: (x = .00073, y = .75159, z =
.91082), #2: (x,−y + 1/2,−z), #3: (−x + 1/2, y,−z), #4: (−x + 1/2,−y + 1/2, z), #5: (−y + 1/2,−x + 1/2,−z + 1/2),
#6: (−y + 1/2, x, z + 1/2), #7: (y,−x + 1/2, z + 1/2), #8: (y, x,−z + 1/2), #9: (−x,−y,−z), #10: (−x, y + 1/2, z),
#11: (x + 1/2,−y, z), #12: (x + 1/2, y + 1/2,−z), #13: (y + 1/2, x + 1/2, z + 1/2), #14: (y + 1/2,−x,−z + 1/2), #15:
(−y, x+ 1/2,−z + 1/2), and #16: (−y,−x, z + 1/2).

irrep BV #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16

Γ1

ψ1 1a 1a -1a -1a -1b 1b -1b 1b 1a 1a -1a -1a -1b 1b -1b 1b

ψ2 1b -1b 1b -1b -1a -1a 1a 1a 1b -1b 1b -1b -1a -1a 1a 1a

ψ3 1c -1c -1c 1c -1c 1c 1c -1c 1c -1c -1c 1c -1c 1c 1c -1c

Γ2

ψ4 1a 1a -1a -1a -1b 1b -1b 1b -1a -1a 1a 1a 1b -1b 1b -1b

ψ5 1b -1b 1b -1b -1a -1a 1a 1a -1b 1b -1b 1b 1a 1a -1a -1a

ψ6 1c -1c -1c 1c -1c 1c 1c -1c -1c 1c 1c -1c 1c -1c -1c 1c

Γ3

ψ7 1a -1a 1a -1a 1b 1b -1b -1b 1a -1a 1a -1a 1b 1b -1b -1b

ψ8 1b 1b -1b -1b 1a -1a 1a -1a 1b 1b -1b -1b 1a -1a 1a -1a

ψ9 1c 1c 1c 1c 1c 1c 1c 1c 1c 1c 1c 1c 1c 1c 1c 1c

Γ4

ψ10 1a -1a 1a -1a 1b 1b -1b -1b -1a 1a -1a 1a -1b -1b 1b 1b

ψ11 1b 1b -1b -1b 1a -1a 1a -1a -1b -1b 1b 1b -1a 1a -1a 1a

ψ12 1c 1c 1c 1c 1c 1c 1c 1c -1c -1c -1c -1c -1c -1c -1c -1c

Γ5

ψ13 1a 1a -1a -1a 1b -1b 1b -1b 1a 1a -1a -1a 1b -1b 1b -1b

ψ14 1b -1b 1b -1b 1a 1a -1a -1a 1b -1b 1b -1b 1a 1a -1a -1a

ψ15 1c -1c -1c 1c 1c -1c -1c 1c 1c -1c -1c 1c 1c -1c -1c 1c

Γ6

ψ16 1a 1a -1a -1a 1b -1b 1b -1b -1a -1a 1a 1a -1b 1b -1b 1b

ψ17 1b -1b 1b -1b 1a 1a -1a -1a -1b 1b -1b 1b -1a -1a 1a 1a

ψ18 1c -1c -1c 1c 1c -1c -1c 1c -1c 1c 1c -1c -1c 1c 1c -1c

Γ7

ψ19 1a -1a 1a -1a -1b -1b 1b 1b 1a -1a 1a -1a -1b -1b 1b 1b

ψ20 1b 1b -1b -1b -1a 1a -1a 1a 1b 1b -1b -1b -1a 1a -1a 1a

ψ21 1c 1c 1c 1c -1c -1c -1c -1c 1c 1c 1c 1c -1c -1c -1c -1c

Γ8

ψ22 1a -1a 1a -1a -1b -1b 1b 1b -1a 1a -1a 1a 1b 1b -1b -1b

ψ23 1b 1b -1b -1b -1a 1a -1a 1a -1b -1b 1b 1b 1a -1a 1a -1a

ψ24 1c 1c 1c 1c -1c -1c -1c -1c -1c -1c -1c -1c 1c 1c 1c 1c

Γ9

ψ25 1a 1a 1a 1a 0 0 0 0 1a 1a 1a 1a 0 0 0 0
ψ26 1b -1b -1b 1b 0 0 0 0 1b -1b -1b 1b 0 0 0 0
ψ27 1c -1c 1c -1c 0 0 0 0 1c -1c 1c -1c 0 0 0 0
ψ28 0 0 0 0 -1b 1b 1b -1b 0 0 0 0 -1b 1b 1b -1b

ψ29 0 0 0 0 -1a -1a -1a -1a 0 0 0 0 -1a -1a -1a -1a

ψ30 0 0 0 0 -1c 1c -1c 1c 0 0 0 0 -1c 1c -1c 1c

ψ31 0 0 0 0 -1b -1b -1b -1b 0 0 0 0 -1b -1b -1b -1b

ψ32 0 0 0 0 -1a 1a 1a -1a 0 0 0 0 -1a 1a 1a -1a

ψ33 0 0 0 0 -1c -1c 1c 1c 0 0 0 0 -1c -1c 1c 1c

ψ34 1a -1a -1a 1a 0 0 0 0 1a -1a -1a 1a 0 0 0 0
ψ35 1b 1b 1b 1b 0 0 0 0 1b 1b 1b 1b 0 0 0 0
ψ36 1c 1c -1c -1c 0 0 0 0 1c 1c -1c -1c 0 0 0 0

Γ10

ψ37 1a 1a 1a 1a 0 0 0 0 -1a -1a -1a -1a 0 0 0 0
ψ38 1b -1b -1b 1b 0 0 0 0 -1b 1b 1b -1b 0 0 0 0
ψ39 1c -1c 1c -1c 0 0 0 0 -1c 1c -1c 1c 0 0 0 0
ψ40 0 0 0 0 -1b 1b 1b -1b 0 0 0 0 1b -1b -1b 1b

ψ41 0 0 0 0 -1a -1a -1a -1a 0 0 0 0 1a 1a 1a 1a

ψ42 0 0 0 0 -1c 1c -1c 1c 0 0 0 0 1c -1c 1c -1c

ψ43 0 0 0 0 -1b -1b -1b -1b 0 0 0 0 1b 1b 1b 1b

ψ44 0 0 0 0 -1a 1a 1a -1a 0 0 0 0 1a -1a -1a 1a

ψ45 0 0 0 0 -1c -1c 1c 1c 0 0 0 0 1c 1c -1c -1c

ψ46 1a -1a -1a 1a 0 0 0 0 -1a 1a 1a -1a 0 0 0 0
ψ47 1b 1b 1b 1b 0 0 0 0 -1b -1b -1b -1b 0 0 0 0
ψ48 1c 1c -1c -1c 0 0 0 0 -1c -1c 1c 1c 0 0 0 0
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TABLE IV. Basis vectors (BVs) of irreducible representations (irreps) for the space group P21/m with the magnetic wave
vector qm = (1/2, 0,−1/2). Columns for positions represent #1: (x = .87682, y = .15942, z = .74759), #2: (−x, y + 1/2,−z),
#3: (−x,−y,−z), and #4: (x,−y + 1/2, z).

irrep BV #1 #2 #3 #4

Γ1

ψ1 (∥ a) 1 -1 1 -1
ψ2 (∥ b) 1 1 1 1
ψ3 (∥ c) 1 -1 1 -1

Γ2

ψ4 (∥ a) 1 -1 -1 1
ψ5 (∥ b) 1 1 -1 -1
ψ6 (∥ c) 1 -1 -1 1

Γ3

ψ7 (∥ a) 1 1 1 1
ψ8 (∥ b) 1 -1 1 -1
ψ9 (∥ c) 1 1 1 1

Γ4

ψ10 (∥ a) 1 1 -1 -1
ψ11 (∥ b) 1 -1 -1 1
ψ12 (∥ c) 1 1 -1 -1


