Supplementary Material

Appendix A Background on Causality

A.1 Representing Cause-Effect Relationships with Graphs

A graph G = (V,E) is a pair of two sets, a set nodes V and a set of edges E C 'V x V.
Two nodes X and Y are adjacent if an edge connects them. Edges can be directed,
X — Y, or undirected, X — Y. A directed graph is a graph in which every edge is
directed. If X — Y then X is a parent of Y and Y is a child of X. A sequence of
nodes Xy,..., Xy form a path if X; and X;,; are adjacent for every i € [1,k). A
path is directed if X; — X;41 for at least one 4 [30]. X is an ancestor of Y, and YV
is a descendant of X, if there exists a directed path from X to Y. We use An(X) to
indicate X’s ancestors, and De(X) to indicate X's descendants. A cycle is a directed
path where X; = X}. A graph is acyclic when there are no cycles. A DAG is a directed
and acyclic graph.

Definition 1 (Causal graph) A causal graph (CG) [4] is a DAG G = (V, E) where each
node X; € V represents a random variable. It is determined by a function f; and a set of
exogenous variables U x so that:

Xi = fi(Pa(X;), Ux) (A1)
with Pa(X;) being the parents of X;.

The exogenous variables indicate the conditions of the world outside the system and
are influenced by external factors. Typically, these variables represent the individuals
involved in the phenomenon, belonging to the population under study [4]. Hereafter,
we refer to the parents Pa(X;), including the variables Ux.

A causal graph describes how a system under study works: for each edge X — Y,
the node X is the cause of Y and Y the effect of X [41]. Observational data are collected
without intervening on causal mechanisms [41]. The causal networks framework [4, 40]
allows us to relate a causal graph to the data distribution.

Definition 2 (Causal network) A causal network (CN) is a tuple (G, P) where G = (V,E)
is a causal graph and P is a joint probability distribution over V that factorizes into local
distributions accordingly to G:

P(V)= [ P(XilPa(X;)) (A2)
X, eV



The condition in Equation (A2) makes the CN a Bayesian network, where edges
also have a causal interpretation [30, 43]. Hence, CNs provide a causal and a
probabilistic explanation of the system’s behavior.

Definition 3 (d-separation) Given a DAG G = (V, E), a path 7 between two nodes X and
Y is d-separated [42] by aset Z C V\ {X,Y} if:

® 7 contains a chain of nodes X;_1 — X; — X;41 or a fork X;_1 < X; = X;41 such
that X; € Z, or

e 7 contains a collider X;,_1 — X; + X,11 such that X; ¢ Z, and no descendant of
X; are in Z.

Two disjoint sets of nodes X and Y are d-separated by Z C V \ {X, Y} if all pairs (X,Y) €
X x Y are d-separated by Z. In that case, we write X 1llg Y | Z.

We denote by X 1lp Y | Z the conditional independence between the sets of
random variables X and Y given the set Z, i.e., whenever P(X | Y,Z) = P(X | Z).
The condition in Equation (A2) is equivalent to the following Markov property [30, 31]:

XUgY|Z = XUpY|Z (A3)

The Markov property allows us to read conditional independencies from the graph.
However, many DAGs can encode the same set of d-separations. The DAGs that entail
the same independencies of a given CG G belong to the same Markov equivalence class
(MEC) of G, denoted by [G] [43]. A MEC can be uniquely represented by a completed
partially DAG (CPDAG), namely an acyclic graph containing directed and undirected
edges, in which an edge is directed iff it is directed in all DAGs belonging to the MEC.

A.2 The Problem of Causal Discovery

Definition 4 (Causal discovery problem) Let D be a dataset over variables V, and (G, P)
the CN that generated D. The causal discovery problem consists of recovering the CG G from
data D and prior knowledge [22, 52, 59].

Given the true CG G = (V, E), a common assumption is that of causal sufficiency,
although implausible in many scenarios [29]. Causal sufficiency holds when no hidden,
i.e., unmeasured, variable is a cause of at least two other variables.

There are two main categories of causal discovery algorithms, namely score-based
and constraint-based [22, 57, 59]. Score-based algorithms aim to find a DAG G* that
maximizes a goodness-of-fit function, called the score-function. Constraint-based algo-
rithms exploit conditional independence tests to learn the graph’s adjacencies and to
orient as many as possible. There is no agreement on which of the two categories is the
best in the scientific literature. However, Scutari et al. [49] show that constraint-based
approaches perform better in small sample size settings. Another important aspect is
that causal discovery algorithms typically do not recover a unique CG, but an MEC,
when only observational data are available. Experimental data usually give additional



Table A1 Examples of prior knowledge constraints.

# Constraint Input Example Constraint

1 Required directed XY G must contain X — Y.

2 Required undirected X-Y X and Y must be adjacent in G.

3 Forbidden directed XAY G must not contain X — Y.

4 Forbidden undirected X AY X and Y must not be adjacent in G.

5  Relaxed partial order  Tier 1: {X;}, Nodes in tier ¢ are not causes of those
Tier 2: {Xo, X3} in tier j, with ¢ > j.

6 Strict partial order Tier 1: {X1}, The same as rule 5, but edges within
Tier 2: {X», X3} nodes in the same tier are forbidden.

7 Root node A X X must not have parents in G.

8 Sink node X A X must not have children in G.

information, allowing us to identify a unique CG [9, 27], but their collection is not al-
ways feasible. In this work, we focus on the setting where only observational data are
available and resort to expert knowledge for obtaining a unique CG [19].

A.3 Formalizing Expert Knowledge

Ezxpert knowledge, or prior knowledge, is any information that constraints or guides
the causal discovery algorithm, typically obtainable from domain experts. There are
several approaches to formalize expert knowledge (Section B); in this paper, we focus
on hard constraints [14], namely, rules on the presence/absence of specific edges in the
CG. We denote prior knowledge in this form as K [35]. Some constraints are reported
in Table A1; it is straightforward to include each rule in constraint-based CD methods
[35]. Note that rules 4-8 can be transformed into rule 3. When the number of nodes
increases, the edges grow exponentially, making edge-by-edge elicitation unfeasible.
On the contrary, partial orders such as rules 5 and 6 are easier to elicit because they
describe partial temporal orderings.

A.4 Estimating Uncertainty in Causal Discovery

Once the causal discovery problem has been solved, the quality of the recovered CG
must be assessed. This task may be accomplished by bagging [21], which essentially
aggregates a set of CGs learned from sampled subsets of the original dataset. Specifi-
cally, let G be the true CG and H the one learned from data D. Bootstrap aggregation,
abbreviated in bagging, produces many samples {Dy,..., Dy} from D, with or with-
out repetition of data items. In this way, it simulates datasets with a slightly different
joint distribution of variables. The sampling technique can also be conditioned on
some variables’ values whenever their prevalence is low in D. Then, a CG is learned
from each sample, resulting in a set of graphs {#i, ..., Hr}. The probability that X
and Y are adjacent in G is estimated as their adjacency frequency in {Hi,...,Hg}.
A threshold ¢ can be chosen so that edges in H are kept only if their probability is



higher than ¢. The value of ¢ may be estimated from data, and a common choice is
based on the cumulative distribution function of the empirical probabilities [48]. The
probability of edge directions is estimated similarly and selected whenever above 0.5.
The empirical probabilities behave as a posterior distribution of G given D. We can
then evaluate the robustness of H and its generalizability to new data.

Appendix B Related Work

Expert knowledge elicitation for causal discovery is based mainly on constraining the
graph to be learned, such as setting lists of required and forbidden edges. Several works
[11, 12, 35] provide methods to include these rules in causal discovery algorithms.
Gonzales et al. [23] also consider a degree of uncertainty in expert knowledge. However,
their multi-step pipeline is not iterative, and the final phase only queries experts for
edge directions. Brouillard et al. [10] describe a different approach, where variables
are assigned a specific category, and edge directions are constrained to consider that
category. Borboudakis and Tsamardinos [5] consider rules on a graph’s paths, by
merging a given causal graph and a set of logical rules while dealing with inconsistency
between these two. The assumption of having full access to these hard constraints
[14] as input to the algorithm is often unrealistic. Constantinou et al. [14] introduce
soft rules to guide the algorithmic search by bounding the graph space. Authors of
[3, 24, 26] consider an expert-given graph prior. Borboudakis and Tsamardinos [6]
propose a similar methodology, where the prior is based on experts’ beliefs of causal
and associative relationships. Amirkhani et al. [2] examine the case of both uncertain
and heterogeneous knowledge. Regrettably, edges may lose their causal semantics when
exploiting soft constraints [23].

The line of active learning [28] proposes iterative methods for knowledge elici-
tation. Kitson and Constantinou [28] modify the Tabu algorithm [7] to request new
information dynamically. Masegosa and Moral [33] develop an iterative system capa-
ble of requesting knowledge as needed. The cost of inquiries and the level of experts’
reliability are considered. However, experts do not accompany the entire graph con-
struction, and prior knowledge is only requested to establish edges deemed unreliable
from the data. Mascaro et al. [32] describe how a causal graph is obtainable by relying
uniquely on experts. Sousa et al. [51] develop a process that includes domain experts
and tackles the data scarcity problem. Yet, their workflow is not iterative, and prior
knowledge must obey the statistical properties of data.

The class of time-varying graphical models [47] gives a valid option to represent
longitudinal dynamics—for instance, Nogueira et al. [39] model time series from the
healthcare domain. However, longitudinal data are characterized by discrete, and not
continuous, sequences of events and right-censoring. Sheidaei et al. [50] leverage the
dynamic Bayesian network (DBN) framework [37] to model longitudinal data. DBNs
assume we observe the system state at points equally spaced in time. Then, due to
heterogeneous granularities in patients’ observations, small time windows should be
considered. This may lead to an over-parametrized model that hinders its learning
and tractability. Moreover, the DBN stationarity is commonly assumed over time,
which is not the case under evolving mechanisms. The framework of continuous time



Bayesian network (CTBN) [38] allows us to describe a system’s evolution without
being constrained to discrete time. CTBNs are flexible and promising event-based
models. Regrettably, this framework is underdeveloped to obtain a CTBN from lon-
gitudinal data [1, 8, 18]. The approaches of [34] and [58] merge causal discovery with
longitudinal analysis [36]. They exploit survival analysis to predict the censored time-
to-events, then causal discovery is performed on the completed data. Regrettably, they
do not consider multiple events and longitudinal dynamics.

Appendix C Longitudinal Data
C.1 Notation

Longitudinal data consist of repeated observations of a cohort of individuals over time,
hence are characterized by a set of events £ [36]. An event FE € & is any fact that may
happen during the patient’s observation period. For instance, it can be the onset of
the disease, its progression, or its prognosis. Let ¢ = 0 be the initial time point of any
observation period [54]. The time at which an event E occurs is said to be its time-to-
event TF. Longitudinal studies aim to model the event-related risk and the cumulative
probability distribution of TF. A subject i is observed up to time T}, throughout a set
of follow-up (FUP) visits which may record event occurrences [53]. The step function
E;(t) = (TF < t) describes whether E occurred before time ¢ for the i-th subject,
with 0 < ¢ < T; and I the indicator function, which is 1 if the argument is true and
0 otherwise. Note that the T;’s are commonly heterogeneous across patients; even if
an event has not occurred within the last recorded FUP, we cannot conclude that it
will not happen afterwards. This is particularly true in the case of competitive events.
For instance, the death event S is competitive when it prevents the observation of
subsequent events unless it is the primary focus of the study. The meaning of Tis and
Si(t) follow from TF and F;(t). A time-to-event TF is said to be right-censored if
TE > T;. We say the i-th patient is right-censored when TiS is right-censored; this may
happen when the subject leaves the study. Classical analysis for these data involves,
for instance, the Kaplan-Meier estimate [44] or the Cox Proportional Hazard model
[20] in case patients’ covariates and multiple events are considered.

C.2 DataWindowing: A Practical Approach to Time-Varying
Mechanisms

We present the Data Windowing algorithm, a preprocessing step to causal discovery
tailored for observational longitudinal data.

Let D be a dataset in which each row is associated with a subject ¢ € {1,..., N}
and each column is associated with the observations of either a non-event variable,
i.e., determined at t = 0 for any 4, or an event variable. An event variable related
to E € £ is the stochastic process E(t) expressing the probability that Tr < ¢, with
t > 0. The related column in D is:

E(T) = {E(T)) |i € {1,...,N}} (C4)



Algorithm 1 Data Windowing algorithm.
Input: dataset D, time 7.
Output: dataset D7.
1: function DATAWINDOWING(D, T)
2 D™ «+ copy(D)
3 for all i € rows(D) do
4: €<+ e(i,7)
5: if T; < 7 —¢ and S;(T;) =0 then
6
7
8
9

L Remove i-th subject from D™
Continue

for all £ € £ do
: - D[i, B(T;)] + Ei(7)

10: . D75, S(Ty)] + Si(T)

11: L return D7

Analogous definitions follow for the stochastic process S(t) and the column S(T3),
related to the death event S. Notice that F(t) depends on ¢, hence, E(t) is well-defined
for the i-th subject only over ¢ < T;. Consequently, there may not exist a unique
time 7 for which E(7) is well-defined for any subject. However, there are no multiple
versions of the same node in a CG. Our proposal tackles the issue by removing the
dependency of E(t) and S(t) on t.

Let 7 > 0 be a fixed time-point. Algorithm 1 builds a dataset D™ from D, recording
whether the events occurred within the time window [0, 7]. Alive subjects observed
less than 7 are removed from D in Lines 5-6. The right-censoring justifies this; we
cannot know whether they died within (73, 7]. On the contrary, all those who died
before 7 are kept to avoid selection biases [25]. Here, T, = T, so all the event
occurrences are recorded at T;. Each column F(T;) is substituted with the realisations
of the new variable E(7) in Line 9. If the i-th patient died within [0, 7] then E;(7) is
set as E;(T7); otherwise, E;(7) is set to zero. This way, event variables are given a
shared temporal semantics: while E(t) depended on ¢, now E(7) does not. The same
argument holds for the death event S and the column S(7;). We do not distinguish
between disease-related death and death from other causes.

Follow-ups may be several months apart. If the last FUP is near the selected 7 for
subject i-th, namely 7 — e < T; < 7 with ¢ relatively small, then the next FUP will
probably be after 7. Hence, including ¢ in D7 is sensible and increases the sample size.
Experts may provide a value for € in Line 4, which depends on (i) 7 because FUP
frequency usually drops over time, and on (ii) 4 because high-risk subjects are checked
more often than low-risk ones.

The choice of 7 requires a trade-off and relies on experts. The smaller the time
window is, the higher the related sample size. On the other hand, time is needed for the
events to develop: a small 7 could hide some cause-effect relationships, because event
variables may influence each other from before to after 7. Multiple values 71 < ... <
7, result in different datasets D™, ..., D" representing the system over overlapping
time windows [0, 1], ..., [0, 7%]. Then, the CGs G™,...,G™ can be learned from them
through shared or non-shared prior knowledge. When compared, the CG structures



may allow experts to deduce whether, and how, causal mechanisms change over time.
Edge removals, additions, and reversals hint that the data-generating process develops
over time.

Appendix D Soft Tissue Sarcoma Case Study

We describe the STS data and report the analyses conducted. To do this, we map the
steps of Figure 1 to our specific case study. In the following, Recurrence indicates
the variable (and graph node) associated with local recurrence, while Metastasis
indicates the variable associated with distant metastasis. The R package bnlearn [46]
is employed for all the analyses.

Step (1)

The STS dataset belongs to Fondazione IRCCS Istituto Nazionale dei Tumori (INT),
Milan, Italy, and has been prospectively collected over the past 30 years. We consider
all patients affected by STS who underwent surgery from 2000 to 2020. We exclude all
subjects excised before 2000 because the classification of the disease and its treatments
have changed. Patients who received an unplanned excision in other institutes and a
second, complete excision at INT are included because the re-excision is considered to
reset the risks. Hence, t = 0 refers to the time of surgery at INT. We select subjects
affected by STS of the limbs, arms, and superficial trunk, as causal mechanisms differ
in other sites. The final sample includes 2 007 patients.

Steps (2) to (4)

Table D2 lists the selected variables and levels. The reported sample size results from
step (7). Grade and Histotype are proxies of the cancer aggressiveness. Patients who
were first excised in other institutes are not differentiated from the others, as surgery
at INT resets the risk of local recurrence. We exclude the following variables due to
their low prevalence in the data and ineffective impact on the CGs globally: Type
of surgery, Postoperative complications, Metastasis site, and Recurrence
treatment. Age is discretized in tertiles, while the levels of Size are given by expert
knowledge based on its role in the disease’s natural history. Histotypes reflect previ-
ous studies (see Section 3). Treatments, namely Radiotherapy, Chemotherapy, and
Isolated limb perfusion (ILP) [15] only refer to whether they were performed or not
and are perioperative, namely, performed close to surgery. The time of administration,
whether before or after surgery, adds no oncological information but scatters data.

Steps (5) to (7)

Age, Size, Depth, and Margins are measured at surgery at INT. Specifically, the tu-
mor Size is the maximum diameter between the one at first surgery and the one at
re-excision. Recurrence and Metastasis, refer to their first occurrence. We ignore
subsequent events because of their low prevalence. Clinicians highlight that impercep-
tible metastases may also be present at surgery. Thus, temporal sequences of events
do not generally suggest any underlying causal relationship. We assume causal suffi-
ciency and adopt the discrete Bayesian network framework [30]. Missing values are



Table D2 STS variables and levels resulting from the CD workflow.

Variable and levels n % Variable and levels n %

Total 1979 - Depth

Sex Superficial 574 29.0
Female 880 44.5 Deep 1405 71.0
Male 1099 55.5 Grade (FNCLCCQC) [55]

Age (years) 1 387 19.6
x < 48 660 33.4 2 558 28.2
48 < x < 65 662 33.5 3 1034 522
x > 65 657 33.2 Margins [45]

Site RO 1719 86.9
Upper extremity 281 14.2 R1 258 13.0
Lower extremity 1257 63.5 R2 2 0.1
Trunk 441 22.3 Radiotherapy

Histotype Done 937 47.3
Leiomyosarcoma 186 9.4 Not done 1042 52.7
DD or pleomorphic 113 5.7 Chemotherapy
liposarcoma : Done 601 30.4
Myxoid liposarcoma 261 13.2 Not done 1378 69.6
MPNST 112 5.7 ILP
Myxofibrosarcoma 333 16.8 Done 43 2.2
Synovial sarcoma 133 6.7 Not done 1936 97.8
UPS 427 21.6 Recurrence
Vascular sarcoma 54 2.7 Yes 188 9.5
Other 360 18.2 No 1791  90.5

Size (cm) Metastasis
x <5 749 37.8 Yes 528 26.7
5<x<10 698 35.3 No 1451 73.3
x > 10 532 26.9 Death

Yes 446 22.5
No 1533 775

rare and completely at random [47]. Experts fill in some values by logic, and when
unfeasible, the data item is excluded from the data. At the end of this step, we are
left with 1979 patients.

Steps (8) to (10)

The meaning of event variables changes depending on 71, ..., 7 (C). Prior knowledge
about concurrent mechanisms helps determine the time windows (more info in the
main text). Their values are set to 71 = 2, 79 = 5, and 73 = 7 years. By employing Algo-
rithm 1, we obtain distinct datasets for each time window: D? with 1848 patients, D°
with 1579 patients, and D7 with 1345 patients. The dataset D? includes 294 individ-
uals who developed only Metastasis, 52 individuals who developed only Recurrence,
and 59 individuals who developed both. Similarly, D® contains 318 observations of
only Metastasis, 67 observations of only Recurrence, and 75 observations of both.
In the case of D7, we have 314 observations of only Metastasis, 63 observations of
only Recurrence, and 78 observations of both.



Table D3 Final prior knowledge elicitation in the STS case study.

# Input Reason

5 Tier 1: {Age, Sex} Patient’s covariates.
Tier 2: {Histotype, Grade} Tumor characteristics.
Tier 3: {Site, Size, Depth} Physical traits.
Tier 4: {Margins, ILP, Chemo., Radio.} Surgery quality and therapies.
Tier 5: {Recurrence, Metastasis} Re-occurrence of disease.
Tier 6: {Death} Disease prognosis.

3 Size -4 Site Tumor size cannot alter its site.
Margins -4 ILP ILP is performed before surgery.

Steps (11) to (14)

The elicited prior knowledge is shared among all causal discovery tasks, i.e., it con-
strains G2,G°, and G” equally. The final version of prior knowledge is described in
Table D3. Due to its stability and explainability, we choose the PC-Stable algorithm
[13] for causal discovery. As conditional independence test, we exploit the permuta-
tion mutual information with conditional Monte Carlo simulation (MC-MI) test [16]
Its significance threshold is set to a = 0.05 and the number of permutations to 5000,
as supported by [56]. MC-MI output differs slightly from run to run because of the
stochasticity of permutations. Hence, bagging is required to assess the CGs’ stability.
Bagging performs 200 resamplings [17], by stratifying on variables Metastasis and
Recurrence due to their low prevalence.

Steps (15) to (24)

Many iterations and refinements are required to obtain three consensus networks (see
Section 3). As the study ended, 13 external clinicians assessed the obtained CGs
through a questionnaire. The questionnaire focused on the presence/absence of paths
related to the effect of therapies and the disease behavior. In conclusion, the causal
sufficiency assumption is argued.

D.1 Questionnaire

For reproducibility purposes, we report the questions in the STS questionnaire. The
types and fields of answers are reported for each question.

1. “E'mail (optional)”. Free-text input.

2. “Workplace”. Multiple choice (Oncology / Surgery / Pathological Anatomy /
Radiotherapy / Radiology / Other:_ ).

“Specialization”. Free-text input (e.g., “Oncologist”, “Surgeon”, etc.).

“Years of experience on soft tissue sarcoma”. Numerical input.

“I took part in this project”. Multiple choice (Yes / No / Other: __).

“Positive margins (R1 or R2) can cause local recurrence”. 5-point Likert scale +
optional comment.

O U



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

“Positive margins (R1 or R2) can cause distant metastasis”. 5-point Likert scale
+ optional comment.

“Positive margins (R1 or R2) are also caused by biological variables (e.g.,
site, histology). If yes, specify which variables”. 5-point Likert scale + optional
comment.

“The decision of whether to administer chemotherapy at diagnosis of a STS of a
limb or superficial trunk is based on the observation of”. Multiple choice (Never
/ Rarely / Sometimes / Often / Always) for the following factors + optional
comment.

- Histology

- Grading

- tumor size

- tumor depth

- Patient age

- Other therapies already performed

- Postoperative margins

“The decision of whether to administer radiotherapy at diagnosis of a STS of a
limb or superficial trunk is based on the observation of”. Multiple choice (Never
/ Rarely / Sometimes / Often / Always) for the following factors + optional
comment.

- Histology

- Grading

- tumor size

- tumor depth

- Patient age

- Other therapies already performed

- Postoperative margins

“Chemotherapy prevents local recurrence”. 5-point Likert scale + optional com-
ment.

“Chemotherapy prevents distant metastasis”. 5-point Likert scale + optional
comment.

“Radiotherapy prevents local recurrence”. 5-point Likert scale + optional com-
ment.

“Radiotherapy prevents distant metastasis”. 5-point Likert scale + optional
comment.

“Chemotherapy improves patient prognosis in terms of survival”. 5-point Likert
scale 4+ optional comment.

“Radiotherapy improves patient prognosis in terms of survival”. 5-point Likert
scale 4+ optional comment.

“In the short term (i.e., first 2 years), distant metastasis can cause local
recurrence”. b-point Likert scale + optional comment.

“In the long term (i.e., beyond & years), distant metastasis can cause local
recurrence”. 5-point Likert scale + optional comment.

“A local recurrence can cause distant metastasis”. 5-point Likert scale + optional
comment.

10



20.

21.

22.

23.

24.

“In the short term, local recurrence can cause patient death”. 5-point Likert scale
+ optional comment.

“In the long term, local recurrence can cause patient death”. 5-point Likert scale
+ optional comment.

“In the short term, certain histologies and grading cause distant metastasis”.
5-point Likert scale + optional comment.

“In the short term, certain histologies and grading cause local recurrence”. 5-point
Likert scale + optional comment.

“In the long term, histology and grading do not cause local recurrence”. 5-point
Likert scale + optional comment.
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