Supplementary Material
[bookmark: _GoBack]Supplementary information of microalgae cultivation suspensions images at different concentrations, program codes of proposed models in this work.

Table S1. Images of microalgae cultivation suspensions at different concentrations.
	DCW (g/L)
	Image_1
	Image_2
	Image_3
	Image_4

	0.009
	[image:]
	[image:]
	[image:]
	[image:]

	0.049
	[image:]
	[image:]
	[image:]
	[image:]

	0.093
	[image:]
	[image:]
	[image:]
	[image:]

	0.152
	[image:]
	[image:]
	[image:]
	[image:]

	0.203
	[image:]
	[image:]
	[image:]
	[image:]

	0.251
	[image:]
	[image:]
	[image:]
	[image:]

	0.304
	[image:]
	[image:]
	[image:]
	[image:]

	0.352
	[image:]
	[image:]
	[image:]
	[image:]

	0.397
	[image:]
	[image:]
	[image:]
	[image:]

	0.506
	[image:]
	[image:]
	[image:]
	[image:]

	0.611
	[image:]
	[image:]
	[image:]
	[image:]

	0.709
	[image:]
	[image:]
	[image:]
	[image:]

	0.813
	[image:]
	[image:]
	[image:]
	[image:]

	0.906
	[image:]
	[image:]
	[image:]
	[image:]

	1.004
	[image:]
	[image:]
	[image:]
	[image:]

	1.524
	[image:]
	[image:]
	[image:]
	[image:]

	2.123
	[image:]
	[image:]
	[image:]
	[image:]

	2.674
	[image:]
	[image:]
	[image:]
	[image:]

	5.114
	[image:]
	[image:]
	[image:]
	[image:]

	7.642
	[image:]
	[image:]
	[image:]
	[image:]

Appendix S1. Program code for RES

class BasicBlock(nn.Module):
 expansion = 1

 def __init__(self, in_planes, planes, stride=1, downsample=None):
 super(BasicBlock, self).__init__()
 self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
 self.bn1 = nn.BatchNorm2d(planes)
 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
 self.bn2 = nn.BatchNorm2d(planes)
 self.downsample = downsample

 def forward(self, x):
 identity = x

 out = F.relu(self.bn1(self.conv1(x)))
 out = self.bn2(self.conv2(out))

 if this.downsample is not None:
 identity = self.downsample(x)

 out += identity
 out = F.relu(out)

 return out

class ResNet(nn.Module):
 def __init__(self, block, layers, num_classes=1000):
 super(ResNet, self).__init__()
 self.in_planes = 64

 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
 self.bn1 = nn.BatchNorm2d(64)
 self.relu = nn.ReLU(inplace=True)
 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

 self.layer1 = self._make_layer(block, 64, layers[0])
 self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
 self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
 self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
 self.fc = nn.Linear(512 * block.expansion, num_classes)

 def _make_layer(self, block, planes, blocks, stride=1):
 downsample = None
 if stride != 1 or self.in_planes != planes * block.expansion:
 downsample = nn.Sequential(
 nn.Conv2d(self.in_planes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(planes * block.expansion),
)

 layers = []
 layers.append(block(self.in_planes, planes, stride, downsample))
 self.in_planes = planes * block.expansion
 for _ in range(1, blocks):
 layers.append(block(self.in_planes, planes))

 return nn.Sequential(*layers)

 def forward(self, x):
 x = self.relu(self.bn1(self.conv1(x)))
 x = self.maxpool(x)

 x = self.layer1(x)
 x = self.layer2(x)
 x = self.layer3(x)
 x = self.layer4(x)

 x = self.avgpool(x)
 x = torch.flatten(x, 1)
 x = self.fc(x)

 return x

def ResNet18(num_classes=1000):
 return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)

Appendix S2. Program code for RES-G

class BasicBlock(nn.Module):
 expansion = 1

 def __init__(self, in_planes, planes, stride=1, downsample=None):
 super(BasicBlock, self).__init__()
 self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
 self.bn1 = nn.BatchNorm2d(planes)
 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
 self.bn2 = nn.BatchNorm2d(planes)
 self.downsample = downsample

 def forward(self, x):
 identity = x

 out = F.relu(self.bn1(self.conv1(x)))
 out = self.bn2(self.conv2(out))

 if self.downsample is not None:
 identity = self.downsample(x)

 out += identity
 out = F.relu(out)

 return out

class ResNeXtBlock(nn.Module):
 expansion = 1

 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=32):
 super(ResNeXtBlock, self).__init__()
 self.conv1 = nn.Conv2d(inplanes, planes * self.expansion, kernel_size=3, stride=stride, padding=1, bias=False, groups=groups)
 self.conv2 = nn.Conv2d(planes * self.expansion, planes * self.expansion, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
 self.bn1 = nn.BatchNorm2d(planes * self.expansion)
 self.bn2 = nn.BatchNorm2d(planes * self.expansion)
 self.relu = nn.ReLU(inplace=True)
 self.downsample = downsample
 self.stride = stride

 def forward(self, x):
 identity = x

 out = self.conv1(x)
 out = self.bn1(out)
 out = self.relu(out)

 out = self.conv2(out)
 out = self.bn2(out)

 if self.downsample is not None:
 identity = self.downsample(x)

 out += identity
 out = self.relu(out)

 return out

class ResNeXt18(nn.Module):
 def __init__(self, block, layers, num_classes=1000, groups=32, width_per_group=64):
 super(ResNeXt18, self).__init__()
 self.inplanes = 64
 self.groups = groups
 self.base_width = width_per_group
 self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
 self.bn1 = nn.BatchNorm2d(self.inplanes)
 self.relu = nn.ReLU(inplace=True)
 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 self.layer1 = self._make_layer(block, 64, layers[0])
 self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
 self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
 self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
 self.fc = nn.Linear(512 * block.expansion, num_classes)

 def _make_layer(self, block, planes, blocks, stride=1):
 downsample = None
 if stride != 1 or self.inplanes != planes * block.expansion:
 downsample = nn.Sequential(
 nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(planes * block.expansion),
)

 layers = []
 for _ in range(blocks):
 layers.append(block(self.inplanes, planes, stride, downsample, self.groups))
 self.inplanes = planes * block.expansion
 stride = 1
 downsample = None

 return nn.Sequential(*layers)

 def forward(self, x):
 x = self.conv1(x)
 x = self.bn1(x)
 x = self.relu(x)
 x = self.maxpool(x)

 x = self.layer1(x)
 x = self.layer2(x)
 x = self.layer3(x)
 x = self.layer4(x)

 x = self.avgpool(x)
 x = torch.flatten(x, 1)
 x = self.fc(x)

 return x

def resnext18(num_classes=1000, groups=32, width_per_group=64):
 model = ResNeXt18(ResNeXtBlock, [2, 2, 2, 2], num_classes=num_classes, groups=groups, width_per_group=width_per_group)
 return model

Appendix S3. Program code for RES-SG

class SeparableConv2d(nn.Module):
 def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
 super(SeparableConv2d, self).__init__()
 self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size,
 stride=stride, padding=padding, groups=in_channels, bias=False)
 self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)

 def forward(self, x):
 x = self.depthwise(x)
 x = self.pointwise(x)
 return x

class NASNetCell(nn.Module):
 def __init__(self, in_channels, out_channels, repeat):
 super(NASNetCell, self).__init__()
 self.repeat = repeat
 self.layers = nn.ModuleList()
 for _ in range(self.repeat):
 self.layers.append(nn.Sequential(
 nn.ReLU(),
 SeparableConv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2),
 nn.BatchNorm2d(out_channels),
 nn.ReLU(),
 SeparableConv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
 nn.BatchNorm2d(out_channels)
))

 def forward(self, x):
 for layer in self.layers:
 x = layer(x)
 return x

class NASNetLarge(nn.Module):
 def __init__(self, num_classes=1000):
 super(NASNetLarge, self).__init__()
 self.conv0 = nn.Conv2d(3, 96, kernel_size=3, stride=2, padding=0, bias=False)
 self.bn0 = nn.BatchNorm2d(96)
 self.cell_stem_0 = NASNetCell(96, 168, 5)
 self.reduction_cell_0 = NASNetCell(168, 336, 5)
 self.cell_stem_1 = NASNetCell(336, 672, 5)
 self.reduction_cell_1 = NASNetCell(672, 1344, 5)
 self.cell_0 = NASNetCell(1344, 1344, 6)
 self.avg_pool = nn.AdaptiveAvgPool2d(1)
 self.dropout = nn.Dropout(0.5)
 self.fc = nn.Linear(1344, num_classes)

 def forward(self, x):
 x = self.conv0(x)
 x = self.bn0(x)
 x = self.cell_stem_0(x)
 x = self.reduction_cell_0(x)
 x = self.cell_stem_1(x)
 x = self.reduction_cell_1(x)
 x = self.cell_0(x)
 x = self.avg_pool(x)
 x = x.view(x.size(0), -1)
 x = self.dropout(x)
 x = self.fc(x)
 return x

def nasnet_large(num_classes=1):
 return NASNetLarge(num_classes)
 
RES-AG：
class BasicBlock(nn.Module):
 expansion = 1

 def __init__(self, in_planes, planes, stride=1, groups=1):
 super(BasicBlock, self).__init__()
 self.conv1 = nn.Conv2d(
 in_planes, planes, kernel_size=3, stride=stride,
 padding=1, bias=False, groups=groups)
 self.bn1 = nn.BatchNorm2d(planes)
 self.relu = nn.ReLU(inplace=True)
 self.conv2 = nn.Conv2d(
 planes, planes * self.expansion, kernel_size=3, stride=1,
 padding=1, bias=False, groups=groups)
 self.bn2 = nn.BatchNorm2d(planes * self.expansion)

 self.downsample = None
 if stride != 1 or in_planes != planes * self.expansion:
 self.downsample = nn.Sequential(
 nn.Conv2d(
 in_planes, planes * self.expansion,
 kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(planes * self.expansion),
)

 def forward(self, x):
 identity = x

 out = self.conv1(x)
 out = self.bn1(out)
 out = self.relu(out)

 out = self.conv2(out)
 out = self.bn2(out)

 if self.downsample is not None:
 identity = self.downsample(x)

 out += identity
 out = self.relu(out)

 return out
class ResNet(nn.Module):
 def __init__(self, block, layers, num_classes=1000, groups_list=None, channels_list=None):
 super(ResNet, self).__init__()
 if groups_list is None:
 groups_list = [1, 1, 1, 1]
 if channels_list is None:
 channels_list = [64, 128, 256, 512]

 self.in_planes = channels_list[0]
 self.conv1 = nn.Conv2d(
 3, self.in_planes, kernel_size=7, stride=2, padding=3,
 bias=False, groups=groups_list[0])
 self.bn1 = nn.BatchNorm2d(self.in_planes)
 self.relu = nn.ReLU(inplace=True)
 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

 self.layer1 = self._make_layer(
 block, channels_list[0], layers[0], stride=1, groups=groups_list[0])
 self.layer2 = self._make_layer(
 block, channels_list[1], layers[1], stride=2, groups=groups_list[1])
 self.layer3 = self._make_layer(
 block, channels_list[2], layers[2], stride=2, groups=groups_list[2])
 self.layer4 = self._make_layer(
 block, channels_list[3], layers[3], stride=2, groups=groups_list[3])

 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
 self.fc = nn.Linear(channels_list[3] * block.expansion, num_classes)

 def _make_layer(self, block, planes, blocks, stride=1, groups=1):
 layers = []
 layers.append(block(self.in_planes, planes, stride, groups))
 self.in_planes = planes * block.expansion
 for _ in range(1, blocks):
 layers.append(block(self.in_planes, planes, groups=groups))
 self.in_planes = planes * block.expansion
 return nn.Sequential(*layers)

 def forward(self, x):
 x = self.conv1(x)
 x = self.bn1(x)
 x = self.relu(x)
 x = self.maxpool(x)

 x = self.layer1(x)
 x = self.layer2(x)
 x = self.layer3(x)
 x = self.layer4(x)

 x = self.avgpool(x)
 x = torch.flatten(x, 1)
 x = self.fc(x)

 return x
layers_options = [
 [2, 2, 2, 2],
 [1, 2, 3, 4],
]
channels_options = [
 [64, 128, 256, 512],
 [32, 64, 128, 256],
]
groups_options = [
 [1, 1, 1, 1],
 [2, 2, 2, 2],
 [4, 4, 4, 4],
]
model = RESAGNet(BasicBlock, layers, num_classes=1,groups_list=groups_list, channels_list=channels_list) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device)

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpeg

image54.jpeg

image1.jpeg

image55.jpeg

image56.jpeg

image57.jpeg

image58.jpeg

image59.jpeg

image60.jpeg

image61.jpeg

image62.jpeg

image63.jpeg

image64.jpeg

image2.jpeg

image65.jpeg

image66.jpeg

image67.jpeg

image68.jpeg

image69.jpeg

image70.jpeg

image71.jpeg

image72.jpeg

image73.jpeg

image3.jpeg

image4.jpeg

