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Table S1. Images of microalgae cultivation suspensions at different concentrations.
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Appendix S1. Program code for RES

class BasicBlock(nn.Module):
    expansion = 1
 
    def __init__(self, in_planes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
 
    def forward(self, x):
        identity = x
 
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
 
        if this.downsample is not None:
            identity = self.downsample(x)
 
        out += identity
        out = F.relu(out)
 
        return out
 
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_planes = 64
 
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
 
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)
 
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.in_planes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_planes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
 
        layers = []
        layers.append(block(self.in_planes, planes, stride, downsample))
        self.in_planes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_planes, planes))
 
        return nn.Sequential(*layers)
 
    def forward(self, x):
        x = self.relu(self.bn1(self.conv1(x)))
        x = self.maxpool(x)
 
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
 
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
 
        return x
 
def ResNet18(num_classes=1000):
    return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)
 





Appendix S2. Program code for RES-G

class BasicBlock(nn.Module):
    expansion = 1
 
    def __init__(self, in_planes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
 
    def forward(self, x):
        identity = x
 
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
 
        if self.downsample is not None:
            identity = self.downsample(x)
 
        out += identity
        out = F.relu(out)
 
        return out
 
class ResNeXtBlock(nn.Module):
    expansion = 1
 
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=32):
        super(ResNeXtBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes * self.expansion, kernel_size=3, stride=stride, padding=1, bias=False, groups=groups)
        self.conv2 = nn.Conv2d(planes * self.expansion, planes * self.expansion, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
        self.bn1 = nn.BatchNorm2d(planes * self.expansion)
        self.bn2 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
 
    def forward(self, x):
        identity = x
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
 
        if self.downsample is not None:
            identity = self.downsample(x)
 
        out += identity
        out = self.relu(out)
 
        return out
 
 
class ResNeXt18(nn.Module):
    def __init__(self, block, layers, num_classes=1000, groups=32, width_per_group=64):
        super(ResNeXt18, self).__init__()
        self.inplanes = 64
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)
 
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
 
        layers = []
        for _ in range(blocks):
            layers.append(block(self.inplanes, planes, stride, downsample, self.groups))
            self.inplanes = planes * block.expansion
            stride = 1
            downsample = None
 
        return nn.Sequential(*layers)
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
 
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
 
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
 
        return x
 
def resnext18(num_classes=1000, groups=32, width_per_group=64):
    model = ResNeXt18(ResNeXtBlock, [2, 2, 2, 2], num_classes=num_classes, groups=groups, width_per_group=width_per_group)
    return model




Appendix S3. Program code for RES-SG

class SeparableConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(SeparableConv2d, self).__init__()
        self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, 
                                   stride=stride, padding=padding, groups=in_channels, bias=False)
        self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.depthwise(x)
        x = self.pointwise(x)
        return x

class NASNetCell(nn.Module):
    def __init__(self, in_channels, out_channels, repeat):
        super(NASNetCell, self).__init__()
        self.repeat = repeat
        self.layers = nn.ModuleList()
        for _ in range(self.repeat):
            self.layers.append(nn.Sequential(
                nn.ReLU(),
                SeparableConv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(out_channels),
                nn.ReLU(),
                SeparableConv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
                nn.BatchNorm2d(out_channels)
            ))
        
    def forward(self, x):
        for layer in self.layers:
            x = layer(x)
        return x

class NASNetLarge(nn.Module):
    def __init__(self, num_classes=1000):
        super(NASNetLarge, self).__init__()
        self.conv0 = nn.Conv2d(3, 96, kernel_size=3, stride=2, padding=0, bias=False)
        self.bn0 = nn.BatchNorm2d(96)
        self.cell_stem_0 = NASNetCell(96, 168, 5)
        self.reduction_cell_0 = NASNetCell(168, 336, 5)
        self.cell_stem_1 = NASNetCell(336, 672, 5)
        self.reduction_cell_1 = NASNetCell(672, 1344, 5)
        self.cell_0 = NASNetCell(1344, 1344, 6)
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.dropout = nn.Dropout(0.5)
        self.fc = nn.Linear(1344, num_classes)

    def forward(self, x):
        x = self.conv0(x)
        x = self.bn0(x)
        x = self.cell_stem_0(x)
        x = self.reduction_cell_0(x)
        x = self.cell_stem_1(x)
        x = self.reduction_cell_1(x)
        x = self.cell_0(x)
        x = self.avg_pool(x)
        x = x.view(x.size(0), -1)
        x = self.dropout(x)
        x = self.fc(x)
        return x

def nasnet_large(num_classes=1):
    return NASNetLarge(num_classes)
 
RES-AG：
class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1, groups=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(
            in_planes, planes, kernel_size=3, stride=stride,
            padding=1, bias=False, groups=groups)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(
            planes, planes * self.expansion, kernel_size=3, stride=1,
            padding=1, bias=False, groups=groups)
        self.bn2 = nn.BatchNorm2d(planes * self.expansion)

        self.downsample = None
        if stride != 1 or in_planes != planes * self.expansion:
            self.downsample = nn.Sequential(
                nn.Conv2d(
                    in_planes, planes * self.expansion,
                    kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * self.expansion),
            )

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000, groups_list=None, channels_list=None):
        super(ResNet, self).__init__()
        if groups_list is None:
            groups_list = [1, 1, 1, 1]
        if channels_list is None:
            channels_list = [64, 128, 256, 512]

        self.in_planes = channels_list[0]
        self.conv1 = nn.Conv2d(
            3, self.in_planes, kernel_size=7, stride=2, padding=3,
            bias=False, groups=groups_list[0])
        self.bn1 = nn.BatchNorm2d(self.in_planes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(
            block, channels_list[0], layers[0], stride=1, groups=groups_list[0])
        self.layer2 = self._make_layer(
            block, channels_list[1], layers[1], stride=2, groups=groups_list[1])
        self.layer3 = self._make_layer(
            block, channels_list[2], layers[2], stride=2, groups=groups_list[2])
        self.layer4 = self._make_layer(
            block, channels_list[3], layers[3], stride=2, groups=groups_list[3])

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(channels_list[3] * block.expansion, num_classes)

    def _make_layer(self, block, planes, blocks, stride=1, groups=1):
        layers = []
        layers.append(block(self.in_planes, planes, stride, groups))
        self.in_planes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_planes, planes, groups=groups))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x
layers_options = [
    [2, 2, 2, 2],
    [1, 2, 3, 4],
]
channels_options = [
    [64, 128, 256, 512],
    [32, 64, 128, 256],
]
groups_options = [
    [1, 1, 1, 1],
    [2, 2, 2, 2],
    [4, 4, 4, 4],
]
model = RESAGNet( BasicBlock, layers, num_classes=1,groups_list=groups_list, channels_list=channels_list) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device)
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