6. References
1.Yusuf Y, Ghazali MJ, Otsuka Y, Ohnuma K, Morakul S, Nakamura S, Abdollah MF (2020) Antibacterial properties of laser surface-textured TiO2/ZnO ceramic coatings. Ceram Int 46:3949–3959
2.Szabo T, Nemeth J, Dekany I (2003) Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Colloids Surf A 230:23–35
3.Voicu G, Miu D, Ghitulica C-D, Jinga S-I, Nicoara A-I, Busuioc C, Holban A-M (2020) Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants. Ceram Int 46:3904–3911
4.Wu Y, Li C, Li M, Li Hi, Xu S, Wu X, Yang B (2016) Microstructural and optical properties of Ta-doped ZnO films prepared by radio frequency magnetron sputtering. Ceram Int 42:10847–10853
5.Xing X, Deng D, Li Y, Chen N, Liu X, Wang Y (2016) Macro- /nanoporous Al-doped ZnO via self-sustained decomposition of metal-organic complexes for application in degradation of Congo red. Ceram Int 42:18914–18924
6.Suwanboon S, Amornpitoksuk P, Sukolrat A (2011) Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M = Al, Mg, Ti), Ceram. Int 37:1359–1365
7.Wang Y, Song J, Zheng W, Pei H, Wang X, Wang D, Niu G, Song Q, Yang F, Nan J (2017) Experimental and theoretical analysis of H and Ti co-doped ZnO transparent conductive films. Ceram Int 43:5396–5402
8.Zhu L, Li Y, Zeng W (2017) Enhanced ethanol sensing and mechanism of Cr-doped ZnO nanorods: Experimental and computational study. Ceram Int 43:14873–14879
9.Liu Z, Tang Y, Li N, Yang P (2019) Study on interfacial interaction between Si and ZnO, Ceram. Int 45:21894–21899
10.Singh B, Kaushal A, Bdikin I, Saravanan KV, Ferreira JMF (2015) Effect of Ni doping on structural and optical properties of Zn1 – xNixO nanopowder synthesized via low cost sono-chemical method. Mater Res Bull 70:430–435
11.Zhao J, Wang L, Yan X, Yang Y, Lei Y, Zhou J, Huang Y, Gu Y, Zhang Y (2011) Structure and photocatalytic activity of Ni-doped ZnO nanorods. Mater Res Bull 46:1207–1210
12.Gao Q, Dai Y, Han B, Zhu W, Li X, Li C (2019) Enhanced gas-sensitivity and ferromagnetism performances by the Ni-doping induced oxygen vacancies in (Mn, Ni) codoped ZnO nanorods. Appl Surf Sci 490:178–187
13.Bolokang AS, Phasha MJ, Oliphant C, Motaung D (2011) XRD analysis and microstructure of milled and sintered V, W, C, and Co powders. Int J Refract Met Hard Mater 29(1):108–111
14.Porter GA, Liaw PK, Tiegs TN, Wu KH (2000) Particle size reduction of NiTi shape-memory alloy powders. Scripta Mater 43:1111–1117
15.Bolokang AS, Motaung DE, Arendse CJ, Muller TFG (2015) Morphology and structural development of reduced anatase-TiO2 by pure Ti powder upon annealing and nitridation: Synthesis of TiOx and TiOxNy powders. Mater Charact 100:41–49
16.Akilan T, Srinivasan N, Saravanan R (2015) Magnetic and optical properties of Ti doped ZnO prepared by solid state reaction method, Mater. Sci. Semiconductor Proc. 30 381–387
17.Włodarski M, Nowak MP, Putkonen M, Nyga P, Norek M (2024) Surface Modification of ZnO Nanotubes by Ag and Au Coatings of Variable Thickness: Systematic Analysis of the Factors Leading to UV Light Emission Enhancement. ACS Omega 9:1670–1682
18.Naresh B, Sreekanth TVM, Prasad K, Yoo K, Kim J (2025) Mg and Cr doped ZnO nanoparticles for oxygen evaluation reaction. Surf Interf 56:105437
19.Bolokang AS, Modiba R, Motaung DE, Ngoepe PE (2020) Synthesis of the porous spinel Co-Al2O4 powder produced by ball milling and annealing. Adv Pow Technol 31:2742–2748
20.Avar B, Ozcan S (2014) Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat treatments. Ceram Int 40:11123–11130
21.Amirkhanlou S, Ketabchi M, Parvin N (2012) Nanocrystalline/nanoparticle ZnO synthesized by high energy ball milling process. Mater Lett 86:122–124
22.Fabián M, Tyuliev G, Feldhoff A, Kostova N, Kollár P, Suzuki S, Saito F, Šepelák V (2013) One-step synthesis of nanocrystalline ZnO via cryomilling. Pow Technol 235:395–399
23.Glushenkov AM, Zhang HZ, Chen Y (2008) Reactive ball milling to produce nanocrystalline ZnO. Mater Lett 62:4047–4049
24.Salah N, Habib SS, Khan ZH, Memic A, Azam A, Alarfaj E, Zahed N, Al-Hamedi S (2011) High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int J Nanomed 6:863–869
A
25.Wang J, Shen YQ, Li X, Xia Y, Yang C (2019) Synergistic effects of UV activation and surface oxygen vacancies on the room-temperature NO2 gas sensing performance of ZnO nanowires, Sens. Actuator B-Chem 298:126858
A
26.Yasmeen S, Iqbal F, Munawar T, Nawaz MA, Asghar M, Hussain A, Synthesis, structural and optical analysis of surfactant assisted ZnO–NiO nanocomposites prepared by homogeneous precipitation method, Ceram. Int. 45 17859–17873. [27], Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y (2019) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Appl. Mater. Interf. 4 (2012) 4024–4030
28.Li Y, Zheng R, Lei Y, Chen W, Wan R, Zhou H, Chu PK (2019) Microwave synthesis and enhancement of power factors of HfxTi1–xNiSn. Mater Lett 251:13–17
29.Bolokang AS, Phasha MJ Solid-state transformation in ball milled nickel powder. Mater Lett 64 (17), 1894–1897
30.Shi P, Wan S, Yi G, Sun H, Yu Y, Xie E, Wang Q, Shen SZ, Alam N (2020) TiO2–ZnO/Ni–5wt.%Al composite coatings on GH4169 superalloys by atmospheric plasma spray techniques and theirs elevated-temperature tribological behaviour. Ceram Int 46:13527–13538