

35 porosity of some configurations is adjusted—if necessary—by modifying the void dimension
36 parameters b/L , a/L and d/L (while largely maintaining their ratios) to achieve successful
37 pattern formation.

38 In Extended Data Fig. 1, we present the large-scale patterns obtained from the
39 configurations: $\chi^{\theta=45^\circ}$, $\chi^{\theta=15^\circ}$, $\chi^{\theta=10^\circ}$, $\chi^{\theta=4.5^\circ}$ and $\chi^{\theta=0^\circ}$, from top to bottom. The
40 identified characteristic lengths for these large-scale patterns are listed in the last column of
41 Extended Data Table 1, as $L_{cr} = 13(\delta_S)^{-1}L$, $13L$, $13(\delta_S)L$, $13(\delta_S)^2L$, and a “longwave”
42 length (exceeding the sample size) respectively, where L is the prototile side length in the base
43 tiling and $\delta_S = 1 + \sqrt{2}$ is the silver ratio. All results were numerically derived from
44 sufficiently large samples with a size of $W_S = 440L$. The identification of the characteristic
45 lengths was implemented using the same mapping method described in Fig. 4 and verified
46 through the SSIM analysis shown in Fig. 5. Among all configurations, the $\chi^{\theta=45^\circ}$ sample
47 exhibits the smallest characteristic length. Further reductions in the chirality angle θ result in
48 large-scale patterns with an increase in the characteristic length. Interestingly, this set of
49 increasing characteristic lengths fit into a geometric sequence governed by the silver ratio δ_S ,
50 expressed with a general formula $L_{cr} = 13(\delta_S)^N L$, where $N = -1, 0, 1, 2, \dots$. Note that,
51 the $\chi^{\theta=0^\circ}$ sample exhibits no large-scale pattern formation within a finite sample size, and
52 thus its characteristic length is regarded as “longwave” ($L_{cr} \rightarrow \infty$). Overall, Extended Data Fig.
53 1 demonstrates that these patterns exhibit strong morphological similarity but develop at
54 different length scales, implying that the reassembly of quasi-crystalline order within the
55 material can occur at various scales depending on the initial chirality of the voids.

56 Additionally, we present detailed results for the $\chi^{\theta=10^\circ}$ sample, which is modified from
57 the χ_W configuration (Fig. 2) by reducing the chirality angle to 10° . Numerical results for
58 this configuration are shown in Extended Data Fig. 2. Specifically, Extended Data Fig. 2a plots
59 the average compressive stress (σ) as a function of strain (ε), while Extended Data Fig. 2b and
60 2c illustrate the corresponding material patterns and their zoomed-in views at various strain
61 levels ($\varepsilon = 0, 0.03, 0.04, 0.05, 0.055$, and 0.0625). We observe that microstructural
62 transformations propagate significantly faster and extend further in the $\chi^{\theta=10^\circ}$ sample

63 compared to $\chi^{\theta=15^\circ}$ configuration, resulting in an obviously larger pattern ($\varepsilon = 0.0625$ in
64 Extended Data Fig. 2b). By simulations on a sufficiently large sample (Extended Data Fig. 1c),
65 we identify the characteristic length of $\chi^{\theta=10^\circ}$ sample as $L_{cr}^{\theta=10^\circ} = \delta_S L_{cr}^{\theta=15^\circ}$, where $L_{cr}^{\theta=15^\circ}$ is
66 the characteristic length identified for the χ_W sample (Fig. 4). Additionally, compared to
67 $\chi^{\theta=15^\circ}$ configuration, the $\chi^{\theta=10^\circ}$ sample exhibits slightly higher stiffness prior to nucleation,
68 reaches its critical strain earlier, and results in nearly identical stiffness in the post-
69 transformation stage.

70

71 **Supplementary Note 2: Illustration of Microstructures that do not Develop Large-scale**
72 **Patterns**

73 In our study, most configurations, explored across a broad microstructural parameter space,
74 fail to develop large-scale patterns due to incomplete progression through three critical stages:
75 i) local nucleation, ii) enough propagation of transformation, and iii) confinement of
76 transformation within distinct domains. Here, we present two typical examples in which large-
77 scale patterns do not emerge.

78 The sample shown in Extended Data Fig. 3a ($b/L = 0.81$, $a/L = 0.432$, $d/L = 0.75$
79 and $\theta = 35^\circ$) exemplifies a failure case in which nucleation is initiated but quickly arrested by
80 gridlocks, preventing further propagation. Specifically, as the compressive strain increases from
81 $\varepsilon = 0.05$ to $\varepsilon = 0.08$, densely clustered nucleation spots emerge. The potential propagation
82 paths originating from these spots overlap, leading to strong competition that induces a gridlock
83 effect. This mutual obstruction prevents any single nucleation spot from successfully
84 propagating even at a high compressive strain ($\varepsilon = 0.11$), thereby suppressing large-scale
85 pattern formation.

86 In contrast, some other microstructures fail to form large-scale patterns due to the absence
87 of localized nucleation upon the initiation of void collapse. Instead, structural collapse is
88 triggered simultaneously across the sample. For example, the sample shown in Extended Data
89 Fig. 3b ($b/L = 0.6675$, $a/L = 0.5$, $d/L = 0.8$ and $\theta = 5^\circ$) undergoes a transition from
90 stable compression to void collapse between $\varepsilon = 0.05$ and $\varepsilon = 0.11$. However, no

91 concentrated nucleation spots are observed; instead, the transformation initiates uniformly
92 across the sample. Consequently, no large-scale patterns were observed in the fully collapsed
93 structure, even at a high enough compressive strain ($\varepsilon = 0.18$).

94

95 **Supplementary Photo 1:** High-resolution photograph of large-scale pattern formation in weak
96 chirality (χ_W) sample at the strain level $\varepsilon = 0.133$.

97 **Supplementary Photo 2:** High-resolution photograph of large-scale pattern formation in strong
98 chirality (χ_S) sample at the strain level $\varepsilon = 0.135$.

99 **Supplementary Movie 1:** Experimental video of weak chirality (χ_W) sample under equi-
100 biaxial plane-strain compression from $\varepsilon = 0$ to $\varepsilon = 0.133$ (video sped up by a factor of 10).

101 **Supplementary Movie 2:** Numerical simulation video of large-scale pattern formation in weak
102 chirality (χ_W) sample from $\varepsilon = 0$ to $\varepsilon = 0.0625$. The left panel shows the full view, while
103 the right panel provides a zoom-in view.

104 **Supplementary Movie 3:** Numerical simulation video of large-scale pattern formation in
105 strong chirality (χ_S) sample from $\varepsilon = 0$ to $\varepsilon = 0.0985$. The left panel shows the full view,
106 while the right panel provides a zoom-in view.

107 **Supplementary Movie 4:** Numerical simulation video of pattern formations in $\chi^{\theta=45^\circ}$,
108 $\chi^{\theta=15^\circ}$, $\chi^{\theta=10^\circ}$, and $\chi^{\theta=4.5^\circ}$ samples (with sample size of $W_S = 440L$), respectively, from
109 top to bottom.