Supplementary information

ArchLips: A comprehensive *in silico* database for high-throughput identification of archaeal lipids using high-resolution mass spectrometry

Fengfeng Zheng^{a,b,1*}, Wenyong Yao^{a, 1}, Wei He^{a,1}, Wan Zhang^a, Yufei Chen^a, Huahui Chen^a, Zhirui Zeng^a, Xiao-Lei Liu^c, Su Ding^d, Yanhong Zheng^e, Linan Huang^f, Yuanqing Zhu^a, Chuanlun Zhang^{a,*}

- a Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- b Advanced Institute for Ocean Research, Southern University of Science and Technology, Shenzhen 518055, China
- c School of Geosciences, University of Oklahoma, Norman, OK 73019, USA
- d Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- e State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, China

f School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China

Supplementary Figures 1-14 Supplementary Tables 1-3

¹ These authors contributed equally to this work

^{*} Corresponding authors: zhengff@sustech.edu.cn; zhangcl@sustech.edu.cn

Supplementary Figures 1-14

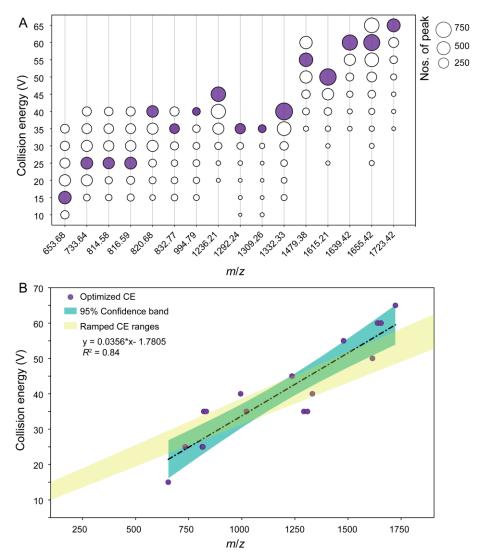


Figure S1. The collision energy (CE) optimization for collision-induced dissociation (CID) of archaea lipids. A) The collision energy range was used for cleavage of archaeal lipids; the color (red) of the circles represents the optimized CE values and sizes of the circles indicate the number of product ions with abundance > 0.001% of total peaks in MS² spectra; B) Regression of optimized CE verse m/z of precursor ions. The optimal energy was chosen as the one that produces the highest number of mass spectral peaks at different collision energies. A ramped CE range was used for data acquisition during the library construction.

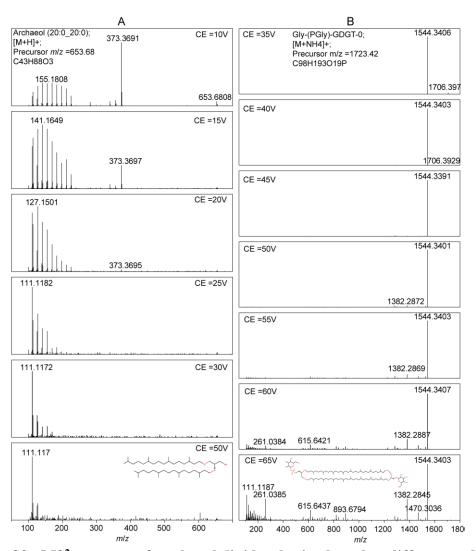


Figure S2. MS² spectra of archaeal lipids obtained under different collision energies (CEs) during CID experiments. A) Archaeol (20:0_20:0), $[M+H]^+$ at m/z 653.68; B) Gly-(PGly)-GDGT-0, $[M+NH_4]^+$ at m/z 1723.42.

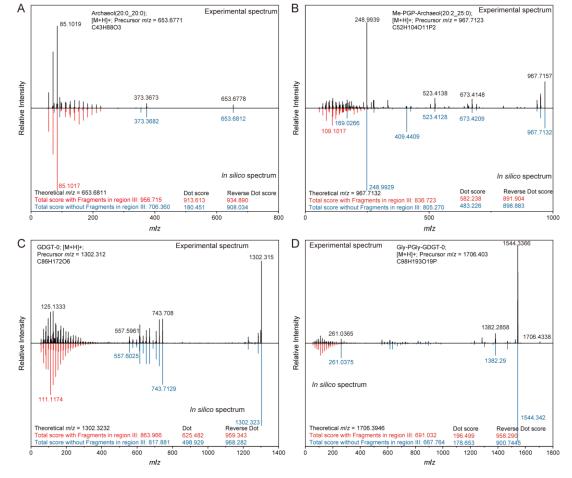


Figure S3. Effect of including low m/z fragment ions (Region III, m/z < 300) on spectral matching scores. A) Archaeol (20:0_20:0), [M+H]⁺; B) Me-PGP-Archaeol (20:2_25:0), [M+H]⁺; C) GDGT-0, [M+H]⁺; D) Gly-(PGly)-GDGT-0, [M+H]⁺. Dot score and reverse dot score were calculated using the MS-DIAL software. Fragments with (red) and without (blue) resulting from further cleavage of the carbon chains and polar headgroups. The experimental spectrum is shown at the top (black) and the *in silico* spectrum at the bottom (red and blue).

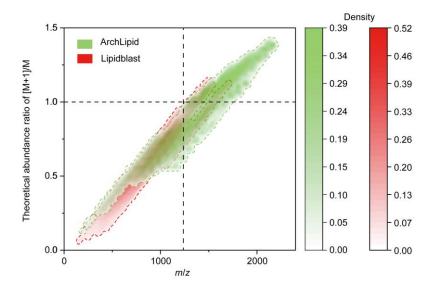


Figure S4. The theoretical abundance ratio of (M+1)/M was calculated based on the formula in the LipidBlast library and ArchLips database. Density refers to the distribution of individual lipids with the m/z values.

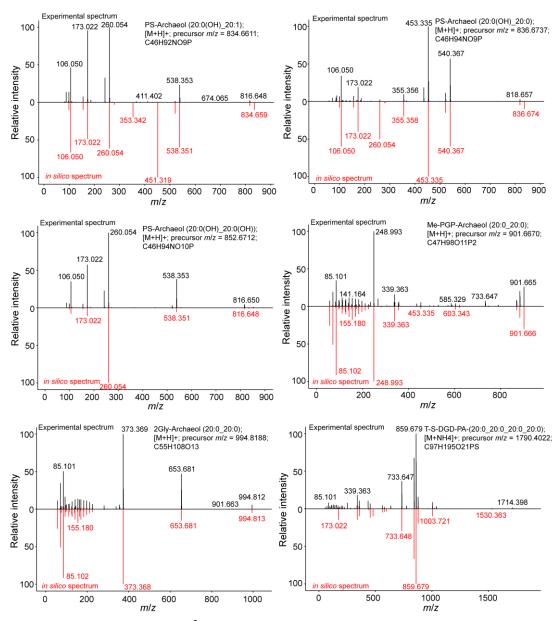


Figure S5. Examples of MS² library identification of archaeal ether lipids. The *in silico* spectrum in the library is in red (bottom), and the experimental spectrum is in black (top).

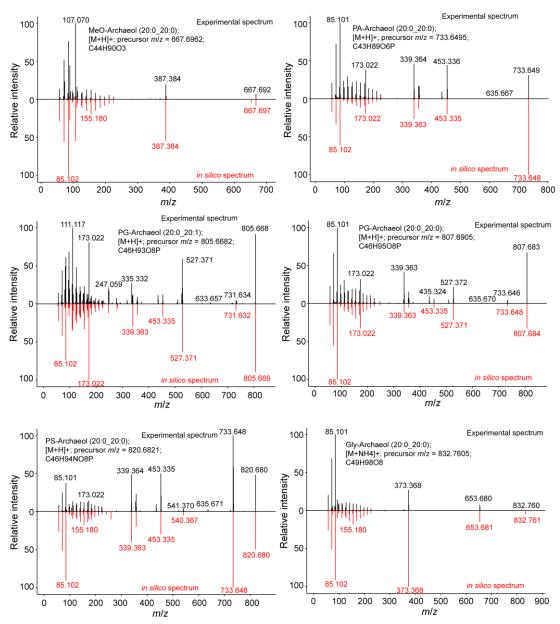


Figure S6. Examples of MS² library identification of archaeal ether lipids. The *in silico* spectrum in the library is in red (bottom), and the experimental spectrum is in black (top).

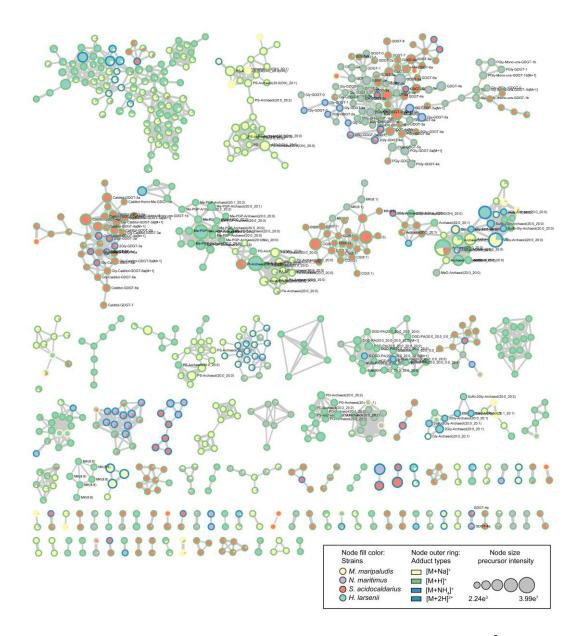


Figure S7. Feature-based molecular networking (FBMN) based on MS² spectra of lipid features of four representative archaeal strains. The singleton clusters with node <2 in FBMN were excluded. The filled color of the nodes indicates the distribution of lipid features of the four archaeal strains as shown in the legend, and the color of the outer rings refers to the adduct types. The width of the line connecting the nodes represents the level of mass spectral similarities, with thicker lines indicating greater similarity between the two nodes.

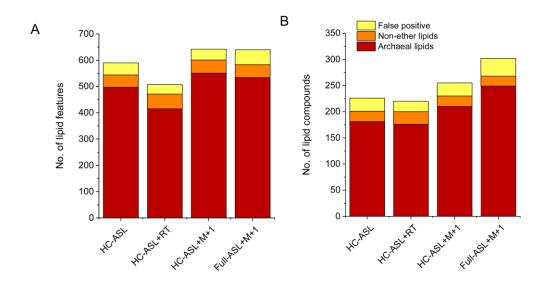


Figure S8. Number of annotated archaeal lipid features in environmental samples using different spectral libraries, with and without a retention time (RT) tolerance of 3 minutes. A) Number of lipid features annotated. B) Number of lipid compounds annotated.

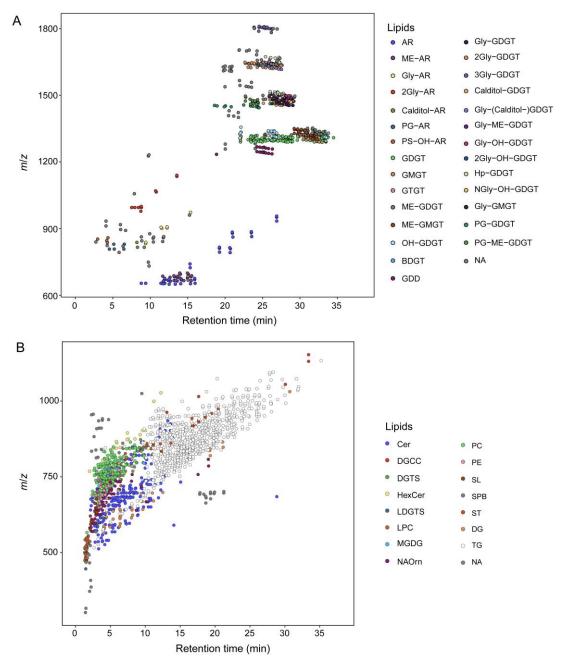


Figure S9 Retention time (RT) vs. m/z plot showing retention time and mass-to-charge ratio (m/z) of membrane lipids annotated with spectral matching of environmental samples. A) Archaeal lipids using the ArchLips database; B) bacterial-like lipids using the LipidBlast spectral library.

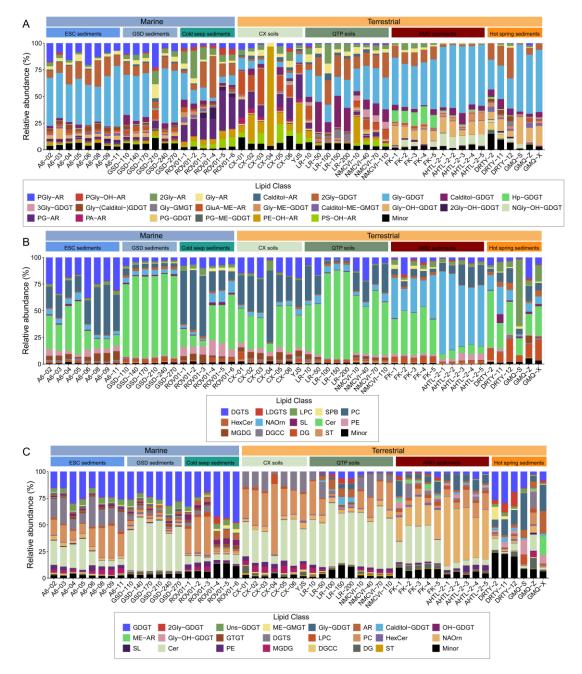


Figure S10. Relative abundance of archaeal and bacterial-like lipids identified using *in silico* mass spectral libraries across diverse environmental samples. A) Archaeal intact polar lipids (IPLs) identified using the ArchLips database. B) Bacterial-like lipids annotated with the LipidBlast library. C) Comprehensive environmental lipidomic profiles combining archaeal and bacterial-like membrane lipids.

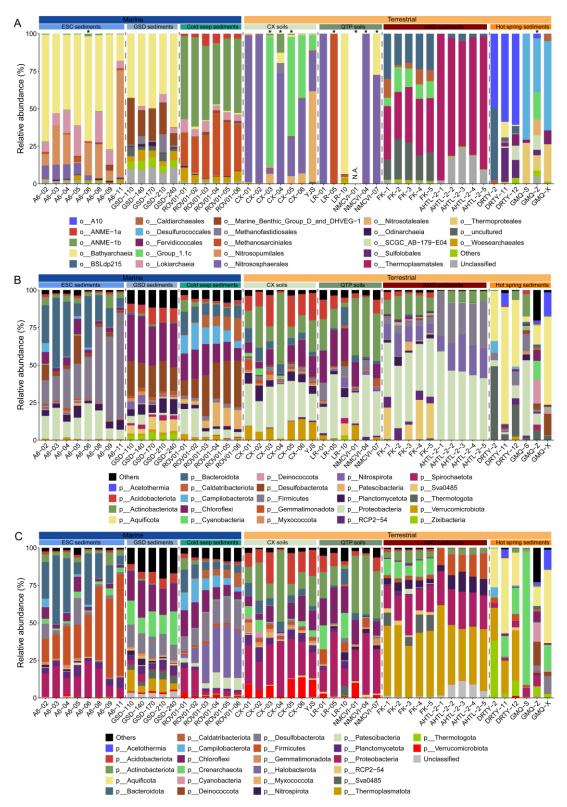


Figure S11. Relative abundance of archaeal and bacterial community identified using 16S rRNA sequencing with the 515F/806R primers across diverse environmental samples. A) Archaeal community composition. B) Bacterial community composition. C) Overall microbial community consisted of both archaeal and bacteria. An "*" indicates sample where archaeal read counts were fewer than 1,000.

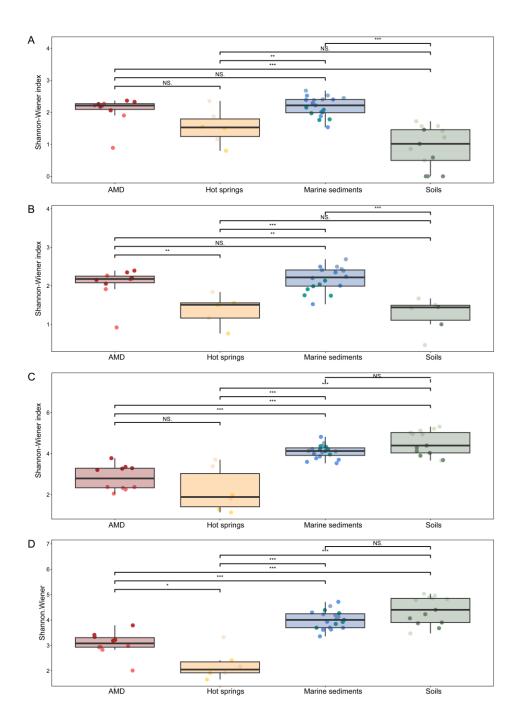


Figure S12 Microbial diversity of environmental samples. A) Shannon Wiener index of the archaeal community using all detected sequences. B) Shannon Wiener index of archaeal community calculated after the archaeal sequences were normalized to 1,000. C Shannon's Wiener index of bacterial community. D) Overall microbial community includes archaeal and bacterial sequences. NS., not significant. The "*" indicates the significance level.

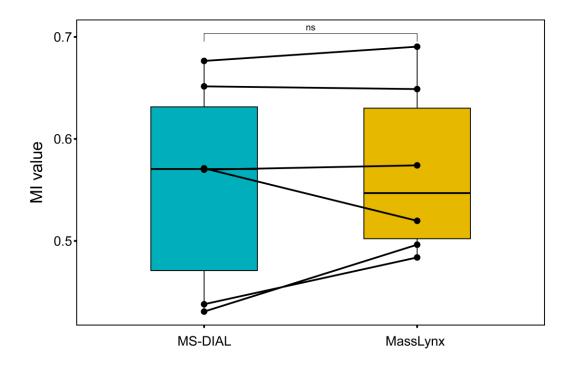


Figure S13. Boxplots comparing the Methane index (MI) calculated using the data automatically processed using MS-DIAL software and manual integration using the MassLynx software. A paired t-test was used with a significance level of p < 0.05. Three adducts of $[M+H]^+$, $[M+NH_4]^+$, and $[M+Na]^+$ were used, and the peak area was merged for proxy calculation.

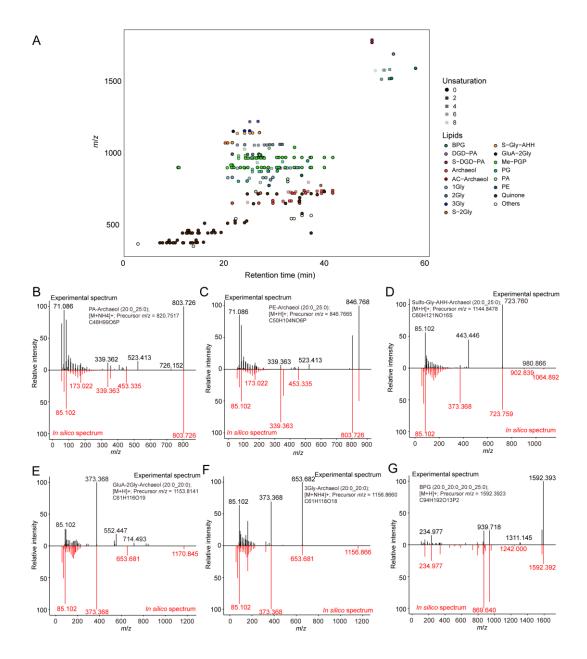


Figure S14. High-throughput lipid identification using the ArchLips database on a lipidomic dataset from four halobacterial strains analyzed with an Orbitrap MS platform^{1,2}. A) Retention time (RT) vs. m/z plot showing annotated lipid classes across the four halobacterial strains. Spectral matching of experimental MS² spectra (black, top) against referenced *in silico* spectra from the ArchLips database (red, bottom) for representative archaeal lipids.

Supplementary Tables 1-3

Table S1. Environmental sample information.

Region	Sample Name	Sample types	Layers	Sampling date	Longitude (E)	Latitude (N)	Altitude ^(a) /Water depth (m)	рН	References
Western region of Sichuan	CX-01	Soil	Surface	2023.6	102.880	30.961	3867 ^(a)	7.1	This study
Western region of Sichuan	CX-02	Soil	Surface	2023.6	101.868	30.915	2409 (a)	7.6	This study
Western region of Sichuan	CX-03	Soil	Surface	2023.6	101.619	30.529	3541 ^(a)	5.9	This study
Western region of Sichuan	CX-04	Soil	Surface	2023.6	101.540	30.431	3578 ^(a)	8.1	This study
Western region of Sichuan	CX-05	Soil	Surface	2023.6	101.641	30.183	3735 ^(a)	6.4	This study
Western region of Sichuan	CX-06	Soil	Surface	2023.6	101.588	30.211	4211 (a)	5.9	This study
Wuhan	YJS	Soil	Surface	2016.9	114.435	30.514	-	5.1	This study
Qinghai-Tibetan plateau	LR-01	Soil	Subsurface	2018.7	91.230	30.524	4243 (a)	7.3	Tang et al.,2023
Qinghai-Tibetan plateau	LR-05	Soil	Subsurface	2018.7	91.230	30.524	4243 (a)	6.3	Tang et al.,2023
Qinghai-Tibetan plateau	LR-10	Soil	Subsurface	2018.7	91.230	30.524	4243 (a)	5.9	Tang et al.,2023
Qinghai-Tibetan plateau	NMCVI-01	Soil	Subsurface	2018.7	91.040	30.719	4845 (a)	7.1	Tang et al.,2023
Qinghai-Tibetan plateau	NMCVI-04	Soil	Subsurface	2018.7	91.040	30.719	4845 (a)	7.8	Tang et al.,2023
Qinghai-Tibetan plateau	NMCVI-07	Soil	Subsurface	2018.7	91.040	30.719	4845 (a)	7.6	Tang et al.,2023
Tengchong	DRTY-2	Hot spring	Surface	2019.7	98.438	24.954	-	3.0	This study
Tengchong	DRTY-11	Hot spring	Surface	2019.7	98.437	24.954	-	4.0	This study
Tengchong	DRTY-12	Hot spring	Surface	2019.7	98.437	24.954	-	5.0	This study
Tengchong	GMQ-S	Hot spring	Surface	2019.7	98.436	24.951	-	9.0	This study
Tengchong	GMQ-Z	Hot spring	Surface	2019.7	98.436	24.951	-	9.0	This study
Tengchong	GMQ-X	Hot spring	Surface	2019.7	98.436	24.951	-	10.0	This study
Fankou AMD	FK-1	Acid mine drainage	Surface	2017.9	113.663	25.049	-	3.1	Hao et al., 2022
Fankou AMD	FK-2	Acid mine drainage	Surface	2017.9	113.664	25.049	-	2.5	Hao et al., 2022

Fankou AMD	FK-3	Acid mine drainage	Surface	2017.9	113.664	25.049	-	5.5	Hao et al., 2022
Fankou AMD	FK-4	Acid mine drainage	Surface	2017.9	113.664	25.049	-	3.0	Hao et al., 2022
Fankou AMD	FK-5	Acid mine drainage	Surface	2017.9	113.663	25.050	-	2.6	Hao et al., 2022
Tongling AMD	AHTL-2-1	Acid mine drainage	Surface	2017.10	117.992	30.945	-	2.5	Hao et al., 2022
Tongling AMD	AHTL-2-2	Acid mine drainage	Surface	2017.10	117.993	30.945	-	2.6	Hao et al., 2022
Tongling AMD	AHTL-2-3	Acid mine drainage	Surface	2017.10	117.993	30.946	-	2.6	Hao et al., 2022
Tongling AMD	AHTL-2-4	Acid mine drainage	Surface	2017.10	117.992	30.946	-	2.6	Hao et al., 2022
Tongling AMD	AHTL-2-5	Acid mine drainage	Surface	2017.10	117.994	30.945	-	2.6	Hao et al., 2022
East China Sea	A6-02	Marine	Surface	2015.8	122.237	30.951	8	N.A.	Chen et al., 2024
East China Sea	A6-03	Marine	Surface	2015.8	122.382	30.909	12	N.A.	Chen et al., 2024
East China Sea	A6-04	Marine	Surface	2015.8	122.502	30.869	18	8.0	Chen et al., 2024
East China Sea	A6-05	Marine	Surface	2015.8	122.649	30.821	44	N.A.	Chen et al., 2024
East China Sea	A6-06	Marine	Surface	2015.8	122.807	30.773	30	N.A.	Chen et al., 2024
East China Sea	A6-08	Marine	Surface	2015.8	123.249	30.638	59	8.0	Chen et al., 2024
East China Sea	A6-09	Marine	Surface	2015.8	123.500	30.559	53	N.A.	Chen et al., 2024
East China Sea	A6-11	Marine	Surface	2015.8	124.000	30.408	45	N.A.	Chen et al., 2024
South China Sea	ROV01-01	Cold seep	Subsurface	2020.5	110.782	17.945	1736	7.7	Zhang et al., 2023
South China Sea	ROV01-02	Cold seep	Subsurface	2020.5	110.782	17.945	1736	7.7	Zhang et al., 2023
South China Sea	ROV01-03	Cold seep	Subsurface	2020.5	110.782	17.945	1736	7.9	Zhang et al., 2023
South China Sea	ROV01-04	Cold seep	Subsurface	2020.5	110.782	17.945	1736	7.9	Zhang et al., 2023
South China Sea	ROV01-05	Cold seep	Subsurface	2020.5	110.782	17.945	1736	7.9	Zhang et al., 2023
South China Sea	ROV01-06	Cold seep	Subsurface	2020.5	110.782	17.945	1736	7.9	Zhang et al., 2023
Pearl River	GSD-110	Marine	Subsurface	2017.10	113.806	22.132	21	N.A.	Wang et al., 2020
Pearl River	GSD-140	Marine	Subsurface	2017.10	113.806	22.132	21	N.A.	Wang et al., 2020
Pearl River	GSD-170	Marine	Subsurface	2017.10	113.806	22.132	21	N.A.	Wang et al., 2020
Pearl River	GSD-210	Marine	Subsurface	2017.10	113.806	22.132	21	N.A.	Wang et al., 2020
Pearl River	GSD-240	Marine	Subsurface	2017.10	113.806	22.132	21	N.A.	Wang et al., 2020

Table S2. Head groups in the ArchLips database. Y = yes; N = no. Light blue color refers to glycolipids, green color phospholipids, and light yellow other compounds that cannot be classified into either glycolipids or phospholipids.

Short name	Full Name	IPL-GDGT- IPL	Reported in diether lipids	Reported in tetraether lipids	Formula
Gly	Glycosyl	Y	Y	Y	C6H12O6
2Gly	Diglycosyl	Y	Y	Y	C12H22O11
3Gly	Triglycosyl	N	Y	Y	C18H32O16
4Gly	Tetraglycosyl	N	N	Y	C24H42O21
Calditol	Calditol	Y	N	Y	C6H12O6
Gly-Calditol	Glycosyl-calditol	N	N	Y	C12H22O11
DeoxyGly	Deoxyglycosyl	N	Y	Y	C6H12O5
G-2Gly	Glycerolglycosyl-glycosyl	Y	Y	N	C15H28O13
G-Gly-NAcGly	Glycerolglycosyl-(N)-acetylglycosaminyl	N	N	N	C17H31NO13
GluA	Glucuronic acid	Y	N	N	C6H10O7
GluA-Gly	Glucuronic acid-glycosyl	N	N	N	C12H20O12
GluA-2Gly	Glucuronic acid-diglycosyl	N	N	N	C18H30O17
Нр	Heptosyl	N	N	N	C7H14O7
Hp-Gly	Heptosyl-glycosyl	N	N	Y	C13H24O12

MeOGly	Methoxylated glycosyl	N	N	N	C7H14O6
MeOGly-Gly	Methoxylated glycosyl-glycosyl	N	Y	N	C13H24O11
MeOGly-2Gly	Methoxylated glycosyl-diglycosyl	N	Y	N	С19Н34О16
NGly	Glycosaminyl	Y	N	N	C6H13NO5
NAcGly	N-acetylglycosaminyl	Y	Y	N	C8H15NO6
Ac-2Gly	Acetylglycosyl-glycosyl	N	Y	N	C14H24O12
G-Gly-AcGly	Glycerolglycosyl-acetylglycosyl	N	Y	N	C17H30O14
Sulfo-Gly	Sulphated glycosyl	N	N	N	C6H12O9S
Sulfo-2Gly	Sulfated diglycosyl	Y	Y	N	C12H22O14S
Sulfo-3Gly	Sulfated triglycosyl	N	Y	N	C18H32O19S
2Sulfo-Gly	Disulfate-glycosyl	N	N	N	C6H12O12S2
2Sulfo-2Gly	Disulfate-diglycosyl	N	Y	N	C12H22O17S2
Sulfo-Gly-AHH	Sulphated glycosyl-aminohexanehexaol	N	Y	N	C12H25NO14S
2Sulfo-Gly-AHH	Disulphated glycosyl-aminohexanehexaol	N	Y	N	C12H25NO17S2
SQ	Sulfoquinovosyl	N	N	N	C6H12O8S
SQ-Gly	Sulfoquinovosyl-glycosyl	N	N	N	C12H22O13S
SQ-2Gly	Sulfoquinovosyl-diglycosyl	N	N	N	C18H32O18S

Sulfo-SQ	Sulfated sulfoquinovosyl	N	N	N	C6H12O11S2
SQ-Sulfo-Gly	Sulfoquinovosyl-sulphated glycosyl	N	N	N	C12H22O16S2
SQ-AHH	Sulfoquinovosyl-aminohexanehexaol	N	N	N	C12H25NO13S
Sulfo-SQ-AHH	Sulphated sulfoquinovosyl-aminohexanehexaol	N	N	N	C12H25NO16S2
Rib	Ribosyl	N	N	N	C5H10O5
NRib	N-ribosyl	N	N	N	C5H11NO4
Gly-Rib	Glycosyl-ribosyl	N	N	N	C11H20O10
Gly-PGly	Glycosyl-phosphatidylglycosyl	N	Y	N	C12H23O14P
Gly-PG	Phosphatidylglycerolhexose	Y	Y	N	С9Н19О11Р
Gly-PI	Glycosyl-phosphatidylinositol	N	Y	N	C12H23O14P
PE-PGly	Phosphatidylethanolamine-phosphatidylglycosyl	N	Y	N	C8H19NO12P2
APT	Phosphoaminopentatetrol	N	Y	N	C5H14NO7P
N-Me-APT	N-monomethyl aminopentanetetrol	N	Y	N	C6H16NO7P
N-Me-APT-Me	N-monomethyl aminomethoxypentanetriol	N	Y	N	C7H18NO7P
N,N-2Me-APT	N,N-dimethyl aminopentanetetrol	N	Y	N	C7H18NO7P
N,N-2Me-APT-Me	N,N-dimethyl aminomethoxypentanetriol	N	Y	N	C8H20NO7P
N,N,N-3Me-APT	N,N,N-trimethyl aminopentanetetrol	N	Y	N	C8H20NO7P

N,N,N-3Me-APT- Me	N,N,N-trimethyl aminomethoxypentanetriol	N	Y	N	C9H22NO7P
NGly-PI	Glycosaminyl-phosphatidylinositol	N	N	N	C12H24NO13P
PA	Phosphatidic acid	Y	Y	N	Н3О4Р
2Me-PA	Dimethyl-phosphatidyl acid	N	N	N	C2H7O4P
PC	Phosphatidylcholine	N	Y	N	C5H14NO4P
PE	Phosphatidylethanolamine	Y	Y	Y	C2H8NO4P
PME	Phosphatidyl-(N)-methylethanolamine	N	Y	Y	C3H10NO4P
PDME	Phosphatidyl-(N,N)-dimethylethanolamine	N	N	N	C4H12NO4P
PG	Phosphatidylglycerol	Y	Y	Y	С3Н9О6Р
PGly	Phosphatidylglycosyl	N	Y	Y	С6Н13О9Р
PGP	Phosphatidylglycerophosphate	N	Y	Y	C3H10O9P2
Me-PGP	Methylated phosphatidylglycerophosphate	N	Y	N	C4H12O9P2
PI	Phosphatidylinositol	Y	Y	Y	С6Н13О9Р
NAcGly-P	N-acetylglycosaminyl-phosphate	N	Y	N	C8H16NO9P
PPA	Pyrophosphate acid	N	N	N	H4O7P2
Me-PPA	Methylated pyrophosphatidyl acid	N	N	N	CH6O7P2
PS	Phosphatidylserine	Y	Y	N	C3H8NO6P

Gly-PS	Glycosyl-phosphatidylserine	N	Y	N	C9H18NO11P
Sulfo-PG	Phosphatidylglycerosulfate	N	Y	N	C3H9O9PS
NGly-PGly	Glycosaminyl-phosphatidylglycosyl	N	Y	N	C12H24NO13P
NAcGly-PGly	N-acetylglycosaminyl-phosphatidylglycosyl	N	Y	N	C14H26NO14P
2NAc-2Gly-P	Di-(N)-acetylglycosaminyl glycosyl phosphate	N	Y	N	C16H29N2O14P
PIP	Phosphatidylinositolphosphate	N	N	N	C6H14O12P2
PIP2	Phosphatidylinositol-4,5-bisphosphate	N	N	N	C6H15O15P3
PIP3	Phosphoinositol-3,4,5-trisphosphate	N	N	N	C6H16O18P4
PnC	Phosphonylcholine	N	N	N	C5H14NO3P
PnE	Phosphonylethanolamine	N	N	N	C2H8NO3P
CDP	Cytidine Diphosphate	N	Y	N	C9H15N3O11P2
UDP	Uridine-diphosphate	N	N	N	C9H14N2O12P2
MeO	Methoxylated	Y	Y	Y	CH4O
AC	Acetyl	N	Y	N	C2H4O2

Table S3. Annotation of archaeal lipids using the high confidence spectral library(HC-SL) and full spectral library (full-SL) of ArchLips database from LipidBlast and GNPS libraries that contain only bacterial-like lipids.

Library	HC-SL	Full-SL
Lipidblast	0.80%	6.62%
GNPS	0.19%	0.60%

References

- 1. Sorokin, D.Y. et al. sp. nov. and gen. nov., sp. nov., the first sulfur-respiring alkaliphilic haloarchaea from hypersaline alkaline lakes. *International Journal of Systematic and Evolutionary Microbiology* **69**, 2662–2673 (2019).
- 2. Sorokin, D.Y. et al. sp. nov., carbohydrate-utilizing, sulfur-respiring haloarchaea from hypersaline lakes. *Systematic and Applied Microbiology* **44**, 126249 (2021).