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Supplemental Fig 1: Staging module input selection. For each selection of input biomarkers: 1)
Histogram of individuals’ most likely stage assignment across diagnostic categories and 2) Estimated regional
tau distribution across stages in specified regions a. Staging module with 11 biomarkers (34 input features)
including ADAS11 score, hippocampal volume, and tau in the entorhinal cortex, amygdala, inferior parietal
cortex, inferior temporal cortex, hippocampus, parahippocampal gyrus, precuneus, and anterior cingulate.
b. Staging module with 9 biomarkers (28 input features) including ADAS11 score, hippocampal volume, and
tau in the entorhinal cortex, amygdala, hippocampus, precuneus, and anterior cingulate. c. Staging module
with 5 biomarkers (16 input features) including ADAS11, hippocampal volume, and tau in the entorhinal
cortex, amygdala, and inferior parietal cortex.
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Supplemental Fig 2: Cohort-level inference. a. StaND’s estimated tau trajectories after iteratively
refining cohort-level parameters and tau seed to fit cohort-level tau trajectories from the staging module.
b.Total tau across stages for both the StaND estimation and staging module-derived cohort-level tau tra-
jectories. c. Pearson’s R distribution across all subjects between cohort-level StaND and each subject’s
empirical tau at their assigned stage, colored by subjects’ stages.
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Supplemental Fig 3: StaND with subject-specific parameters and cohort-level seed. a. StaND’s
estimated tau trajectories and empirical baseline tau for a single subject. b. Total tau across stages for the
same subject’s StaND prediction and empirical tau. c. Pearson’s R distribution across all subjects between
individually-fitted StaND models and empirical tau at each subject’s assigned stage, colored by subjects’
stage.
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Supplemental Fig 4: StaND with subject-specific seeds and cohort-level parameters. a. StaND’s
estimated tau trajectories and empirical baseline tau for a single subject. b. Total tau across stages for the
same subject’s StaND prediction and empirical tau. c. Pearson’s R distribution across all subjects between
individually-fitted StaND models and empirical tau at each subject’s assigned stage, colored by subjects’
stage. 3
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Supplemental Fig 5: Subtype-based benchmark performances. a. Heat map of mean Pearson’s R
across subjects between model prediction and empirical data for each subtype with each of the four binary
epicenters identified by Vogel et al. (2021). Best fitting epicenter for each subtype highlighted. b. Violin
plots of the distribution of Pearson’s R values across subjects for each subtype with each binary epicenter
separated by diagnosis. Best fitting epicenter for each subtype again highlighted (and included in the main
Figure 4 as our final benchmarks).
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Supplemental Fig 6: a. Distribution of pairwise Spearman’s correlations of StaND model predictions
across subjects at each stage.
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a Correlation between kinetic rate parameters and demographic and clinical variables

b Correlation between seed archetype and demographic and clinical variables
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Supplemental Fig 7: Correlations of model output to selected clinical and demographic vari-
ables. a. Correlations across subjects between subject-specific kinetic rate parameters – alpha and beta –
and a selection of demographic and clinical variables. Categorical variables shown as box plots. Continuous
variables shown as scatter plots. Statistically significant relationships in bold. b. Demographic, clinical,
and model-inferred characteristics of the diffuse temporal and focal entorhinal seed archetypes. Categorical
variables shown as percentage distributions. Continuous variables shown as box plots.
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2 Supplemental Tables7

Seed Region Mean Value
Right entorhinal 0.317748

Left inferior temporal 0.224544
Right inferior temporal 0.223569
Left middle temporal 0.193884

Left entorhinal 0.186010

Table 1: Highest average tau seed regions across subjects.

3 Supplemental Results8

3.1 Justification of selected staging module inputs9

We conducted a comprehensive evaluation to determine the optimal biomarker inputs for our staging module.10

This process involved testing over 25 different configurations with various combinations of AD-relevant11

biomarkers, including:12

• Cognitive assessments: ADAS11, MMSE13

• Regional tau-PET measures: hippocampal, entorhinal, inferior parietal, inferior temporal, amygdala,14

parahippocampal, precuneus, anterior cingulate, and meta-ROI averages15

• Volumetric MRI measures: hippocampal, superior frontal, anterior cingulate, posterior cingulate, pre-16

cuneus, inferior parietal, and inferior temporal volumes17

As noted in the main text, the number of input features to the staging module (defined by the number18

of biomarkers × the number of severity thresholds fixed at 3) corresponds to complexity and is inherently19

constrained by the number of samples in our data. To determine the optimal model complexity, we started20

with 2 biomarker inputs (7 input features) and sequentially added biomarkers up to 11 (34 features). Each21

was evaluated by their balance of temporal resolution and model robustness. Supplemental Figure 1a,b22

illustrate two higher-complexity iterations of the staging module: one with 11 biomarkers (34 features)23

and another with 9 biomarkers (28 features). Our analyses revealed that models incorporating more than24

5 biomarkers exhibited diminished quality due to insufficient subject representation in advanced stages,25

compromising effective tau interpolation across these stages. This manifested as non-monotonic increases in26

interpolated tau values across stages (Supplemental Figure 1a,b).27

After establishing that 5 biomarkers provided optimal model performance, we methodically evaluated28

over 10 different 5-biomarker combinations (Supplemental Figure 1c,d) and evaluated each based on 1)29

Monotonic increase of tau interpolation across stages, 2) MCMC likelihood (suitable for evaluating fixed-30

complexity models), and 3) Appropriate staging of diagnostic categories (ie. no control subjects in higher31

stages or AD subjects in stage 0). As an example, Supplemental Figure 1c shows less appropriate staging32

of diagnostic categories than our chosen selection of biomarkers in 1d, as well as non-monotonic increase of33

interpolated tau. This rigorous selection process ensured that our final 5-biomarker model achieved the op-34

timal balance between stage resolution and statistical robustness, while maintaining biologically meaningful35

disease progression patterns.36

3.2 Performance comparison across StaND model fitting strategies37

Supplemental Figures 2, 3, and 4 illustrate additional StaND optimization strategies we tried: cohort-level38

inference, subject-specific parameter inference with a cohort-level seed, and subject-specific seed inference39

with cohort-level parameters. All techniques underperformed relative to our chosen methodology of using40

subject-specific seeds and parameters (mean R = 0.53, 0.57, and 0.85 vs. 0.88), indicating that there is41

heterogeneity of both tau’s pattern at disease onset and its accumulation and spread rates across subjects.42

All details on these methods included in main.43
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3.3 Top regions across model-inferred subject-specific seeds44

The top mean seed regions for StaND with subject-specific seeds are shown in Table 1.45

3.4 Benchmarking against subtype-based approaches46

For benchmark comparison, we applied the Subtyping and Staging Inference algorithm (SuStaIn), an event-47

based model used by Vogel et al. (2021), to identify two subtypes within our ADNI3 cohort and employed the48

inference module to determine the optimal binary tau seed, or "epicenter," for subjects within each subtype.49

Two subtypes was the ideal number for our dataset because it produced distinct peaks in the model’s log50

likelihood histogram, indicating that the subtypes reflect stable and genuinely differentiable subpopulations.51

We systematically evaluated each of the four binary tau "epicenters" that Vogel identified as best-fitting52

their four SuStaIn subtypes, which were derived from a larger and more heterogeneous dataset than ADNI3.53

Contrary to Vogel’s report, we observed no clear one-to-one correspondence between our SuStaIn subtypes54

and their best-fitting binary epicenters, suggesting substantial seed variability across individual subjects55

even within statistically defined subtypes (Supplemental Figure 5a). Our proposed StaND method achieves56

superior empirical fit likely in part because it accounts for this individual heterogeneity rather than assuming57

within statistical subgroup coherence.58

3.5 Non-parametric validation of tau convergence phenomenon using Spear-59

man’s correlation60

To ensure the robustness of our finding that tau variability across subjects decreases over the course of AD,61

we performed a Spearman’s correlation analysis, which does not assume Gaussian normality of tau distribu-62

tions. The Spearman correlation of model-predicted tau across subjects over time yielded consistent results63

with our Pearson correlation findings, confirming that the observed increase in pairwise correlations over64

time represents a genuine convergence phenomenon rather than an artifact of tau data sparsity or distri-65

butional properties (Supplemental Figure 6a). This consistency across both parametric and non-parametric66

correlation measures strengthens the validity of our core finding that tau patterns as disease progresses.67

3.6 Correlating model output to clinical and demographic variables68

We additionally correlated model outputs, individual kinetic rate parameters and individual seed patterns,69

to clinical and demographic variables. Those not shown in main are displayed here. Kinetic rate parameters70

– tau accumulation rate (α) and tau spread rate (β) – bore statistically significant correlations to diagnosis.71

Both parameters have a higher mean value for MCI subjects than AD (mean α = 0.28 vs. 0.22, KW test:72

H = 4.9, p = 0.03, mean β = 0.74 vs. 0.48, KW test: H = 11.5, p = 0.00; Supplemental Figure 7a).73

Both parameters decrease with stage (α : R = −0.33, p = 0.00;β : R = −0.41, p = 0.00) and with age74

(α : R = −0.26, p = 0.00;β : R = −0.22, p = 0.00). Tau accumulation rate (α) is higher for APOE- than75

APOE+ subjects (mean = 0.29 vs. 0.23, p = 0.85). Spread rate (β) is similarly higher for APOE- subjects76

(mean = 0.90 vs. 0.44, p = 0.00). Finally, female subjects had a lower mean α values than male subjects77

(mean α = 0.24 vs. 0.27, KW test: H = 0.0, p = 0.95) and a lower mean β value (mean β = 0.55 vs. 0.73,78

KW test: H = 4.71, p = 0.03) (Supplemental Figure 7a).79

The diffuse temporal seed archetype had a higher percentage of AD subjects than the focal entorhinal80

pattern (44.2% vs. 32.0%, p = 0.15), although not with statistical significance as we would expect for a81

variable that progresses throughout the course of the disease unlike a subject’s fixed seed archetype. Diffuse82

temporal seed subjects have a higher mean spread rate parameter (β) than entorhinal seeding subjects (mean83

= 0.71 vs. 0.61, p = 0.45) and higher mean ADAS11 scores (mean = 13.7 vs. 12.5, p = 0.25), although there84

is no statistical significance here (Supplemental Figure 7 b). Finally, the diffuse seed group has a higher85

percentage of male than of female subjects (65.4% vs. 34.6%) and the entorhinal seed group has a higher86

percentage of female than male (44.7% vs. 55.3%, p = 0.27; Supplemental Figure 7b).87
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3.7 Distinct longitudinal tau trajectories for each seed archetype88

Supplemental Figure 8 illustrates the distinct trajectories of tau for each seed archetype. Tau has distinct89

origins for each archetype – the temporal cortices and entorhinal cortex – but converges into a common90

pattern as the disease progresses. These distinct trajectories further substantiate the finding that that tau91

has heterogeneous origins that converge over time.92

4 Supplemental Methods93

The following algorithms were used to optimize our Stage-based Network Diffusion model (StaND). All94

optimization strategies shown.95

Algorithm 1 Cohort-level Parameter Optimization

Input: Connectivity matrix C, initial tau vector xc(0), EBM interpolation data y
Output: Optimized model parameters θc

// Prepare simulation environment
U ← Zero or random vector of cell type dimension
tvec ← Time vector from 0 to 16 stages
// Define error function for the StaND model
function StaND_error(θc, y):

Initialize Nexis simulation object with:
- Connectivity matrix C
- Initial tau vector xc(0)
- Time vector tvec
- Additional configuration parameters
// Unpack optimization parameters
α, β ← θc

// Simulate StaND model
xc ← Simulate StaND with parameters θc

// Compute error metrics
Compute MSE and Pearson correlation coefficient between xc and y
error← E + 0.5(1−R)
return error

end function
// Define initial parameter guess and bounds
init_guess← Initial parameter estimates
bounds← Parameter value constraints
// Perform parameter optimization
θ∗ ← Minimize(StaND_error, init_guess, bounds)
return θ∗
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Algorithm 2 Cohort-level Seed Optimization

Input: Connectivity matrix C, fixed parameters θc = [α, β], EBM interpolation data y, regularization
parameter λ
Output: Optimized seed vector xc(0)
// Prepare simulation environment
U ← Zero vector of dimension nROI × 1
tvec ← Time vector from 0 to 10 with 100 points
w_dir ← 0 // No directionality preference
volcorrect← 1 // Volume correction flag
// Define error function for seed optimization
function Nexis_MSE(x(0), x):

// Set up parameters for simulation
parameters← [α, β,x(0)]
// Simulate StaND model with the proposed seed
x Simulate Nexis with parameters
// Check if x is constant
if x is constant then

Add small constant to first element of x
end if
// Compute error metrics with regularization
corr_coeff ← Pearson correlation between x and y

error ←MSE(x,y) + 0.5(1− corr_coeff) + λ ∥x(0)∥1√∑
(x2(0))

return error
end function
// Define initial seed guess
seeding_locations← [’ctx-lh-entorhinal’, ’ctx-rh-entorhinal’]
seeding_indices← Indices of seeding locations in region list
init_guess← Zero vector with 1s at seeding indices
bounds← [(0, 3) for each region]
// Perform seed optimization
xc(0)← Minimize(Nexis_MSE, init_guess, bounds, method=’L-BFGS-B’)
return xc(0)
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Algorithm 3 Individual Parameter Optimization

Input: Connectivity matrix C, fixed initial vector xc(0), individual’s empirical tau yi, individual’s EBM
stage ti

Output: Optimized individual parameters θi

// Prepare simulation environment
U ← Zero vector of dimension nROI × 1
tvec ← Time vector from 0 to 18 with 19 points
w_dir ← 0 // No directionality preference
volcorrect← 1 // Volume correction flag
// Define error function for parameter optimization
function Nexis_error(θ, yi):

// Unpack optimization parameters
α, β ← θ
// Initialize Nexis model
Initialize Nexis with connectivity C, initial vector xc(0), and time vector tvec
// Simulate StaND model
x Simulate Nexis with parameters [α, β]
// Extract tau values at individual’s stage
xedited ← x[:, ti]
// Check if x_edited is constant
if xedited is constant then

Add small constant to first element of xedited

end if
// Compute error metrics
corr_coeff ← Pearson correlation between xedited and yi

error ←MSE(xedited,y
i) + 0.5(1− corr_coeff)

return error
end function
// Define initial parameter guess and bounds
init_guess← Initial parameter estimates
bounds← Parameter value constraints
// Perform parameter optimization
θi ← Minimize(Nexis_error, init_guess, bounds, method=’Powell’)
return θi
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Algorithm 4 Individual Seed Optimization

Input: Connectivity matrix C, fixed parameters θc = [α, β], individual’s empirical tau yi, individual’s
EBM stage ti, regularization parameter λ
Output: Optimized individual seed vector xi(0)
// Prepare simulation environment
U ← Zero vector of dimension nROI × 1
tvec ← Time vector from 0 to 18 with 19 points
w_dir ← 0 // No directionality preference
volcorrect← 1 // Volume correction flag
// Define error function for individual seed optimization
function Nexis_MSE(x(0), yi, ti):

// Set up parameters for simulation
parameters← [α, β,x(0)]
// Simulate StaND model with the proposed seed
xedited Simulate Nexis with parameters
// Extract tau values at individual’s stage
xedited ← Y [:, ti]
// Check for constant arrays
if yi is constant or xedited is constant then

return 1e10 // Very high error
end if
// Compute error metrics with regularization
corr_coeff ← Pearson correlation between xedited and yi

error ←MSE(xedited,y
i) + 0.5(1− corr_coeff) + λ ∥x0∥1√∑

(x2(0))

return error
end function
// Define initial seed guess
seeding_locations← [’ctx-lh-entorhinal’, ’ctx-rh-entorhinal’]
seeding_indices← Indices of seeding locations in region list
init_guess← Zero vector with 1s at seeding indices
bounds← [(0, 3) for each region]
// Perform seed optimization
xi(0)← Minimize(Nexis_MSE, init_guess, bounds, method=’L-BFGS-B’)
return xi(0)
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