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Supplementary Fig. 1: Electrochemical profiles of the NaNi1/3Fe1/3Mn1/3O2 (NFM111)||HC full cell measured in three-electrode cell within 1.2−4.2 V (reference electrode: Na metal). For a typical full cell, the voltage difference between the cathode and anode determines its discharge voltage. It is desirable for most of the discharge process to occur within the plateau region of HC, with only a small portion in the sloping capacity region, in order to enhance the energy density of the battery.
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Supplementary Fig. 2: Schematic diagram of the esterification reaction between cellulose and rosin acid. The esterification reaction of the primary hydroxyl group in C6 position of cellulose with rosin acid is taken as an example because the esterification reactivity of C6−OH is the highest. Additionally, the hydroxyl groups on hemicellulose and lignin can also undergo esterification reactions with rosin acid.
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Supplementary Fig. 3: Optical photographs of Soxhlet extractor (a) and rosin extract (b). Soxhlet extraction uses the principles of solvent reflux and siphoning to continuously extract solid matter using a pure solvent. The solvent we used was a benzene-ethanol mixture (2:1 by volume ratio).
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[bookmark: _Hlk170822978][bookmark: OLE_LINK14]Supplementary Fig. 4: Low field (LF) 1H NMR transverse (T2) relaxation distribution of pine wood and RF wood.
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[bookmark: OLE_LINK8]Supplementary Fig. 5: FTIR spectra of pine wood and RF wood after heart treatment at 200 °C. The intensified C=O stretch and the weakened O−H stretch in Pine HC confirm the occurrence of the esterification reaction. The enhanced C−H stretch is due to the introduction of more methyl and methylene groups by the rosin.



[image: ]
[bookmark: OLE_LINK1]Supplementary Fig. 6: XRD patterns of pine wood and RF wood after heart treatment at 200 °C. The diffraction peaks of cellulose in both samples did not show significant differences. However, the calculated cellulose crystallinity of pine wood decreased from 55.6% to 35.8% compared to RF wood based on Segal method, suggesting that the esterification process disrupted the intra- and intermolecular hydrogen bonds of cellulose, resulting in lower crystallinity1. Furthermore, the reduction in crystallinity can lead to decreased thermal stability of the polymer chains.
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Supplementary Fig. 7: Snapshots of pyrolysis of carbon matrix without rosin. The pores in the carbon matrix are shown in orange. To control the variables, we used the same initial carbon matrix model, only removing rosin. After 1500 K annealing, aromatic cyclic rearrangement occurs between carbon atoms, and the initial large pores disappear, leaving only a few pores.
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Supplementary Fig. 8: SEM images of Pine HC and RF HC. Scale bars, 10 μm.
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Supplementary Fig. 9: XRD patterns and La, Lc parameters of Pine HCs and RF HC.
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Supplementary Fig. 10: SAED of Pine HC and RF HC.
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Supplementary Fig. 11: 2D WAXS patterns of Pine HC and RF HC.
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Supplementary Fig. 12: a-f, Raman spectra and ID/IG values of Pine HCs and RF HC.
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Supplementary Fig. 13: a,b, XPS spectra of Pine HC-10%, Pine HC, and RF HC.
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Supplementary Fig. 14: a-d, SAXS profiles of Pine HCs and RF HC.
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Supplementary Fig. 15: N2 adsorption/desorption isotherms of Pine HCs and RF HC.
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[bookmark: _Hlk171610801]Supplementary Fig. 16: a-c, Charge-discharge profiles of multiple half-cell for Pine HC electrode at 30 mA g-1.
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[bookmark: _Hlk172305760][bookmark: _Hlk171349915][bookmark: OLE_LINK31][bookmark: _Hlk171349946][bookmark: OLE_LINK7]Supplementary Fig. 17: a-c, Galvanostatic charge-discharge profiles of Pine HC-1% (a), Pine HC-6% (b), and Pine HC-10% (c) at 30 mA g-1. d, Comparison of galvanostatic charge-discharge profiles of Pine HCs and RF HC. e, Comparison of the plateau and slope capacity ratio in the 2nd discharge profiles. As the rosin content increases, the sodium storage capacity and initial Coulombic Efficiency (ICE) of Pine HCs first increase and then decrease.
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Supplementary Fig. 18: a,b, Charge-discharge profiles of Pine HC (a) and RF HC (b) with various current densities ranging from 30 to 300 mA g-1.
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Supplementary Fig. 19: Cycling performance of Pine HC at a current density of 100 mA g-1.
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Supplementary Fig. 20: a, The GITT profiles of Pine HC and RF HC. b, The corresponding Na+ ion diffusion coefficients.
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[bookmark: OLE_LINK51]Supplementary Fig. 21: a,b, CV curves of Pine HC (a) and RF HC (b) at different scan rates. c,d, Capacitive contribution of Pine HC (c) and RF HC (d) at different scan rates.
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Supplementary Fig. 22: a-h, Charge-discharge profiles of poplar wood (a), camphor wood (b), cypress wood (c), oak wood (d), apricot wood (e), litchi wood (f), bamboo (g), wheat straw (h), and corncob (i)-derived HCs modified with rosin at 30 mA g-1. 
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Supplementary Fig. 23: Charge-discharge profiles of NFM111||Pine HC pouch cell during the formation process.
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Supplementary Fig. 24: Charge-discharge profiles of NFM111||Pine HC pouch cell at a current rate of 1C.
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Supplementary Fig. 25: Charge-discharge profiles of NVP||Pine HC pouch cell during the formation process.
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Supplementary Fig. 26: Charge-discharge profiles of NFPP||Pine HC pouch cell during the formation process.
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Supplementary Fig. 27: Charge-discharge profiles of PBA||Pine HC pouch cell during the formation process.
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[bookmark: _Hlk172306272]Supplementary Fig. 28: a, Cycling performance of the NVP||Pine HC pouch cell at a current rate of 0.5C. b, the corresponding charge-discharge profiles.
NVP mass loading: 16.2 mg cm-2; N/P ratio: 1.11; Area: 4.3×5.6 cm2.
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[bookmark: _Hlk172306312]Supplementary Fig. 29: a, Cycling performance of the NFPP||Pine HC pouch cell at a current rate of 0.5C. b, the corresponding charge-discharge profiles.
NFPP mass loading: 15.7 mg cm-2; N/P ratio: 1.12; Area: 4.3×5.6 cm2.
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Supplementary Fig. 30: a, Cycling performance of the PBA||Pine HC pouch cell at a current rate of 0.5C. b, the corresponding charge-discharge profiles.
PBA mass loading: 10.8 mg cm-2; N/P ratio: 1.19; Area: 4.3×5.6 cm2.
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Supplementary Fig. 31: a,b, Optical photograph of the in situ cell. Both the anode (a) and cathode (b) cases feature a 5 mm diameter window, which is sealed with beryllium window to ensure airtightness while permitting X-rays transmission. A 5 mm diameter hole was made through the sodium metal foil, separator, and stainless steel spacer within the in situ cell.
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Supplementary Fig. 32: The in situ XRD patterns of Pine HC electrode during the first charge-discharge process at 30 mA g-1.
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Supplementary Fig. 33: The in situ Raman spectra of Pine HC electrode during the first charge-discharge process at 30 mA g-1.
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Supplementary Fig. 34: In situ SAXS profiles of Pine HC electrode during the first desodiation. Curves with various color correspond to different states of charge.
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[bookmark: OLE_LINK4]Supplementary Fig. 35: Ex situ 23Na ssNMR spectra of Pine HC electrodes during the first sodiation. Asterisk (※) marks are the spinning sideband.
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Supplementary Fig. 36: The phenomenon of the reaction between 1% phenolphthalein ethanol solution and sodiated Pine HC and corresponding reaction equation.
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Supplementary Fig. 37: a, The 2nd charge-discharge curves of Pine HC anode. b, Optical photo of 1% phenolphthalein ethanol solution after reaction with Pine HC electrode at corresponding voltage.
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[bookmark: _Hlk171622053][bookmark: _Hlk171456107]Supplementary Fig. 38: a-d, In situ SAXS profiles of RF HC (a), Pine HC-1% (b), Pine HC-6% (c), and Pine HC-10% (d) electrodes for the first sodiation.
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Supplementary Fig. 39: The calculated filled volume fraction from in situ SAXS experiments.
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Supplementary Fig. 40: a,b, Large-scale preparation of Pine HC (3kg) using pine sawdust as the precursor.
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Supplementary Fig. 41: Comparison of charge-discharge profiles of Pine HC and commercial HC in half-cell.
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Supplementary Fig. 42: a,b, Initial charge-discharge profiles of three-electrode NFM111||Pine HC (a) and NFM111||Commercial HC (b) pouch cells with an N/P ratio of 1.12.
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Supplementary Fig. 43: The weight of the 4.5 Ah-laminated NFM111||Pine HC pouch cell.
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Supplementary Fig. 44: Charge-discharge profiles of the 4.5 Ah-laminated NFM111||Pine HC pouch cell at 90% DOD.


Supplementary Table 1: Rosin content obtained by Soxhlet extraction.
	Sample
	Pine wood (g)
	Rosin (g)
	Rosin content
(%)

	1
	3.5972
	0.1140
	3.17

	2
	3.2492
	0.1133
	3.49

	3
	3.4314
	0.1118
	3.26





[bookmark: OLE_LINK6]Supplementary Table 2: 13C chemical shift assignments of pine wood and RF wood.
	Chemical shift (ppm)
	
	Carbon group
	
	Belonging*

	[bookmark: _Hlk172542806]180−170
	
	C=O
	
	R, H

	158−117
	
	Aromatic
	
	L

	110−58
	
	C1−C6
	
	C

	56
	
	CH3O
	
	L

	50−12
	
	CH3, CH2
	
	R


*Rosin, cellulose, hemicellulose, and lignin were labeled as R, C, H, and L, respectively.


[bookmark: OLE_LINK3]Supplementary Table 3: The functional groups assignments of pine wood and RF wood.
	Wavenumber (cm-1)
	
	Functional groups
	
	Belonging

	3564
	
	O−H stretching
	
	H2O

	2944
	
	C−H stretching
	
	CH4

	2340
	
	C=O stretching
	
	CO2

	2180
	
	C=O stretching
	
	CO

	1742
	
	C=O
	
	Aldehydes/acid

	1108
	
	C−O−C/C−C
	
	Ethers/alkanes





Supplementary Table 4: Pore parameters of carbon matrix with/without rosin after pyrolysis by AIMD simulations.
	Samples
	Carbon matrix with rosin
	Pure carbon matrix

	[bookmark: OLE_LINK84]Free volume (Å3)
	1829.95
	1287.54

	Free volume ratio
	22.87%
	16.09%

	Surface area (Å3)
	3969.95
	3671.18





Supplementary Table 5: Structure parameters (d002, d100, La, Lc, and n) of RF HC and Pine HC samples based on XRD patterns.
	Sample
	d002 (nm)
	d100 (nm)
	La (nm)
	Lc (nm)
	n=Lc/d002+1

	Pine HC-10%
	0.377
	0.208
	5.157
	1.119
	3.968

	Pine HC-6%
	0.380
	0.208
	4.995
	1.135
	3.987

	Pine HC
	0.378
	0.208
	4.917
	1.132
	3.995

	Pine HC-1%
	0.376
	0.207
	5.146
	1.127
	3.997

	RF HC
	0.373
	0.206
	5.189
	1.126
	4.019





Supplementary Table 6: SAXS fitting parameters of Pine HC and RF HC samples based on the Teubner-Strey model.
	Sample
	ρs
(g cm-3)
	ΔSLD
(*10-6 Å-2)
	d (nm)
	𝜉 (nm)
	D (nm)
	SSAXS
(m2 g-1)

	Pine HC-10%
	2.41
	20.5
	11.58
	0.47
	2.73
	4392

	Pine HC-6%
	2.42
	20.6
	8.75
	0.45
	2.45
	3650

	Pine HC
	2.40
	20.4
	5.40
	0.46
	1.91
	2916

	Pine HC-1%
	2.36
	20.1
	4.73
	0.48
	1.66
	2333

	RF HC
	2.32
	19.7
	4.2
	0.53
	1.24
	1528





Supplementary Table 7: Pore structure parameters of RF HC and Pine HC samples based on nitrogen adsorption measurement and true density test.
	Sample
	SBET
(m2 g-1)
	[bookmark: OLE_LINK5]Open pore volume
(cm3 g-1)
	True density
(g cm-3)
	Closed pore volume
(cm3 g-1)
	Total pore volume
(cm3 g-1)

	Pine HC-10%
	52.4
	0.051
	1.81
	0.110
	0.161

	Pine HC-6%
	30.3
	0.029
	1.90
	0.084
	0.113

	Pine HC
	16.7
	0.013
	1.97
	0.065
	0.078

	Pine HC-1%
	14.9
	0.012
	2.02
	0.053
	0.065

	RF HC
	9.0
	0.009
	2.09
	0.036
	0.045





Supplementary Table 8: Comparison of the specific capacity and ICE of previously reported HC anodes with Pine HC.
	Sample
	Specific capacity (mAh g-1)
	ICE
	Reference

	CHC
	341
	68.0%
	2

	CHC-0.25
	325
	68.0%
	3

	LCS-73
	356
	82.8%
	4

	HTCNCC1500
	314
	90.4%
	5

	H-TPGC
	298
	90.5%
	6

	G1500
	345
	86.9%
	7

	PCLC-1
	312
	85.3%
	8

	CAC1300
	308
	82.3%
	9

	HC-1300
	350
	84.1%
	10

	HC-1300-P1.10
	328
	72.0%
	11

	HCK-10
	332
	68.0%
	12

	M11005
	299
	88.9%
	13

	MPC-1000
	318
	71.2%
	14

	F-CHC
	335
	87.2%
	15

	Pine HC
	336
	92.2%
	This work





Supplementary Table 9: Comparison of the electrochemical performance* of other biomass-derived HCs before and after rosin modification.
	Biomass
	Basic
	Rosin-modified

	
	Slope capacity (mAh g-1)
	Plateau capacity (mAh g-1)
	ICE
	Slope capacity (mAh g-1)
	Plateau capacity (mAh g-1)
	ICE

	Poplar wood
	78.5
	213.0
	82.6%
	86.7
	234.7
	85.4%

	Camphor wood
	84.9
	232.1
	85.5%
	86.1
	251.3
	88.0%

	Cypress wood
	77.7
	218.0
	80.0%
	93.5
	237.9
	84.2%

	Oak wood
	80.3
	214.9
	79.1%
	94.4
	235.1
	85.1%

	Apricot wood
	77.9
	210.0
	81.8%
	90.2
	248.0
	86.5%

	Litchi wood
	76.3
	228.2
	83.6%
	91.5
	251.3
	86.8%

	Bamboo
	68.8
	176.1
	76.0%
	72.4
	219.9
	81.9%

	Wheat straw
	80.8
	189.3
	81.5%
	83.8
	226.2
	84.8%

	Corncob
	67.99
	164.66
	73.2%
	72.7
	203.78
	81.0%


*Current density: 30 mA g-1.


Supplementary Table 10: Cost accounting for large-scale preparation of Pine HC using pine sawdust as raw material.
	
	Pine HC
	Commercial HC
(Kuraray Type 2)

	Raw material
	Pine sawdust
	\

	Precursor price range# ($ kg-1)
	0.26−0.38
	\

	Average yield
	25%
	\

	[bookmark: OLE_LINK10]Production fixed cost range*
($ kg-1)
	2.0−2.5
	\

	Total cost ($ kg-1)
	3.04−4.02
	\

	Average cost ($ kg-1)
	3.53
	\

	Price ($ kg-1)
	\
	27.5


[bookmark: OLE_LINK80][bookmark: _Hlk172626926]#The precursor price was consulted at Huadong Timber Market (Jinhua, Zhejiang).
*The calculation of the production fixed cost for Pine HC is based on techno-economics studies that producing activated carbon from biomass materials.16-18 These studies estimated fixed production costs excluding raw material costs to be between $1.50-2.50 kg-1. Taking inflation and energy prices differences into account, the fixed production costs for Pine HC were assumed to be $2.0-2.5 kg-1.



Supplementary Table 11: Comparison of electrochemical performance between Pine HC and commercial HC.
	
	Pine HC
	Commercial HC
(Kuraray Type 2)

	Half cell:

	Initial Coulombic efficiency
	92.2%
	88.5%

	Reversible capacity (mAh g-1)
	336.1
	289.2

	Average voltage (V)
	0.14
	0.19

	Pouch type full cell:

	Initial Coulombic efficiency
	85.6%
	82.1%

	Reversible capacity (mAh g-1)
	272.1
	229.6

	Average discharge voltage (V)
	3.09
	2.98

	Energy density (W h kg-1)
	315.8
	283.4





[bookmark: _Hlk172622752]Supplementary Table 12: The detailed parameters of laminated NFM111||Pine HC pouch cell with an energy density of 202 W h kg-1.
	Parameter
	NFM111||Pine HC pouch cell

	Specific capacity (Pine HC)
	365 mAh g-1

	Anode mass loading (94 wt%)
	7.64 mg cm-2

	Area capacity (single face)
	2.79 mAh cm-2

	Active area (40 folds, double face)
	[bookmark: _Hlk180590084]2088.0 cm2 (4.5×5.8 cm2)

	Specific capacity (NFM111)
	200 mAh g-1

	Cathode mass loading (95 wt%)
	13.71 mg cm-2

	Area capacity (single face)
	2.74 mAh cm-2

	Active area (39 folds, double face)
	1878.2 cm2 (4.3×5.6 cm2) 

	N/P ratio
	1.02

	Current collector (9 μm Al foil)
	5.12 g

	Separator (Liaoyuan Hongtu, 12 μm)
	1.53 g

	E/C ratio
	3.47 g Ah-1

	Package + tabs
	1.67 g

	Cell weight
	67.61 g

	Cell capacity
	4.45 Ah

	Cell energy
	13.66 Wh

	Energy density
	202 Wh kg-1
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