
Adjoint propagation of error signal through modular recurrent
neural networks for bio-plausible learning

Zhuo Liu1, Xu Meng1, Yousheng Wang1, Hao Shu1, Linmiao Wang1, Wei Wang2, Tao Chen1,∗

1School of Microelectronics, University of Science and Technology of China,
Hefei 230026, Anhui, China

2Digital Intelligence Centre, Shenzhen Power Supply Bureau, China Southern Power Grid,

Shenzhen 518000, Guangdong, China
∗Correspondence to: tchen@ustc.edu.cn

1



A General Formulation

Here, we describe the detailed process of inference and learning of the MR-RNN model within
our adjoint propagation framework. Each RNN module in our AP framework can be treated as
an independent dynamical system with states uL(i), internal weights WL(i), bias bL(i), nonlinear

activation function fL(i), inference signals from the (i− 1)-th Layer WL(i−1,i)u
β,t
L(i−1),SI and error

feedback from the (i+ 1)-th Layer EL(i+1,i)eL(i+1),SE. Its dynamics can be described as:

uβ,t+1
L(i) =WL(i) · fL(i)(uβ,t

L(i)) + bL(i)+

WL(i−1,i) · fL(i−1)(u
β,te
L(i−1),SI)− βEL(i+1,i) · eL(i+1),SE (S1)

where β = 0 in the inference phase and β = 1 in the learning phase. The i-th layer converges
to a stable point uβ,te

L(i) in sufficient iteration steps te. Note that the subscript ·L(i),SE means the
only the state of the SE neurons are non-zero for unified formulation. Given a pair of input and
target (x, y), the network responds to the input uβ,te

L(0),SI = uL(0) = x and generates the prediction
uL(3) in the inference phase. The dynamics of each layer of RNN is described by:

u0,t+1
L(i) =WL(i) · fL(i)(u0,t

L(i)) + bL(i) +WL(i−1,i) · fL(i−1)(u
0,te
L(i−1),SI) (S2)

The i-th layer converges to a stable point u0,te
L(i) with sufficient iterations. Then it passes the

inference signals at its SI neurons to the RI neurons of the next layer. This process goes on and
on until the signal reaches the output uL(3):

uL(3) = WL(2,3) · fL(2)(u0,t
L(2),SI) + bL(3) (S3)

where fL(3) is the nonlinear activation function of the output layer. The error at the output
layer is eL(3) = fL(3)(uL(3))− y, which is fed to the L(2)’s RE neurons. Then the network enters
the learning phase. In this phase, the dynamics is governed by:

u1,t+1
L(i) =WL(i) · fL(i)(u1,t

L(i)) + bL(i)+

WL(i−1,i) · fL(i−1)(u
0,te
L(i−1),SI)− EL(i+1,i) · eL(i+1),SE (S4)

Again, with sufficient iterations, L(2) converges to stable points u1,te
L(i). The error of this layer is

eL(i) = f(u0,te
L(i))− f(u1,te

L(i)) , which teaches the forward weights and relays the error to lower index
layer. It is worth pointing out that the initial condition can be the neural states at the end of
the inference phase (EPE error in the main text) or at the beginning of the inference phase
(STE error). The order of layer-by-layer updating runs from lower index RNN to higher index
RNN in the inference phase and reversed in the learning phase. A whole learning framework of
two RNN modules without bias bL(i) is given in Algorithm 1.

For the experiments illustrated in Fig. 5 in the main text, their process can be described
by the pseudocode in Algorithm 2. Note that the RNN modules that are irrelevant in the the
inference phase are set to zero-state (e.g. L(3) and L(4) for training on FMNIST) . In the
learning phase, the error-perturbation is directly added to zero-state.

2



Algorithm 1: AP model without biases for computing

Data: A batch of input and target (x, y),
θ = (WL(0,1),WL(1,2),WL(2,3),WL(1),WL(2), EL(2,1), EL(3,2))

Result: θ
1 Function Inference-phase(θ, x):

2 u0,te
L(0),SI = uL(0) = x;

3 for i← 1 to 2 do
4 for t← 0 to te − 1 do

5 u0,t+1
L(i) ← WL(i) · fL(i)(u0,t

L(i)) +WL(i−1,i) · fL(i−1)(u
0,te
L(i−1),SI);

6 end

7 end

8 u0,te
3 = uL(3) = WL(2,3)fL(2)(u

0,t
L(2),SI);

9 Λ1 = {u0,te
L(i)}, i = 1, 2, 3;

10 return Λ1;

11 Function Learning-phase(θ,Λ1, t):
12 eL(3) = fL(3)(uL(3))− y;
13 for i← 2 to 1 do
14 for t← 0 to te − 1 do

15 u1,t+1
L(i) ← WL(i) · fL(i)(u1,t

L(i)) +WL(i−1,i) · fL(i−1)(u
0,te
L(i−1),SI)− EL(i+1,i) · eL(i+1),SE;

16 end

17 eL(i) = fL(i)(u
0,te
L(i))− fL(i)(u

1,te
L(i));

18 end
19 Λ2 = {eL(i)}, i = 1, 2, 3;
20 return Λ2;

21 Function Updating Weights(θ,Λ1,Λ2):

22 ∆WL(2,3) ← −eL(3) · fL(2)(u0,te
L(2),SI)

T ;

23 ∆WL(1,2) ← −eL(2),RI · fL(1)(u0,te
L(1),SI)

T ;

24 ∆WL(0,1) ← −eL(1),RI · fL(0)(uL(0))
T ;

Algorithm 2: AP model in different configurations

Data: Two datasets (x1, y1), (x2, y2), their AP configuration and connections
parameters (G1, θ1), (G2, θ2), the number of training epochs for both tasks nepoch

Result: θ1,θ2
1 Function Training-for-multi-task({(x1, y1), (G1, θ1)}, {(x2, y2), (G2, θ2)}):
2 for epoch← 1 to nepoch do
3 Configuring network with G1;
4 Inference-phase with x1;
5 Training-phase with (x1, y1);
6 updating parameters θ1;
7 Configuring network with G2

8 Inference-phase with x2;
9 Training-phase with (x2, y2);

10 updating parameters θ2;

11 end
12 return θ1,θ2;

3



B Derivation of our model updates

We can derive the weight update rule following the principle of discrepancy reduction [1, 2],
namely, reducing the discrepancy between neural states in the inference phase and learning
phase. The argument is that when the network is trained, the error should be small, and
discrepancy between the two phases are minimized. We define the total loss as:

Loss(θ) =
L∑
i=1

kiLi(u
0,te
L(i), u

β,te
L(i)) =

L∑
l=1

ki(∥fL(i)(uβ,te
L(i))− fL(i)(u

0,te
L(i))∥p)

q (S5)

Where p = q = 2, i.e. a square of Euclidean norm. ki is a scalar that weights the contribution
of a specific local loss to the total loss. Here ki = 1/2. The error of each layer can be defined as
the partial derivative of the loss to the activation:

eL(i) =
∂Loss(θ)

∂fL(i)(u
0,te
L(i))

=
∂
∑L

l=1 ki(∥fL(i)(u
1,te
L(i))− fL(i)(u

0,te
L(i))∥p)q

∂fL(i)(u
0,te
L(i))

=
∂(∥fL(i)(u1,te

L(i))− fL(i)(u
0,te
L(i))∥2)2

2∂fL(i)(u
0,te
L(i))

= fL(i)(u
0,te
L(i))− fL(i)(u

1,te
L(i)) (S6)

Further, we can deduce the weight update rule from the gradients of the loss with respect to
the weights:

∆WL(i−1,i) = −
∂Loss(θ)

∂WL(i−1,i)

= − ∂Loss(θ)

∂fL(i)(u
0,te
L(i))

∂fL(i)(u
0,te
L(i))

∂u0,te
L(i)

(∂WL(i−1,i) · fL(i−1)(u
0,te
L(i−1),SI)

∂WL(i−1,i)

+
∂[WL(i) · fL(i)(u0,te−1

L(i) )]

∂WL(i−1,i)

)
(S7)

Since the spectral radius of WL(i) is mall, we assume that the second term in the bracket can be
omitted, and rewrite the forward weight update rule in the following form:

∆WL(i−1,i) ≈ −
∂Loss(θ)

∂fL(i)(u
0,te
L(i))

∂fL(i)(u
0,te
L(i))

∂u0,te
L(i)

∂WL(i−1,i) · fL(i−1)(u
0,te
L(i−1),SI)

∂WL(i−1,i)

= −eL(i),RI · fL(i−1)(u
0,te
L(i−1),SI)

T ⊙ f ′
L(i)(u

0,te
L(i),RI) (S8)

≈ −eL(i),RI · fL(i−1)(u
0,te
L(i−1),SI)

T (S9)

= −fL(i)(u0,te
L(i),RI) · fL(i−1)(u

0,te
L(i−1),SI)

T + fL(i)(u
1,te
L(i),RI) · fL(i−1)(u

0,te
L(i−1),SI)

T (S10)

where ⊙ denotes element-wise multiplication. It is the same as the update rule of most
discrepancy-based algorithms in conventional FNN. We can further drop the derivative of
activation function, because previous studies have shown that the derivative can be omitted as
long as the activation function is monotonically non-decreasing [1, 2, 3]. Expanding the error
term, we arrive at the last row of the equation.

4



C The influence of parameters

We further investigate the influence of the hyper-parameters on the training, with the FMNIST
dataset.

a b c

Figure S1: The test accuracy on FMNIST dataset with different parameters. a, Accuracy versus
batch size. b, Accuracy versus the number of neurons in a RNN. The horizontal axis is number
of neurons for each functional block (RI, SI, RE, SE). c, Accuracy versus the connecting rate of
the RNN.

Batch size and Adam. In machine learning, it is common practice to train a network with
batches of training data. Instead of computing the loss of one training sample and updating the
weight, batch learning often compute the total loss of many samples, and then update weight.
Usually batch learning can better approximate the gradient and accelerate the training. We
have presented the results using batch learning in the main text. However, in physical hardware
or biological networks, batch learning is non-local in time and demands storing the losses for the
samples in a batch. Fig. S1(a) shows that the test accuracy increases by 1% with growing batch
size. Importantly, even with batch size of 1 (without Adam optimizer[4]), the AP algorithm can
reach 88.81% accuracy after 100 epochs. This result suggests that a suitable physical substrate
can be trained with AP framework in a biologically plausible manner.

The number of neurons in each block of the RNN. In the main text, we usually set
the number of neurons in each block (SI, RI, SE, RE) to be 256. To study how the size of RNN
affects the performance, we have trained the two-layer MR-RNN model in the main test with
different number of neurons for each functional block, ranging from 4 to 1024.Fig. S1(b) shows
that increasing the block size improves the accuracy rate, however, when the block size is 64
or larger, the accuracy saturates. We attribute this saturation to the structural limit of the
MR-RNN model. As discussed in the main text, further improvement on performance requires
innovation in network structures, e.g., incorporating convolution layers.

The connection rate of RNN. We then examine the influence of connection rate of
the RNN. The connection rate characterize the sparsity of the internal connections in a RNN,
namely, the ratio of the number of existing connections to the number of all-to-all connections.
With a block size of 256, the test accuracy for different connection rates are plotted in Fig.
S1(c). It can be seen that sparse RNNs have comparable computational power with their dense
counterpart, consistent with previous studies. Therefore, sparse RNNs are favorable for physical
implementation in terms of stability and resource consumption.

5



References

[1] Alexander Ororbia and Ankur Mali. Biologically motivated algorithms for propagating local target
representations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4651–4658, 07 2019.

[2] Alexander G. Ororbia, Ankur Mali, Daniel Kifer, and C. Lee Giles. Backpropagation-free deep
learning with recursive local representation alignment. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 9327–9335, Jun. 2023.

[3] Jan Melchior and Laurenz Wiskott. Hebbian-descent, 2019. Preprint at https://arxiv.org/abs/
1905.10585.

[4] Jimmy Ba Diederik P. Kingma. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations. ICLR, 2015.

6

https://arxiv.org/abs/1905.10585
https://arxiv.org/abs/1905.10585

	General Formulation
	Derivation of our model updates
	The influence of parameters

