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A proto-neutron star (PNS) gets formed after a successful supernova when the stellar remnant de-
couples from the ejecta. In this study, we explore a relativistic framework for the finite-temperature
β-equilibrium limit of equation of state (EOS), constrained via a Bayesian inference methodology.
The EOS is constrained by minimal approximations on a few nuclear saturation properties, low-
density pure neutron matter constraints from chiral effective field theory, and a neutron star (NS)
maximum mass greater than 2.0 M⊙. Two sets of EOS derived from the relativistic mean field
model for nucleonic and hyperonic matter constrained by a Bayesian inference calculation at the
zero temperature limit are used. The thermal adiabatic index (ΓTh) is calculated as a function of
the baryonic density across several temperatures for both the sets. Our results suggest that the
maximum NS mass is of the order of 2.15 M⊙ if hyperons are present. In addition, the present
study suggests that an observation of NS with mass larger than 2.2 M⊙ can indirectly indicates
the absence of hyperons in its core. The deleptonization of hyperonic PNS reduces the stellar max-
imum mass rendering the PNS exceeding the zero temperature maximum stellar (baryonic) mass
limit becomes metastable which is prone to collapse into a black hole while PNS below such a mass
threshold evolves to a stable NS.

I. INTRODUCTION

Proto-neutron stars (PNS) form as a consequence of
successful supernova explosions when the stellar remnant
is gravitationally decoupled from the expanding ejecta
[1]. The neutrinos emitted by the remnant are crucial
to supernova energetics and may also play an important
role in supernova nucleosynthesis. These neutrinos, with
their energies and emission timescales, provide valuable
insights into the mass and composition of PNS. Deter-
mining the exact equation of state (EOS) governing a
PNS is a complex and compelling topic in current astro-
physical research and debate. The EOS of a PNS is in-
fluenced by three thermodynamic parameters, commonly
chosen as the temperature T , the baryon number density
nb, and the lepton fraction Ylep = nl/nb, with nl the lep-
ton number density. These parameters must cover wide
ranges: 10−14 fm−3

≤ nb ≤ 1.5 fm−3, 0 ≤ Ylep ≤ 0.6 and
0 ≤ T ≤ 100 MeV [2–16].

As the star collapses, neutrinos are produced in large
quantities through electron capture and are mostly tem-
porarily prevented from escaping because their mean free
path is small compared to the radius of the star. During
this trapped neutrino era of the PNS evolution, the en-
tropy per baryon is about 1 (with kB = 1) throughout the
star and the total number of leptons per baryon is about
Ye + Yνe

≃ 0.4 in an initial state. The neutrinos in the
core inhibit the possibility of having exotic matter like
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hyperonic matter or quark matter. As the PNS cools, the
neutrino mean free path increases and the neutrinos leave
the star on a timescale of 20–60 seconds. During such
deleptonization, the neutrino diffusion heats up matter,
and the entropy per baryon increases to 2. With delep-
tonization, it is possible to have hyperons at the core.
In such a scenario, the leptonic content and the maxi-
mum mass decrease. PNS with baryonic masses above
the Tolman-Openheimer-Volkoff (TOV) baryonic maxi-
mum mass 1 for neutrino free cold matter are metastable
and will collapse to a black hole before it completely cools
down [17]. If the mass of the PNS is below this mass
threshold, the star will be stable and cool into a Neutron
star (NS) as the neutrinos carry energy away from the
star.
The various numerical studies of these diverse phenom-

ena developed in the last decades have shown significant
sensitivity to the EOS, see e.g. [2, 16, 18–22]. The EOS
for PNS is critical for their evolution and neutrino emis-
sion. In [2], the thermal and chemical evolution was stud-
ied during the Kelvin-Helmholtz phase of NS birth using
a neutrino opacity consistent with the EOS. The evolu-
tion of a PNS is characterized by the Kelvin-Helmholtz
cooling phase, a period during which the star undergoes
significant thermal and compositional changes. Initially,
the PNS is hot and rich in neutrinos (lepton-rich). But
as it emits neutrinos, it gradually becomes deleptonized
and loses its thermal energy, transforming into a cold,
neutrinoless, neutron rich star. The rate and nature of

1 the maximum baryonic mass obtained for a stable neutron star

from the integration of the TOV equations
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this cooling process are governed by the microphysical
properties of dense matter within the PNS which is en-
capsulated in the EOS, and the opacity of matter for
neutrinos that affects how efficiently neutrinos can es-
cape from the PNS matter. PNS cooling simulations,
including potential hyperons, explore how initial stellar
models, total mass, EOS variations, and hyperons affect
stellar evolution and detectable neutrino signals. In [23],
the authors have evaluated the EOS models in the Com-
pOSE database, emphasizing their applicability in nu-
merical simulations of core-collapse supernovae, binary
neutron star (BNS) mergers, and PNS evolution. They
emphasize that purely nucleonic models, consistent with
astrophysical and nuclear constraints, reveal significant
influences of the nucleon effective mass on thermal prop-
erties in these extreme environments. Reviews of mi-
croscopic many-body techniques and phenomenological
frameworks emphasize the importance of considering nu-
cleons and hyperons, contrasting theoretical predictions
with empirical observations [24].

In [25] a general framework was proposed for the ac-
curate calculation of the thermal pressure of neutron-
proton-electron (npe) matter at any given density, tem-
perature and proton fraction. This quantity is essen-
tial for modeling astrophysical phenomena such as super-
novae and BNS mergers. The method considered, which
uses five physically motivated parameters, captures the
leading-order effects of degenerate matter on thermal
pressure, improving accuracy over existing models by 1-3
orders of magnitude. This framework also allows the ex-
tension to finite temperature of cold, parametric and non-
parametric EOSs, which do not include microphysics.
The effects of magnetic fields and rotation on PNSs have
also been investigated in [26] within a hadronic chiral
SU(3) model, or in [27, 28] within a relativistic mean
field (RMF) description. Strong poloidal magnetic fields
were considered to significantly deform the stars and al-
ter their structure, composition, and trapped neutrino
populations, affecting the strangeness content and tem-
perature of the stars throughout their evolution.

Neutron star matter, with hyperonic degrees of free-
dom and trapped neutrinos, is richer in neutrinos than
nucleonic matter. The extra pressure of neutrinos allows
PNS to support a larger gravitational and baryonic mass
compared to neutrinoless cold NS. As a consequence,
deleptonization reduces the maximum gravitational and
baryonic mass of the star, which is not compensated by
thermal energy. This fact may cause the delayed decay
of the PNS into a black hole (BH). In this scenario, it
is assumed that accretion occurs only during the initial
phase immediately after the supernova, and the evolution
of PNS occurs at a fixed baryonic mass [17, 29, 30]. A
similar scenario could occur if a kaon condensate forms
in the interior of PNS [31].

The RMF approach is a widely used theoretical frame-
work to model the EOS of PNS [32]. This approach in-
corporates interactions mediated by mesons (such as σ,
ω, ρ mesons) to describe the behavior of nucleons at high

density, and easily includes degrees of freedom other than
nucleons and leptons, such as hyperons, kaons or decon-
fined quarks.

Recent advances in understanding dense matter EOS,
together with improvements in neutrino transport mod-
els, have provided a more detailed picture of the PNS
cooling process [33–35]. This progress has been crucial
for making more accurate predictions about the behavior
of PNS and the signals they produce, especially for neu-
trino detectors. However, to fully understand and predict
these phenomena, ongoing simulations and detailed cal-
culations are required, highlighting the complex interplay
of nuclear physics, thermodynamics, and astrophysics in
the study of PNS. The EOS derived from an RMF model
can predict various structural and thermal properties of
PNS, such as their mass-radius relationship, stability and
cooling behavior. It also helps to understand the role of
neutrinos, which are trapped in the dense matter of a
PNS and significantly influence its evolution.

This work aims to improve the understanding of the fi-
nite temperature EOS, focusing on nucleonic and hyper-
onic models in the RMF theory of dense matter. In this
study, we use a RMF model in which the β-equilibrated
EOS at zero temperature is constrained by a Bayesian in-
ference method subject to minimal constraints on a few
nuclear saturation properties [36]. The low-density pure
neutron matter is constrained by chiral effective field the-
ory (χeffective field theory (EFT)) and the high-density
nuclear matter is constrained by astrophysical observa-
tions such as NS mass. The EOS data set is evaluated
including hyperons in the composition. This EOS set is
used by switching the presence of the hyperonic content
for different fixed temperatures (T = 0, 10, 30 and 50
MeV), entropies per baryon (S = 0, 1, and 2) and lep-
ton fractions (Yl = 0.4 or neutrinoless β-equilibrium).
Our analysis includes results for the thermal adiabatic
index ΓTh, which can be used to account for the thermal
effects on the zero temperature EOS. Old NSs have tem-
peratures below 1 MeV, while PNSs can reach central
temperatures of around 50 MeV or even higher [1, 2, 16].
In the context of compact star mergers, temperatures can
reach up to 80 MeV [37]. These temperature levels are
comparable to those observed in heavy-ion collision ex-
periments at relativistic heavy-ion collider (RHIC) and
large hadron collider (LHC) [38, 39]. Therefore, given
these temperatures, it is logical to use the same math-
ematical models or similar approaches to describe these
systems.

The structure of the article is as follows: Sec. II covers
the formalism of temperature dependent EOS models. In
Sec. III we present the results and findings of the present
study. Finally, IV provides a concluding summary, high-
lighting the key points of our research. Throughout this
paper we use natural units with ℏ = c = G = kB = 1.
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II. FORMALISM

In the present study, we explore a relativistic frame-
work of the temperature dependent EOS of dense matter
in the core of PNSs. We employ the RMF model with
non-linear mesonic interactions. Further, we examine the
influence of the inclusion of baryons with strangeness,
e.g. hyperons (Λ, Σ+,−,0, Ξ0,−), on the EOS. The inter-
actions among baryons are facilitated by the exchange of
the isoscalar-scalar (σ), the isoscalar-vector (ω) and the
isovector-vector (ϱ) mesons. For the models including
hyperons, we also include other mesons with strange de-
grees of freedom - the hidden strangeness isoscalar-vector
(ϕ), the isoscalar-scalar (σ∗) meson. The Lagrangian de-
scribing the baryonic degrees of freedom is expressed as
follows:

L =
∑

b

Lb + LM + Lint, (1)

with

Lb = Ψ̄b

[

γµ (i∂µ − gωbωµ − gϱbt · ϱµ − gϕbϕµ)

− (m− gσbσ − gσ∗bσ
∗)

]

Ψb, (2)

LM =
1

2

[

∂µσ∂
µσ −m2

σσ
2
]

+
1

2

[

∂µσ
∗∂µσ∗ −m2

σ∗σ∗2
]

−
1

4
F (ϱ)
µν · F (ϱ)µν +

1

2
m2

ϱϱµ · ϱµ

−
1

4

∑

O=ω,ϕ

[

F (O)
µν F (O)µν + 2m2

OOµO
µ
]

, (3)

Lint = −
1

3
bg3σσ

3 −
1

4
cg4σσ

4 +
ξ

4!
(gωωµω

µ)4

+Λωg
2
ϱϱµ · ϱµg2ωωµω

µ. (4)

The field Ψb is a Dirac spinor that describes baryons
with a bare mass mb. The γ

µ are the Dirac matrices and
t is the isospin operator. The vector meson field tensors
are defined as F (ω,ϱ,ϕ)µν = ∂µA(ω,ϱ,ϕ)ν−∂νA(ω,ϱ,ϕ)µ (the
non-linear term of the ρmeson tensor does not contribute
in the mean-field approximation). The gσ, gσ⋆ , gω, gϱ,
and gϕ are the couplings of the baryons to the meson
fields σ,σ∗, ω, ϱ, and ϕ of masses mσ, mσ⋆ , mω, mϱ, and
mϕ respectively.
The parameters b, c, ξ and Λω, which define the

strength of the non-linear terms, are determined together
with the couplings gi (i = σ, ω, ϱ), imposing a set of con-
straints. The terms with b, and c, have been introduced
in [40] to control the nuclear matter incompressibility at
nuclear saturation density. The ξ term controls the stiff-
ness of the EOS at high densities, the larger its value
the softer the EOS at high densities. The Λω parameter
affects the density dependence of the symmetry energy.
Increasing the Λω parameter implies a decrease in the
slope of the symmetry energy at saturation. The effect
of the non-linear terms of the meson fields is clearly seen

from the equations of motion for the mesons

m2
σσ + bg3σσ

2 + cg4σσ
3 = gσ

∑

b

xsbρ
s
b (5)

m2
ωω +

ξ

3!
g4ωω

3 + 2Λωg
2
ϱg

2
ωϱ

2ω = gω
∑

b

xωbρb (6)

m2
ϱϱ+ 2Λωg

2
ωg

2
ϱω

2ϱ = gϱ
∑

b

xρBI3ρb, (7)

m2
σ∗σ∗ = gσ∗

∑

b

xs∗bρ
s
b (8)

m2
ϕϕ = gϕ

∑

b

xϕBρb, (9)

where ρsb =< ψ̄bψb > and ρb =< ψ̄bγ0ψb > are the
scalar density and the vector density of baryon b, respec-
tively. The σ, σ∗, ω, ϱ and ϕ designate here the mean field
values of the scalar fields σ, σ∗ and the time-like com-
ponents of the vector fields ω, ϱ, ϕ, where the space-like
components are zero. The coupling ratios of meson j with
respect to baryon i are xji = gji/gj for j = σ, σ⋆, ω, ρ, ϕ,
taking xjN = 1, j = σ, ω, ϱ, xjN = 0, j = σ∗, ϕ and
gϕ = gω, gσ∗ = gσ, see [41].
The baryon b’s vector and scalar number densities are

defined as

nb = 2

∫

d3k

(2π)3
(

fb+ − fb−
)

, (10)

nsb = 2

∫

d3k

(2π)3
m∗

b

E∗
b

(

fb+ + fb−
)

. (11)

with the distribution functions fb± for particles and an-
tiparticles defined as

fb+ =
1

eβ(E
∗

b
−µ̃b) + 1

, fb− =
1

eβ(E
∗

b
+µ̃b) + 1

(12)

respectively, where β = 1/T with T as the temperature,
and E∗

b =
√

k2 +m∗2
b . Here the effective baryon mass

and effective chemical potentials are defined as follows

m∗
b = mb − gσbσ − gσ∗bσ

∗, (13)

µ̃b = µb − gωbω − gρbt3bϱ− gϕbϕ. (14)

The energy density and entropy density within the
model, Eq (1) at various temperature are given as

ϵ =
∑

b

ϵkin,b(T )

+
1

2

(

m2
σσ

2 +m2
σ∗σ∗2 +m2

ωω
2 +m2

ϱϱ
2 +m2

ϕϕ
2
)

+
b

3
(gσσ)

3 +
c

4
(gσσ)

4 +
ξ

8
(gωω)

4 + 3Λω(gϱgωϱω)
2,

(15)

s = −
2

(2π)3

∑

b

∫

d3k
[

fb− ln fb− + (1− fb−)×

ln(1− fb−) + (− → +)
]

, (16)
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and the pressure is determined from the thermodynamic
relation as follows

p =
∑

b

µbρb − Ts − ϵ. (17)

where the kinetic part of the energy density (ϵkin,B(T ))
is given as

ϵkin,b(T ) = 2
∑

b

∫

d3k

(2π)3
E∗

b

(

fb+ + fb−
)

At zero temperature, the distribution functions defined
in Eq. (12) reduce to step functions and the integrals
extend up to the Fermi surface with Fermi momentum
kFb. We can define the scalar, vector densities in zero
temperature limit as

nb =
k3Fb
3π2

, (18)

ns
b = 2

∫

d3k

(2π)3
m∗

b

E∗
b

. (19)

The kinetic energy density and pressure, in the zero
temperature limit, is given by

ϵkin,b(T = 0) = 2

∫ kFb

0

d3k

(2π)3

√

k2 +m∗
b
2 (20)

pkin,b(T = 0) =
2

3

∫ kFb

0

d3k

(2π)3
k2

√

k2 +m∗
b
2
. (21)

We consider electrons (e) and electron-neutrino (νe) as
the lepton contribution to matter in the PNS. To deter-
mine the complete EOS of the system, the corresponding
lepton energy density, entropy density and pressure are
added to the baryons contribution.
In the context of PNS evolution, the dynamical time

scales are much longer than the weak interaction time
scales so that the matter is in β-equilibrium which in turn
imply various chemical potentials satisfy the relations

µb = µn − qb(µe − µνe
), (22)

where, qb is the electrical charge of bth baryon.
We will consider the thermodynamics for two condi-

tions relevant to PNS evolution. The first scenario cor-
responds to neutrinos trapped in the stellar matter, an
entropy per baryon S = s/ρb ≃ 1 and the electron lepton
number Ylep = (ρe + ρνe

)/ρB ≃ 0.4 [17], i.e. the concen-
tration of leptons per baryon is of the order of 0.4. The
number of leptons is conserved here. In a later stage of
evolution, the neutrinos completely flow out of the PNS
and the lepton number is no longer conserved. Only the
baryon charge and the electric charge remain conserved.
Without lepton number conservation, µν = 0, the neu-
trinos fall out of the β-equilibrium and we have

µb = µn − qbµe. (23)

Thus, while the compositional properties of a cold, ma-
ture neutron star depend on a single parameter EOS re-
lating pressure to energy density, the EOS for PNS de-
pends on additional parameters such as a fixed lepton
fraction (YL) and a fixed entropy per baryon.
Many numerical simulations with finite temperature

EOS have been done starting from a cold EOS with a
phenomenological extension to finite temperatures using
an ideal gas like behavior for the thermal contribution to
the pressure written as

p = pcold + (ΓTh − 1)ϵTh (24)

where the thermal adiabatic index ΓTh, an important
quantity for the supernovae simulations and BNS merger
simulations, takes a value in the range 1.5 ≤ ΓTh ≤ 2 and
is assumed to be constant for all pressures p and energy
densities ϵ. The thermal index for a given EOS is

ΓTh = 1 +
pTh

ϵTh
(25)

where pTh = p(T ) − p(T = 0) and ϵTh = ϵ(T ) − ϵ(T =
0). We will compare the above result with the range
of values ΓTh usually takes. We will also discuss the
validity of the Γ law approximation of thermal effects
for the different scenarios considered, in particular, fixed
density, temperature, or lepton fraction.

III. RESULTS AND DISCUSSION

In the following, we analyse two sets of 18000 EOSs
each at finite temperature, one considering only nucle-
onic matter and a second including also hyperons. The
sets have been derived from a Bayesian inference calcu-
lation at zero temperature [36], subject to some minimal
nuclear matter constraints, including ϵ0, the binding en-
ergy per nucleon; K0, the incompressibility; and Jsym,0,
the symmetry energy at nuclear saturation density ρ0. In
addition, the low density pure neutron matter EOS from
an N3LO calculation in χEFT, and the astrophysical ob-
servation of a NS mass exceeding 2M⊙, are imposed [42].
As exotic degrees of freedom, we consider the hyperons
Λ, Σ±0 and Ξ0−. At T = 0, Λ is usually the first hy-
peron to appear, being the lightest, partly because the
Σ hyperon couples repulsively to nuclear matter, as the
nonexistence of Σ hypernuclei indicates [43], although its
negative charge would favor its presence in order to re-
place electrons. The onset of Σ− is often delayed to densi-
ties greater than the onset of Ξ− [44–47] and is generally
absent within stable NS. However, at finite temperature
the role of the interaction weakens with increasing tem-
perature, and the magnitude of the mass becomes more
important in defining the particle abundances, with the
fractions of Σ becoming dominant over those of Ξ [32, 48].
We use these two sets of EOSs with and without hyper-

ons considering: i) a fixed temperature (T = 0, 10, 30
and 50 MeV); ii) a fixed entropy per baryon (S = 0, 1 and
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2), for β-equilibrated matter, to determine EOSs and its
properties applicable to NSs. We consider a fixed lepton
fraction scenario (Ylep = 0.4) with entropy per baryon
S = 1, corresponding to the trapped neutrino scenario,
and a scenario with S = 2 and Yνe

= 0, corresponding to
a deleptonisation stage of the PNS evolution.

In Fig. 1, we show the thermal adiabatic index, Γth,
as defined in Eq. (26). This index is calculated for the
hyperonic set (in rose dotted pattern) and the nucleonic
set (in blue), the medians are presented respectively, by
a full rose line and a dashed blue line, and the demarked
bands correspond to 90% confidence intervals (CI)s. The
figure consists of three panels for different temperatures:
10 MeV, 30 MeV, and 50 MeV. At 10 MeV, the hyperon
set shows significant fluctuations in ΓTh across densities
from 0.1 to 1.0 fm−3, while the nucleonic set shows a
smoother behavior. Similar results were obtained in Ref.
[49] within the FSU2H model and in Ref. [23] for the
models in the CompOSE database. The fast decrease
of Γth is related to the onset of hyperons: the thermal
energy is distributed by a larger number of degrees of
freedom and the pressure suffers a strong softening. The
increase of degrees of freedom occurs at ∼ 0.4 fm−3 for
T = 0 and 10 MeV, as can be seen in Fig. 2 where
the particle abundances are displayed as a function of
density for different temperatures. At 30 MeV, the hy-
perons variations are smaller but still display notable
features, such as a dip around 0.5 fm−3, whereas the
nucleonic set shows a smooth behavior with a smaller
amplitude between minimum and maximum values. The
different behavior obtained for matter with hyperons re-
flects the fact that hyperons set in at much smaller den-
sities and contribute from very low densities, although
the strongest contribution still occurs close to the on-
set densities at T = 0. At 50 MeV, both sets exhibit
smoother curves, with the hyperon set variations becom-
ing less pronounced, and the nucleonic set maintaining a
relatively steady trend. Notice that as the temperature
increases the bands defining the thermal index with and
without hyperons become narrower indicating that the
thermal effects and not the interaction control the be-
havior. The width of the bands in the left panel reflect
the differences between the dataset EOS due to the differ-
ent parameterizations of the interaction of mesons with
nucleons. Including hyperons broadens the interaction
differences. At large temperature the potential contribu-
tion becomes much smaller than the kinetic contribution
to pressure and energy density reducing the originally
wide bands to almost a line. Along with the interacting
nucleonic and hyperonic matter system, we also plot the
constraints values of ΓTh = 4

3

(

5
3

)

for a dilute ideal ultra-
relativistic (non-relativistic) Fermion gas for comparison.
As may be observed at small densities, ΓTh starts with
the non-relativistic value (ΓTh = 4

3 ) while at high den-

sities it approaches its ultra-relativistic limit (ΓTh = 5
3 )

as expected. We also have obtained a parametric expres-
sion for Γth as a function of baryon density (nB) and
temperature (T) given as

Γnuc
Th (nB , T ) = a+ b · cnB · ρT

d

(26)

where nB and T are written in units of fm−3 and MeV,
respectively. The other fitted coefficients are given as
a = 1.3665, b = 11.9638, c = 0.0022 and d = 0.0867. We
have checked that such a parametrization is valid for den-
sity nB ∈ [0.08, 1.2] fm−3, and temperature T ∈ [5, 100]
MeV. We also mention here that such a parametrization
while gives a reasonable descriptions for nucleonic matter
but dose not give a good description for hyperonic mat-
ter. This may be expected as ΓTh for hyperonic matter
shows more stature as compare to nucleonic case. Such
a relation could be useful for binary neutron star merger
simulations.
In Fig. 2 we present the particle fractions (90% CL)

at different densities, for different temperatures in each
panel. In each band, the middle curve represents the me-
dian value of the particle fraction at different values of
baryon density. We plot the particle fractions at tem-
perature T = 0, 10, 30, 50 MeV from top-left, top-right,
bottom-left, bottom-right respectively. The patterned
distributions are plotted for npe matter while homoge-
neous bands are for hyperonic matter. Light teal, light
navy, and light red regions with various patterns show
the fractions of neutron (n), proton (p), and lepton (e)
in npe matter while light teal, light navy, light red, light
grey and light green regions without patterns are show-
ing the fractions neutron (n), proton (p), lambda hy-
peron (Λ), the sum of other hyperons (Σ0,±, Ξ0,−) and
the sum of leptons (e, µ) in hyperonic matter. As den-
sity increases, new particles emerge when the effective
chemical potential of a particle becomes large enough at
various temperatures (T = 0, 10, 30, 50 MeV). For fi-
nite temperature, there is always a finite probability for
the hyperon to set in for an effective chemical potential
smaller than the effective mass, due to the thermal ex-
citations of baryons. The threshold for the appearance
of hyperons at T = 0 depends upon the hyperon-nucleon
potential. The inclusion of hyperons lowers the neutron
abundances. At high enough densities the neutrons are
highly energetic and can be replaced by the lambda hy-
peron (Λ) which already exceeds the proton abundance
around three times the nuclear saturation density. Such
a behavior is due to the hyperon-nucleon potential and
was also seen in earlier studies (see [44, 49, 50]). Notice
that for hyperonic matter as the temperature increases,
the fractions of the different hadrons get closer and closer
at large densities. The difference between neutrons and
protons also decreases as T increases. These behaviors
reflect the increasing dominance of the kinetic contribu-
tions to the total energy.
In Fig. 3, the temperature is given as a function of the

density for four different scenarios: (i) S = 1, Ylep = 0.4,
(ii) S = 2, Yνe

= 0 for nucleonic matter and other two’s
for the hyperonic matter. It is quite impressive that the
datasets give rise to such narrow bands at 90% CI. As
discussed in the previous studies [28, 51, 52], it is seen
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FIG. 1. The thermal adiabatic index, denoted as ΓTh = 1+
pTh

ϵTh

, where ϵTh = ϵ(T )− ϵ(0) and pTh = p(T )− p(0), is computed

for the hyperon set (shown in dotted rose) and the nucleonic set (shown in blue) at constant temperatures of T = 10, 30, and 50
MeV, respectively, shown across the panels from left to right. We additionally provide an fitted ΓTh(nB , T ) curve specifically
for the nucleonic scenario (refer to the text for further details).
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FIG. 2. The 90% CL of the particle fractions as a function of total baryon density for different temperatures, (T =
0, 10, 30, 50 MeV). The different colors denote (i) n neutron (green), (ii) p proton (salmon), (iii) Λ hyperon (pink), and
all other hyperons like (iv) Σ hyperon, (v) Ξ hyperon (silk blue). The hatched curves are corresponding to the npe matter.
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FIG. 3. The temperature (90% CI) as a function of the baryon
number density with and without hyperons in PNSs for dif-
ferent values of entropy densities, (i) S = 1, Ylep = 0.4, and
(ii) S = 2 for neutrino free matter in β-equilibrium.

that the temperature is quite sensitive to the number of
species. In this case, the larger the number of degrees
of freedom the smaller the rise of the temperature with
density. The temperature for an almost degenerate Fermi
system (at low temperature) can be related with the en-
tropy per baryon through [51] as

T ∼
S

π2

∑

i k
3
Fi

∑

i kFi

√

k2Fi +m∗2
i

, (27)

such that, if the energy is shared by a larger number
of particles, the Fermi momenta of each particle will be
smaller (strongly affecting the numerator) and the mass
term in the denominator will have a stronger effect. The
difference between the two distributions obtained for nu-
cleonic matter with S = 1 is also due to the number
of degrees of freedom: matter with Yl = 0.4 is more
symmetric, the proton fraction is of the order of 0.3,
and in addition to nucleons and electrons, neutrinos are
also present. This leads to a lower temperature for fixed
entropy in matter with trapped neutrinos compared to
neutrino free matter. It is important to note that the
data set including hyperons is quite restrictive, because
the combination of including hyperons and imposing the
lower gravitational maximum mass of two solar masses
severely limits the parameter space.
In the upper panel of the Fig. 4, we show the mass-

radius distributions with 90% CI for various composi-
tions. The middle curves in each band represent the me-
dian of the mass distributions corresponding to a given
radius. Results for two kinds of hadronic matter, without
(plain bands) and with (patterned bands) hyperons, are
shown. The light red, yellow and pink uniform bands rep-
resent the 90% CI mass-radius distributions for nucleonic
matter, respectively, at fixed entropy per baryon S = 0,
and S = 2 for neutrino free matter and S = 1 for matter
with trapped neutrinos i.e. Ylep = 0.4. The patterned
light green, blue, and black regions represent the mass-
radius distributions 90% CI for hyperonic matter for the
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R (km)

1.0

1.5

2.0

2.5

3.0

M
G
(M

)

Miller14_68
Riley14_68
Riley20_68
GW

Nuc S=0
Nuc S=2

Nuc S=1, Ylep=0.4
Hyp S=0
Hyp S=2
Hyp S=1, Ylep=0.4

12 14 16
R (km)

1.0

1.5

2.0

2.5

3.0

M
B
(M

)

Nuc S=0
Nuc S=2
Nuc S=1, Ylep=0.4
Hyp S=0
Hyp S=2
Hyp S=1, Ylep=0.4

FIG. 4. The 90% CI of mass-radius regions for different en-
tropy per baryons, (i) S = 1, Ylep = 0.4 with trapped neutri-
nos and (ii) S = 2 for neutrino free matter, with and without
hyperons in PNSs. (Upper) the gravitational mass of a star
while (Lower) baryonic mass. The light blue, dark blue, gold
and gray coloured patches are representing the NICER and
gravitational observations for the cold NSs.

same entropy per baryon. For both types of matter, the
radius of PNS is larger for higher entropy per baryon, and
this is because the larger the entropy, the larger the tem-
perature and the thermal pressure increases. This affects,
in particular, the low and medium mass NS with a lower
central baryonic density. For reference we also included
the astrophysical observations that constrain the T = 0
EOS in the upper panel [53–56]. The zero temperature
NS datasets are compatible with the current astrophysi-
cal observations. In the lower panel, we show the bary-
onic mass distribution with varying radius of isentropic
compact stars (S = 0, S = 1 with Ylep = 0.4, and S = 2)
for both sets of EOSs. The middle curve in each region
represents the median of the NS baryonic mass distribu-
tion at a given radius. In this figure, colors of both panels
have the same meaning. Some comments are in order:
i) for matter without hyperons, the maximum gravita-
tional mass or baryonic mass does not change much from
the T = 0 scenario to the different finite T scenarios if
neutrino free matter is considered. However, for matter
with trapped neutrinos there is a noticeable decrease on
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TABLE I. Various Neutron Star (NS) properties for Nucleonic (Nuc) and Hyperonic (Hyp) sets at different entropy per baryon
(S = 0, 1, 2) for matter in β-equilibrium.

Quantity

S = 0, Yνe = 0 S = 1, Ylep = 0.4 S = 2, Yνe = 0

Nuc Hyp Nuc Hyp Nuc Hyp

Med
90 % CI

Med
90 % CI

Med
90 % CI

Med
90 % CI

Med
90 % CI

Med
90 % CI

Min Max Min Max Min Max Min Max Min Max Min Max

Mmax 2.394 2.348 2.458 2.024 2.002 2.083 2.403 2.360 2.466 2.058 2.032 2.116 2.424 2.387 2.485 2.050 2.024 2.106

Rmax 11.91 11.69 12.27 11.78 11.54 12.16 12.02 11.80 12.37 11.73 11.49 12.12 12.72 12.50 13.16 12.33 12.08 12.75

ϵc,max 1072 1005 1121 1116 1035 1165 1048 990 1093 1134 1051 1183 1002 937 1040 1125 1043 1172

pc,max 473 393 527 320 272 361 460 381 508 341 290 378 420 348 461 334 287 367

R1.2 13.12 12.85 13.43 13.12 12.85 13.43 13.20 12.96 13.50 13.19 12.95 13.49 15.76 15.45 16.17 15.60 15.29 16.02

R1.4 13.18 12.93 13.48 13.18 12.94 13.48 13.28 13.06 13.58 13.25 13.02 13.56 15.44 15.16 15.83 15.20 14.91 15.61

R1.8 13.20 12.97 13.51 13.10 12.85 13.45 13.32 13.10 13.64 13.11 12.86 13.48 14.90 14.64 15.30 14.28 13.95 14.74

R2.0 13.10 12.88 13.44 12.36 11.82 13.01 13.23 13.01 13.57 12.56 12.19 13.09 14.58 14.32 15.01 13.29 12.81 13.95

TABLE II. Maximum gravitational mass (MG) and baryonic
mass (MB) for different equation of state models.

Case Max. MG (M⊙) Max. MB (M⊙)
Nuc S = 0 2.57 3.08
Nuc S = 2 2.59 3.07
Nuc S = 1, Ylep = 0.4 2.54 2.86

Hyp S = 0 2.24 2.62
Hyp S = 2 2.22 2.53
Hyp S = 1, Ylep = 0.4 2.34 2.68

the maximum baryonic mass of the PNS can stand (see
the pink band), although the gravitational mass shows a
much smaller decrease with respect to the cold NS. This
is because nuclear matter with trapped neutrinos is more
symmetric, which makes the EOS softer; 2) matter with
hyperons behaves differently: the maximum gravitational
and baryonic masses are reached for matter with trapped
neutrinos and an entropy per baryon S = 1. This is due
to the fact that a large lepton fraction inhibits the for-
mation of hyperons. However, once the neutrinos escape,
the thermodynamic conditions favour the appearance of
hyperons, which weaken the EOS and do not allow such
large maximum masses. This last fact has important
consequences: if during the neutrino trapping phase the
PNS has a mass close to its maximum possible mass, then
during deleptonisation, given that the baryonic mass is
held constant, i.e. no mass is ejected, the star may decay
into a low-mass black hole. Some of the NS properties
for the different scenarios are given in Table I. In par-
ticular, we give the median values and 90% CI limits for
the maximum gravitational mass, its radius and the cen-
tral baryonic energy density and pressure, as well as the
radius of NS with masses 1.2, 1.4, 1.8, 2.0 M⊙.

In fact, as discussed in the introduction, NSs that con-
tain extra degrees of freedom besides nucleons, e.g. hy-
perons, ∆’s or a kaon condensate, may become unstable
after deleptonization because the extra thermal pressure

due to the deposition of the neutrino energy in the star
before leaving the NS is not enough to stabilize the stars
with the largest baryonic masses [57]. As a result, af-
ter the supernova, there will be a delayed collapse into
a black hole, possibly with the emission of a γ-ray burst
[58–60]. To analyse this possible scenario, we show in
Fig. 5 the gravitational mass (MG) [61] as a function
of the baryonic mass (MB) [57] for the three different
stages of the PNS evolution [28] and for all the EOSs of
the both data sets: the nucleonic and the hyperonic data
sets. As three different snapshots of the PNS evolution,
we consider here: i) a first stage with trapped neutri-
nos, a lepton fraction Ylep = 0.4 and entropy per particle
S = 1 (S = 1, Ylep = 0.4); ii) a second stage when neu-
trinos leave the star after depositing their energies, the
temperature of the star increases so that the entropy per
particle becomes 2 (S = 2, Yνe

= 0); iii) a third and
final stage when the star becomes cold and stable NS
S = 0 (T = 0), Yνe

= 0.
In Fig. 5, the different lines from the top to bottom

correspond to stages (i), (ii) and (iii), respectively. The
different markers (orange circle, magenta square and pen-
tagon teal) represent the localization of the maximum
mass configurations. We also show on the top and right
of each panel the distribution of the maximum mass con-
figurations on the baryonic mass (MB) and gravitational
mass (MG). In Table II, we summarize the maximum
baryonic and gravitational mass in each scenario. With
the nucleonic dataset, the maximum baryonic mass at
stage S = 1, Ylep = 0.4 PNS spreads over a range of val-
ues much smaller than the maximum baryonic mass of a
cold star or a deleptonized warm PNS. Although with a
narrower distribution, the neutrinoless mass distribution
at stage S = 2 takes smaller values than the correspond-
ing distribution of the cold stars. These results indi-
cate that the star will evolve to a stable cold star. This
can be confirmed looking at the distribution functions
plotted in the left panel of Fig. 6 where the differences
∆MB(1 → 0) =MB(S = 1, Ylep = 0.4)−MB(S = 0) and
∆MB(1 → 2) = MB(S = 1, Ylep = 0.4)−MB(S = 2) are
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FIG. 5. Baryonic versus gravitational masses distribution for (proto) neutron stars for (i) S = 1, Ylep = 0.4, (ii) S = 2, Ylep = 0,
and (iii) S = 0 (T = 0) with (without) hyperonic matter. The open circles denote the maximum mass neutron stars for each
EOS. The distributions of the maximum masses (MG and MB) are also displayed on the opposite axes.

-

shown. From the first stage (S = 1, Ylep = 0.4) repre-
sented by the green distribution to the last one (S = 0,
blue distribution), the maximum baryonic mass may in-
crease as ∼ 0.08M⊙. In Table III, we give the full width
at half maxima for the distributions, to complement the
information in the figure.

TABLE III. Full width at half maxima for the distributions
showing in the Fig. 6.

FWHM
S = 1, Ylep = 0.4 → S = 0 S = 1, Ylep = 0.4 → S = 2
∆MB > 0 ∆MB < 0 ∆MB > 0 ∆MB < 0

Nuc 0 0.025 0 0.017
Hyp 0.03 0.051 0.015 0.076

A different evolution occurs for stars that include non-
nucleonic degrees of freedom as shown in the right panels
in Figs. 5 and 6. As may be observed from the right
panel of Fig. 5, for the first stage (S = 1, Ylep = 0.4),
the maximum gravitational mass (MG) ranges from 2.15
M⊙ to 2.34 M⊙. On the other hand, for the second and
the third stages the maximum gravitational mass upper
limits are smaller compared to the same for stage (i).
Further, it may be noted that the transition from the
first stage to the cold star is accompanied by an average
reduction of the mass of ∼ 0.1 M⊙. In fact, there is also
a noticeable reduction of the maximum baryonic mass
with deleptonization, i.e. in the transition of stage (i)
to stage (ii), see Table II. Of course, only a simulation
of the evolution may give more concrete conclusions, but
our results seem to indicate that if hyperons enter the
composition of NSs, the destabilization of the PNS occurs
in an early stage of the PNS evolution for stars at stage
(i) (S = 1, Ylep = 0.4) with gravitational mass beyond
2.2 M⊙ becoming unstable as no stable solution exists
with the same baryonic mass for star at stage (ii) (S =
2, Yνe

= 0). This could mean that compact objects with
a gravitational mass above ∼ 2.2M⊙, will collapse to a

black hole accompanied with γ-ray burst [58].

IV. SUMMARY AND CONCLUSIONS

In this study, we have investigated the evolution of
PNSs that incorporate both nucleonic and hyperonic de-
grees of freedom within a relativistic mean-field frame-
work considering two constrained datasets: one for nu-
cleonic matter and the second for hyperonic matter, each
set with 18000 EOS. Both the datasets were obtained
within a Bayesian inference calculation that imposed nu-
clear matter and observational constraints. These data
sets satisfy the two solar mass constraint for the lower
limit of the maximum NS mass, and, in addition, con-
straints from neutron matter chiral effective field theory
calculations and several nuclear matter properties at sat-
uration density (saturation density, binding energy, in-
compressibility and symmetry energy) at zero temper-
ature. Our analysis, reveals several key findings with
significant astrophysical implications:

• First, the presence of hyperons fundamentally al-
ters the thermal and structural evolution of PNSs.
When hyperons are included in the stellar composi-
tion, they significantly soften the EOS, leading to a
substantial reduction in the maximum supportable
baryonic mass during deleptonization and cooling.
This confirms the results of [17, 31, 62] where it
is shown that hyperonic PNSs with a mass close to
the maximum mass configurations in the PNS stage
with trapped neutrinos are susceptible to delayed
collapse into black holes, while this is not expected
to occur in purely nucleonic NS, except in case of
post bounce accretion.

• Second, our thermal analysis demonstrates that
the thermal adiabatic index (ΓTh) exhibits distinc-
tive behavior in hyperonic matter, showing signif-
icant fluctuations and a characteristic dip coincid-
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FIG. 6. The frequency plots along with the distribution functions of ∆MB = MB(S = 1, Ylep = 0.4) −MB(S = 0, 2) for both
cases, like (i) S = 1, Ylep = 0.4 → S = 0, and (ii) S = 1, Ylep = 0.4 → S = 2 in the cases of nuclear matter and hyperonic
matter. In the case of nuclear matter, the stars are spread over a large (x) range while in the case hyperonic matter, they are
concentrated in a small range.

ing with the onset of hyperons, as discussed in [49].
This reflects the redistribution of thermal energy
across additional degrees of freedom, resulting in
reduced thermal pressure support. The nucleonic
EOS, on the contrary, maintains a smooth thermal
profile throughout the evolution. The band that
defines (ΓTh) was shown to be quite narrow at a
90% CI above T = 10 MeV - of the order of 0.1 -
reflecting the fact that the role of the interaction
becomes negligible and the behavior of the EOS
is defined by the thermal effects and the number
of degrees of freedom. For hyperonic matter, the
corresponding ΓTh band is also quite narrow above
∼ 30 MeV. However, at T = 10 MeV this band
has a width ≳ 1.5 above the hyperon onset density
at zero temperature and up to the central density.
This may have a non-negligible effect on the NS
merger evolution.

Our gravitational-baryonic mass analysis offers partic-
ularly compelling evidence for delayed collapse scenarios.
PNSs with trapped neutrinos (S = 1, Ylep = 0.4) includ-
ing hyperons can temporarily support larger baryonic
masses than their cold, deleptonized counterparts. This
metastability occurs in hyperonic models, where the tran-
sition from lepton-rich to neutrino-free states results in
an average reduction of ∼ 0.1 M⊙ in the maximum sup-
portable gravitational and baryonic masses. Our analysis
suggests that if hyperons are indeed present in NSs, com-
pact objects with gravitational masses exceeding 2.2 M⊙

may actually be black holes formed through delayed col-
lapse, and the maximum gravitational mass of a NS with
hyperons in its core can not exceed ∼ 2.2M⊙. The last
limit rises to ∼ 2.5 M⊙ for the nucleonic star.
These results have profound implications for multi-

messenger astronomy. The delayed collapse mechanism
could explain certain features in supernova neutrino sig-
nals, possibly related to the production of gamma-ray
bursts in failed supernovae or the cessation of the neu-
trino signal when a black hole forms as suggested in [17].

In addition, our results suggest that current maximum
mass measurements of NSs may indirectly constrain the
occurrence of hyperonic matter in their cores, with max-
imum masses above 2.2M⊙ indicating the absence of hy-
perons. It would be interesting to investigate how these
results might be strengthened if the PNS contains dark
matter (DM). The presence of DM leads to larger baryon
densities in the NS or PNS centers, allowing larger hy-
peron abundances for NS of the same mass, and thus
leading to stronger deleptonization effects. This could
imply that in environments with high DM content, the
decay occurs during deleptonization of PNS into black
holes for PNS with masses below ∼2.2 M⊙.

Future work in this direction should focus on
time-dependent simulations of this evolution process,
incorporating detailed neutrino transport mechanisms
and more sophisticated treatment of phase transi-
tions. Continued observations of massive neutron stars,
supernova neutrino signals, and gravitational waves
from merger events will provide critical tests of these
theoretical predictions, potentially shedding light on
the fundamental composition of matter under extreme
conditions.
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