

Supplementary Information

706 S1. Algorithmic Description of Implementation

Algorithm 1 Combining binding in CA1 with association in CA3

Input: Forward synaptic weights, $W_{feed,CA3}$ from input neurons to CA3 neurons, $W_{feed,CA1}$ from CA3 neurons to CA1 neurons, initialized as $W_{feed,CA3}^{(0)} = W_{feed,CA1}^{(0)} = 0$. Lateral synaptic weights, W_h recurrent from CA3 to CA3, initialized as $W_h^{(0)} = 0$. Backward synaptic weights, W_{back} , from memory neurons back to input neurons, initialized as $W_{back}^{(0)} = 0$. Plateau potential probability f_q . Connection probability f_w . Number of sentences N . Training data consists of words sets for each sample $\{A_i, B_i, C_i, D_i, E_i, F_i, G_i, H_i\}_{i \leq N}$.

Objective: Training $W_{feed,CA3}$, W_h , $W_{feed,CA1}$, W_{back} during the binding process.

```

1: ## Binding ##
2: for each batch sample in  $\{A_i, B_i, C_i, D_i, E_i, F_i, G_i, H_i\}_{i \leq N}$  do
3:   ## BTSP learning from input to CA3 ##
4:   Update  $W_{feed,CA3}$  based on current inputs on the input layer through BTSP learning.
5:   Get the composed representation on CA3 through  $W_{feed,CA3}$ .
6:   ## BTSP learning from CA3 to CA1 ##
7:   Update  $W_{feed,CA1}$  based on the composed representation on CA3 through BTSP learning.
8:   Get the composed representation on CA1 through  $W_{feed,CA1}$ .
9:   ## Hebb learning from CA1 to input ##
10:  Update  $W_{back}$  based on the composed representation on CA1 and inputs.
11:  ## one-shot BTSP-like plasticity rule for lateral connections in CA3 ##
12:  Update  $W_h$  based on the activation of pre- and postsynaptic neurons on CA3.
13: end for
14: ## Bottom-up unbinding ##
15: for each single cue  $\{B_i\}_{i \leq N}$  do
16:   Initialize  $S(B, 2)_0 = 0$ .
17:   Denote the current masked input as  $I(B, 2)$ .
18:   for each iteration  $t = 1$  to 200 do
19:     Get the state on CA3 via  $S(B, 2)_t = kWTA^*(W_h \times S(B, 2)_{t-1} + W_{feed,CA3} \times I(B, 2))$ 
20:     (the notation  $kWTA^*(\cdot)$  represents a restriction where, before k-WTA,
21:      neurons that continue to spike for 10 consecutive time slots are masked for next 50 slots).
22:     Get the state on CA1 via  $R(B, 2)_t = thr(W_{feed,CA1} \times S(B, 2)_t)$ 
23:     (the notation  $thr(\cdot)$  represents where activations exceed the threshold output 1, o/w 0.)
24:     Get the recovered words via  $thr(W_{back} \times R(B, 2)_t)$ 
25:   end for
26: end for

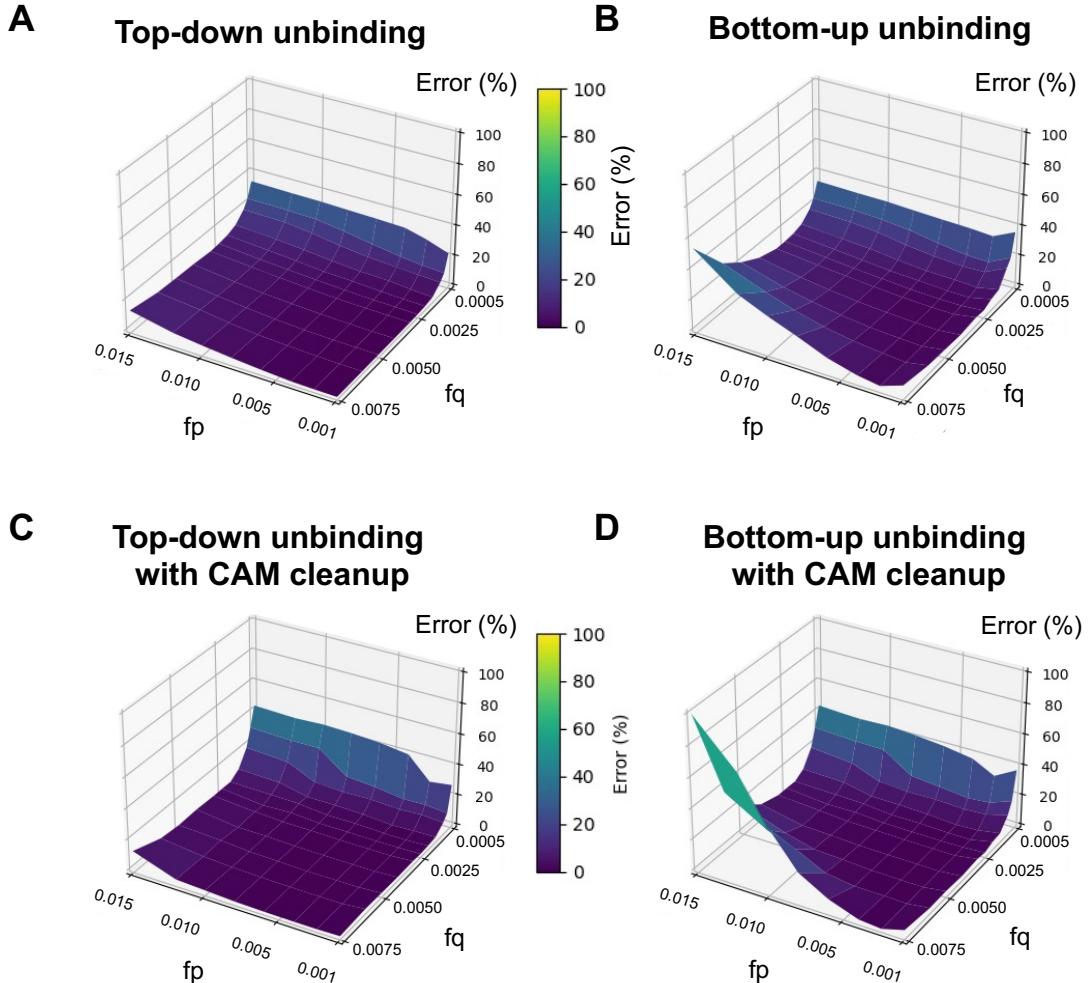
```

707 **Algorithm 1: Combining binding in CA1 with association in CA3.** We introduce CA3 as
708 an intermediate layer to temporally decouple the superposition, allowing the network to sequentially
709 oscillate among all valid patterns. Dense lateral connections and global k-Winners-Take-All (k-WTA)
710 operations within CA3 enable attractors to form before propagating activation to the memory layer.
711 During the binding phase, activity can pass through the CA3 layer without engaging the internal
712 dynamics produced by its recurrent lateral connections. We apply one-shot synaptic plasticity to the
713 weights W_h only once (Line 6), targeting the representation generated at the first step. We select
714 the composed representations of CA3 (Line 4) and CA1 (Line 9) during the binding process as the
715 states for subsequent comparisons between $S(B, 2)_t$ and $R(B, 2)_t$. The representation generated on
716 Line 4, referred to in the caption of Fig. 4E, is recognized as the first state of the recurrent network
717 module when a full sentence is presented on the input layer. The representation generated on Line 9
718 corresponds to the first state of the memory neurons when a full sentence is presented on the input
719 layer. To ensure stability in the recurrent process, we employ k-Winners-Take-All (k-WTA), selecting
720 the k neurons with the highest activation levels to fire spikes while the rest remain inactive, to control
721 the number of spikes in CA3 (Line 17), where each activation consistently engages 60 neurons (k=60
722 for WTA).

Algorithm 2 Hierarchical iterated binding with eight words

Input: Forward synaptic weights, W_{feed} , from input neurons to memory neurons, initialized as $W_{feed}^{(0)} = 0$. Backward synaptic weights, W_{back} , from memory neurons back to input neurons, initialized as $W_{back}^{(0)} = 0$. Plateau potential probability f_q . Connection probability f_w . Number of sentences N . Training data consists of words sets for each sample $\{A_i, B_i, C_i, D_i, E_i, F_i, G_i, H_i\}_{i \leq N}$.

Objective: Training W_{feed} , W_{back} during the binding process.


- 1: Create a queue Q for temporarily storing intermediate inputs
- 2: Assign $Q = \{A, B, C, D, E, F, G, H\}$
- 3: **## Binding ##**
- 4: **for** each level $l = 1$ to 3 **do**
- 5: **for** each pair **do**
- 6: Get two inputs from the queue Q .
- 7: **Update** W_{feed} based on current inputs through BTSP learning.
- 8: e.g. current inputs C and D .
- 9: Get anticipated composed representations based on current W_{feed} .
- 10: e.g. from inputs C and D to $CR < C, D >$.
- 11: **Update** W_{back} based on the current composed representation and inputs.
- 12: e.g. W_{back} for $CR < C, D >$ back to inputs C and D .
- 13: Add the new composed representation to the queue Q .
- 14: **end for**
- 15: **end for**
- 16: Assign the queue with the final composed representation, $Q = \{< A, B, C, D, E, F, G, H >\}$
- 17: **## Top-down unbinding ##**
- 18: **for** each level $l = 3$ to 1 **do**
- 19: **for** each step **do**
- 20: Get the current composed representation from the queue Q that needs to be decoded.
- 21: Use the current CR and W_{back} to recover the two decoupled inputs.
- 22: e.g. composed representations $< C, D >'$ and recovered inputs C' and D' .
- 23: Add the new recovered vectors to the queue Q .
- 24: **end for**
- 25: **end for**

723 **Algorithm 2: Hierarchical iterated binding in the eight-words case.** Global weights W_{feed}
724 and W_{back} are utilized throughout the entire binding process. For learning W_{feed} based on BTSP, the
725 training protocol initiates at the first level with binding $\{A, B\}$ into $< A, B >$, followed by binding
726 $\{C, D\}$ into $< C, D >$ at the second step, and so forth. At the second level, the first step involves
727 binding $< A, B >$ and $< C, D >$ into $<< A, B >, < C, D >>$. This process continues in the same
728 manner until the final level, resulting in $<<< A, B >, < C, D >>, << E, F >, < G, H >>>$. The
729 learning of W_{back} follows sequentially through the binding steps, mirroring the W_{feed} training. The
730 training concludes at the final level, after which the network's weights are finalized. At this point,
731 the top-down unbinding process employs the network's W_{back} to calculate the reversal from the final
732 composed representation back to all intermediate composed representations and the input words.

733 **S2. Control experiments on sparsity**

**Control experiments with different densities of input vectors
and different probabilities of plateau potentials**

Fig. S1: Control experiments on sparsity.