

1 **Supplementary information for**

2

3 **Isolation of two species of *Caldatribacterium* (*Atribacterota*) and the importance of folate
4 preparation on their culturability**

5

6 Brian P. Hedlund^{1*}, Toshio Alvarado², Trevor R. Murphy³, Aries Torres², Amanda M. Blocker³,
7 Cale O. Seymour^{1,4}, Dengxun Lai¹, Xavier Mayali⁵, Alise Muok^{6,7}, Rui Xiao⁸, Erin Levon³, John
8 T. Phoenix³, Katherine Mazdra³, Tyler Sons³, Jennifer Ledesma², Janette Jiries², Alexander
9 Manriquez², Andreas Vamvakas², Adrian Rivera Martinez², Alberto Camacho², Zofia
10 Owerkowicz², Jacob Lacy², Peter K. Weber⁵, Ariane Briegel^{6,9}, Duane P. Moser¹⁰, Jennifer Pett-
11 Ridge^{5,11,12}, Jeremy A. Dodsworth^{2*}, and Scott D. Hamilton-Brehm^{3*}

12

13 *Corresponding Authors Email: brian.hedlund@unlv.edu, Scott.Hamilton-Brehm@siu.edu, and
14 JDodsworth@csusb.edu

15	List of Supplementary Notes.	
16	Supplementary Note 1. Additional information on the isolation, characterization, and taxonomy of <i>Thermodesulfobacterium auxiliatoris</i> .	4
18	Supplementary Note 2. Additional information on the isolation, characterization, and identification of a <i>Thermodesulfovibrio yellowstonii</i> strain from Inyo-BLM 1.	5
20	Supplementary Note 3. Additional discussion on evidence for the family <i>Caldatribacteraceae</i> .	5
21	Supplementary Note 4. Additional characterization of <i>Caldatribacterium</i> isolates.	7
22		
23	List of Supplementary Figures.	
24	Supplementary Fig. 1. In situ corn stover enrichments in GBS.	10
25	Supplementary Fig. 2. Xyloglucan enrichment metagenome and FISH.	11
26	Supplementary Fig. 3. Abundance of <i>Caldatribacterium</i> in GBS enrichments grown with different substrates.	12
28	Supplementary Fig. 4. Abundance of <i>Caldatribacterium</i> following dilution-to-extinction of GBS fucose enrichments.	13
30	Supplementary Fig. 5. Borehole Inyo-BLM 1 and polyurethane foam stoppers used for in situ cultivation.	14
32	Supplementary Fig. 6. FISH images showing purity of axenic cultures.	15
33	Supplementary Fig. 7. FISH images of <i>C. saccharofermentans</i> GBS ^T and various SRBs in defined co-culture.	16
35	Supplementary Fig. 8. Growth optimization of <i>Caldatribacterium</i> isolates.	17
36	Supplementary Fig. 9. Effect of potential fermentation products on growth of <i>C. saccharofermentans</i> GBS ^T .	18
38	Supplementary Fig. 10. Growth of <i>C. saccharofermentans</i> GBS ^T in the presence or absence of yeast extract and autoclaved vitamins.	19
40	Supplementary Fig. 11. Growth of <i>C. saccharofermentans</i> GBS ^T at different concentrations of folate.	20
42	Supplementary Fig. 12. Folate biosynthetic pathway in <i>C. saccharofermentans</i> GBS ^T .	21
43	Supplementary Fig. 13. Folate biosynthetic pathway in SRBs.	22
44	Supplementary Fig. 14. Scanning electron micrographs of <i>C. saccharofermentans</i> GBS ^T and <i>C. inferamans</i> SIUC1 ^T .	23

46	Supplementary Fig. 15. Fluorescence microscopy of <i>GBS^T</i> and <i>SIUC1^T</i> showing rRNA and DNA staining and localization.	24
48	Supplementary Fig. 16. Profiles of localization of DNA and rRNA in cells of strains <i>GBS^T</i> and <i>SIUC1^T</i> .	25
50	Supplementary Fig. 17. Detached flagella in cryo-EM image of <i>SIUC1^T</i> .	26
51	Supplementary Fig. 18. Unique profiles of predicted secreted and membrane proteins in <i>Atribacterota</i> .	27
53	Supplementary Fig. 19. SignalP-5 improves predictions of <i>Atribacterota</i> secreted proteins that are less hydrophobic.	28
55	Supplementary Fig. 20. SignalP-5 improves predictions of <i>Atribacterota</i> secreted proteins with a lower pI.	29
57	Supplementary Fig. 21. SignalP-5 improves predictions of <i>Atribacterota</i> secreted proteins with longer signal peptides.	30
59	Supplementary Fig. 22. Signal peptidase recognition sites in <i>Atribacterota</i> .	31
60		
61	References.	32

62 **Supplementary Note 1. Additional information on the isolation, characterization, and**
63 **taxonomy of *Thermodesulfobacterium auxiliatoris*.**

64 **Isolation of *Thermodesulfobacterium auxiliatoris*.** A *Thermodesulfobacterium* strain was
65 isolated on GBS salts medium solidified with 1% gelrite as described for *Caldatribacterium* with
66 the following modifications: sugar and yeast extract were not added, and the medium instead
67 contained 1 mM each of sodium bicarbonate, sodium acetate, and sodium thiosulfate. Plates were
68 incubated at 70 °C for one-week anaerobic incubation vessels with 0.9 atm nitrogen, 0.05 atm
69 carbon dioxide, 0.7 atm hydrogen, and resulting colonies were streaked for isolation three times.

70 **Characterization of *Thermodesulfobacterium auxiliatoris*.** Standard growth in liquid
71 cultures was performed in 20 mL serum vials with 10 mL of GBS salts medium as described for
72 *Caldatribacterium* but without added sugar and yeast extract, with 1 mM each of sodium
73 bicarbonate, sodium acetate, and sodium thiosulfate, and with 1 atm nitrogen headspace. Various
74 substrates tested were added to the indicated final concentrations (**Supplementary Data 1**) from
75 concentrated stocks except for elemental sulfur, which was added to medium and subjected to
76 three cycles of heating to 100 °C for 30 minutes and cooling. For testing electron acceptors, a
77 sulfate-free medium was made by excluding sodium sulfate from the GBS salts and replacing the
78 magnesium sulfate heptahydrate with magnesium chloride hexahydrate and the zinc sulfate in the
79 trace metal solution with zinc chloride. Cultures were incubated for up to one week at 70 °C.
80 Growth temperatures were tested from 45-85 °C in 5 °C intervals, and pH was tested at 5.0-9.0 in
81 0.5 intervals, with samples taken over a 24-hour period after growth was initially observed. Growth
82 was monitored by turbidity and direct microscopic counts.

83 **Taxonomy of *Thermodesulfobacterium auxiliatoris*.** Several lines of evidence
84 justification of *T. auxiliatoris* as a distinct species in the genus *Thermodesulfobacterium*. *T.*
85 *auxiliatoris* has between 80.1-75.8% genomic ANI and 98.42-94.51% 16S rRNA gene identity to
86 other *Thermodesulfobacterium* species, with the highest identity to *Thermodesulfobacterium*
87 *hveragerdense* DSM 12571^T in both cases. Additionally, the Genome Taxonomy Database release
88 220 classifies the *T. auxiliatoris* (strain TA1) genome GCF_008630935.1 (Genbank accession
89 number CP043908) as a distinct species within the genus, s_Thermodesulfobacterium
90 sp008630935.

91
92 **Supplementary Note 2. Additional information on the isolation, characterization, and**
93 **identification of a *Thermodesulfovibrio yellowstonii* strain from Inyo-BLM 1.** A strain of
94 *Thermodesulfovibrio* was isolated from SIUC xylitol cultures using the same medium described
95 above for isolation of *Thermodesulfobacterium* except that 5 mM lactate was included in the
96 medium. For characterization of growth on lactate, H₂, and acetate in liquid culture, it was grown
97 as described above for *T. auxiliatoris*. The 1.946 Mb MAG from the xylitol metagenome is
98 fragmented, containing 3298 contigs with an N50 of 575 and an average coverage of 2.3-fold;
99 however, the ANI of this MAG to *Thermodesulfovibrio yellowstonii* DSM 11347^T was 98.55%
100 (<http://enve-omics.ce.gatech.edu/ani/>). The 16S rRNA gene sequence of the isolate was 100%
101 identical to that of *Thermodesulfovibrio yellowstonii* DSM 11347^T, thus it likely represents a
102 member of this species.

103
104 **Supplementary Note 3. Additional discussion on evidence for the genus *Caldatribacterium***
105 **and family *Caldatribacteraceae*.** The genomes from the two isolates, *C. saccharofermentans*

106 GBS^T and *C. inferamans* SIUC1^T, were identified by GTDB-Tk v. 2.3.2¹ as *C. saccharofermentans*
107 and a member of the genus *Caldatribacterium*, respectively. Six additional genomes in GTDB
108 RS220² are assigned to the genus *Caldatribacterium* and each is considered a different species
109 within GTDB. Those six genomes include the following: the metagenome-assembled genome
110 from *C. saccharofermentans* designated OP9-77CS (GCA_000347575.1) from an in situ corn
111 stover enrichment in GBS; a composite single-amplified genome from *C. californiese* designated
112 OP9-cSCG (GCA_000353875.1) from Little Hot Creek in California, USA; a MAG from an
113 alkaline hot spring in Yellowstone National Park, USA (GCA_028275365.1); a MAG from the
114 Shengli Oilfield in Shangdong Province, China (GCA_014359405.1); a MAG from a brown
115 biofilm from alkaline hot spring in Sunkai, Malaysia (GCA_025060675.1); and a MAG reportedly
116 from seawater collected by researchers at Shandong University, China (GCA_937922705.1). Our
117 ANI results confirmed that strain *C. saccharofermentans* GBS^T and the MAG *C.*
118 *saccharofermentans* OP9-77CS belong to the same species based on 99% ANI³ (**Fig. 4b**) and that
119 *C. inferamans* SIUC1^T and all other genomes assigned by GTDB to the genus *Caldatribacterium*
120 are different species based on ANI values <95%³ (**Fig. 4b**). AAI values supported the assignment
121 of these eight genomes into the genus *Caldatribacterium*, and the distinctness of this genus, based
122 on AAI values $\geq 66\%$ between these genomes and $\leq 53\%$ between these genomes and other
123 genomes assigned to the GTDB family *Caldatribacteriaceae*³.

124 To assess the genus *Caldatribacterium* and family *Caldatribacteriaceae* independently and
125 thoroughly, we conducted a phylogenomic analysis using entire protein sequences using the
126 bac120 marker protein set. Proteins were identified, aligned, and refined using GTDB-tk v2.3.2¹.
127 The alignment was subjected to model testing using the best-fit model identified by ModelFinder⁴
128 and maximum-likelihood analysis of the alignment was conducted using IQTree v. 2.2.6⁵, and

129 branch support calculated with ultrafast bootstrapping (UFboot2) and Shimodaira-Hasegawa
130 approximate Likelihood Ratio Tests (SH-aLRT) from 1,000 replicates. The resulting phylogenetic
131 tree was visualized using iTOL⁶. Our phylogenetic analysis confirmed the monophyly of the genus
132 *Caldatribacterium* and family *Caldatribacteriaceae* as designated by GTDB with strong UFboot2
133 and SH-aLRT support, which was also recently reported in the literature⁷. This analysis excluded
134 three other GTDB genera assigned to the family *Caldatribacteriaceae* within GTDB and supported
135 the monophyly of the genus designated UBA3950.

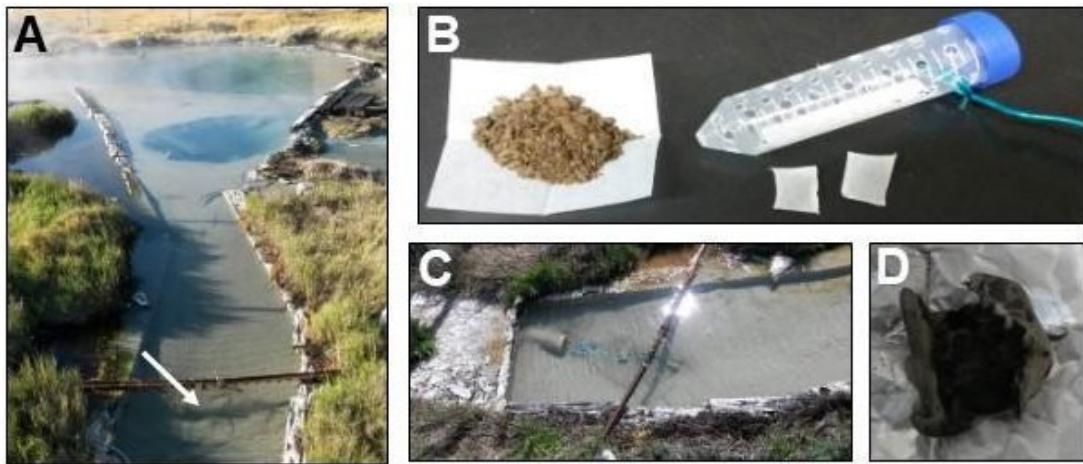
136

137 **Supplementary Note 4. Additional characterization of *Caldatribacterium* isolates.**

138 **Taxonomic notes.** Comparison of the full-length *C. saccharofermentans* GBS^T and *C.*
139 *inferamans* SIUC1^T 16S rRNA gene sequences revealed 98.9% identity. Pairwise average
140 nucleotide identity (ANI) values of their complete genomes were below threshold for species
141 identity (94.6-91.9%).

142 **Optimal temperature, pH, and substrate utilization.** Strains GBS^T and SIUC1^T optimal
143 growth temperature and pH were determined in GBS medium containing 0.01% yeast extract and
144 0.05% fucose or 10 mM xylitol, respectively. Growth was assessed by direct microscopic
145 enumeration using a Petroff-Hausser Counting Chamber. Specific growth rates (hr⁻¹) were
146 assessed during the exponential growth phase for each strain (**Supplementary Fig. 8**). Strain
147 GBS^T grew from 60 °C and 77.5 °C, with an optimum of 70 °C and at pH values from 5. 5 and 9,
148 with an optimum of 7. These data agree with temperatures at which *Caldatribacterium* has been
149 enriched in GBS^{8,9} and the circumneutral pH of GBS¹⁰. Strain SIUC1^T grew from 55 to 75 °C, with
150 an optimum of 60-70 °C, and at pH values between 5.9 and 9.5, with an optimum of 7.4-8.7, which

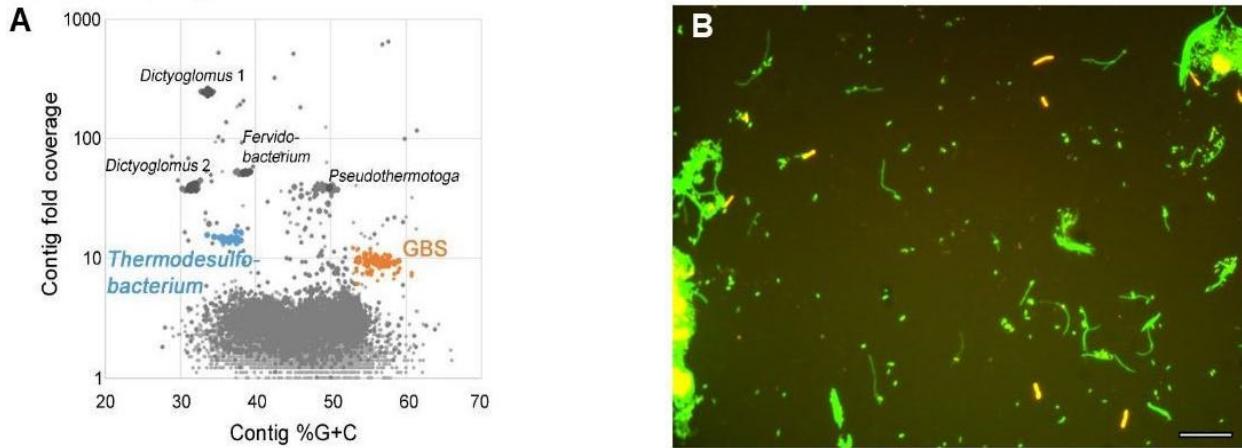
151 is generally consistent with measurements of Inyo-BLM 1 borehole. Under optimum conditions
152 the doubling times of GBS^T and SIUC1^T are 4.5 hours and 7.6 hours.

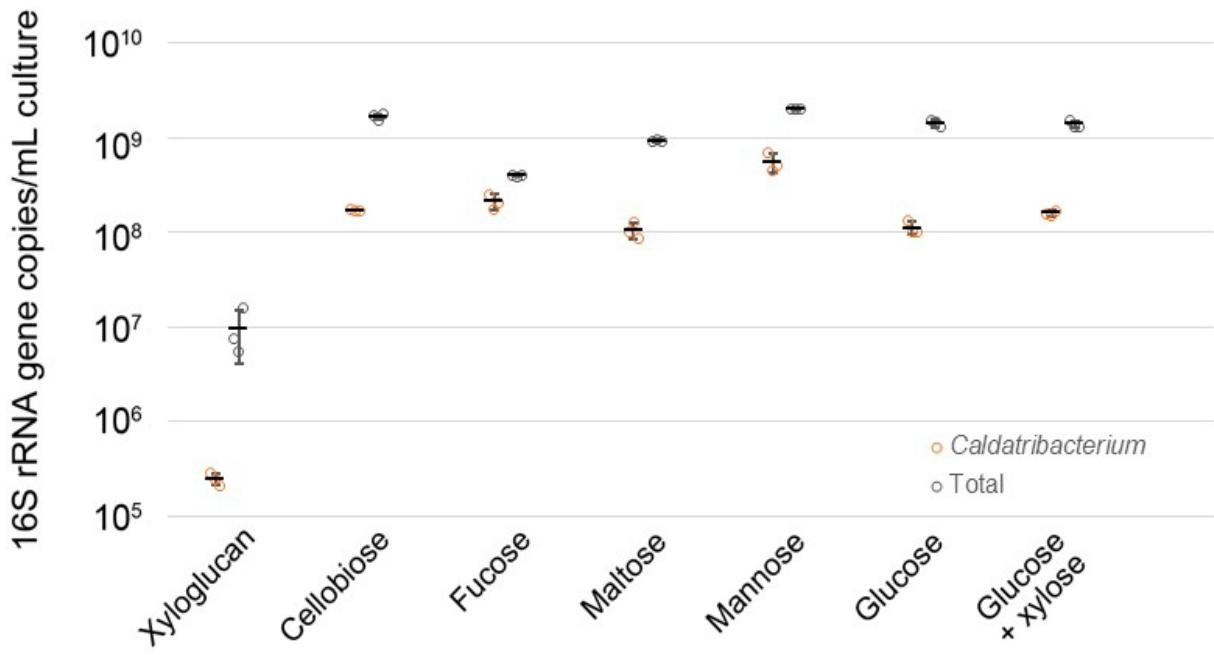

153 Strains GBS^T and SIUC1^T used a variety of fermentation substrates (**Table 1 and**
154 **Supplemental Table S1**). Growth on simple carbohydrates was predicted by previous genomic
155 analysis⁸, and both strains grew on a wide variety of sugars and sugar alcohols, although SIUC1^T
156 utilized complex organic substrates (yeast extract, peptone) and pentoses (xylose, arabinose) more
157 readily than GBS^T. Lithotrophic or autotrophic metabolisms were not observed to support growth
158 for either strain. Strain SIUC1^T grew on trehalose or allantoin while strain GBS^T did not. Use of
159 allantoin as a carbon substrate may be indicative of deep subsurface lifestyles of some
160 *Atribacterota* as previously observed by Bird *et al*, 2019¹¹ in Baltic Sea marine sediments and
161 Vuillemin *et al*, 2020¹² in Atlantic Abyssal seafloor.

162 **Additional notes on motility and cell ultrastructure.** Detached flagella were commonly
163 observed in cryo-EM images of strain *C. inferamans* SIUC^T (11 of 34 imaged fields;
164 **Supplementary Data 8; Supplementary Fig. 17**). Flagella measured 17.7 +/- 1.6 nm in diameter.
165 Flagellar motility was observed occasionally in both strains, but more commonly in SIUC^T.
166 Flagella were not visible in cryo-EM images of *C. saccharofermentans* GBS^T. All *Atribacterota*
167 genomes encode complete or near-complete flagellar gene clusters, except for several genomes
168 assigned to the genus *Atribacter* (**Supplementary Data 4**). The presence of genes encoding FlgH
169 and FlgI, forming the L- and P-rings, favor a typical Gram-negative cell envelope structure at the
170 locations where the flagella are inserted. However, since flagella were detached, we don't know
171 the location. We note that *Thermotoga maritima* possesses a lateral flagellum¹³, and the width of
172 the periplasm at lateral locations is ~70 nm¹⁴. In *Caldatribacterium* cells, the distance between the
173 internal LML and the cell surface is similar but highly variable (67.8 +/- 31.0 nm in *C.*

174 *saccharofermentans* GBS^T and 62.1 +/- 27.8 nm in *C. inferamans* SIUC^T), typically with shorter
175 distances in pre-divisional cells and longer distances in more mature, elongated cells
176 (**Supplementary Data 7; Supplementary Data 8**). Distances from the inner LML to cell tips
177 were 372 +/- 46.9 nm in *C. saccharofermentans* GBS^T and 368 +/- 85.1 nm in *C. inferamans*
178 SIUC^T. The width of the space between the two membranes at the cell surface was 9.7 +/- 1.1 nm
179 in *C. saccharofermentans* GBS^T and 10.9 +/- 1.9 nm in *C. inferamans* SIUC^T, at the narrow end
180 of measurements in *E. coli* that range from 10-70 nm¹⁵.

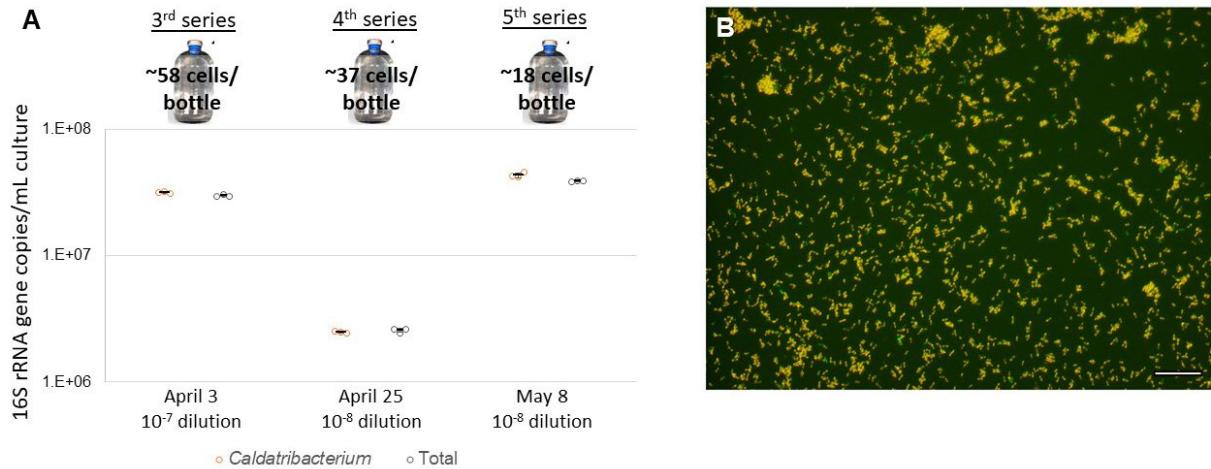
181 **Membrane core lipids.** Lipid fatty acids of the cultured *Atribacteria* species have are
182 shown in **Supplementary Data 10**. Strain SIUC1^T, when grown at 65 °C, has a fatty acid
183 composition of 33.3% C₁₆ and 38.9% C₁₈, with minor populations of C_{15iso} and C_{13iso} at ~11%.
184 Strain GBS^T when grown at 73 °C has a fatty acid composition of 37.2% of C₁₆ and 30% C_{13iso}
185 with 10.1% C₁₈. *A. laminatus*, which grows optimally at 45 °C, has a fatty acid composition of
186 51% of C₁₅ and 21% C₁₈ with 10% C₁₆ and C_{15iso}. In general, *A. laminatus* has shorter fatty acid
187 chains, which is consistent with patterns seen in less thermophilic bacteria^{16,17}.


188

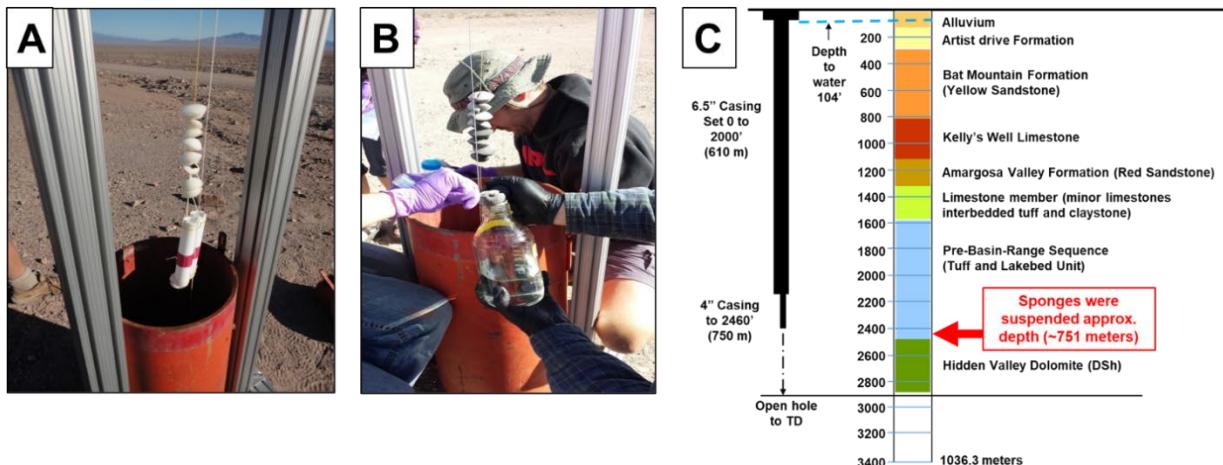

189

190 **Supplementary Fig. 1. In situ corn stover enrichments in GBS.** A) Great Boiling Spring (GBS)
191 near Gerlach, NV, USA, with an arrow indicating where the in situ enrichments were incubated in
192 the outflow. B) Corn stover and enrichment set-up before deployment. C) Corn stover in situ
193 enrichment incubating buried in ~1 cm of sediment in GBS outflow. D) Corn stover after 5 months
194 of incubation (Oct 2013 - March 2014).

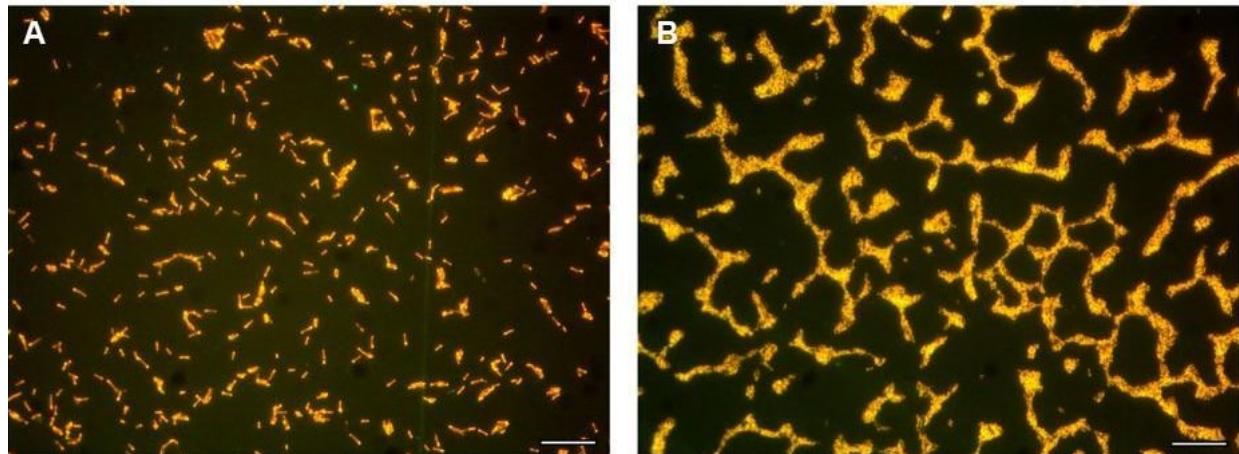
195



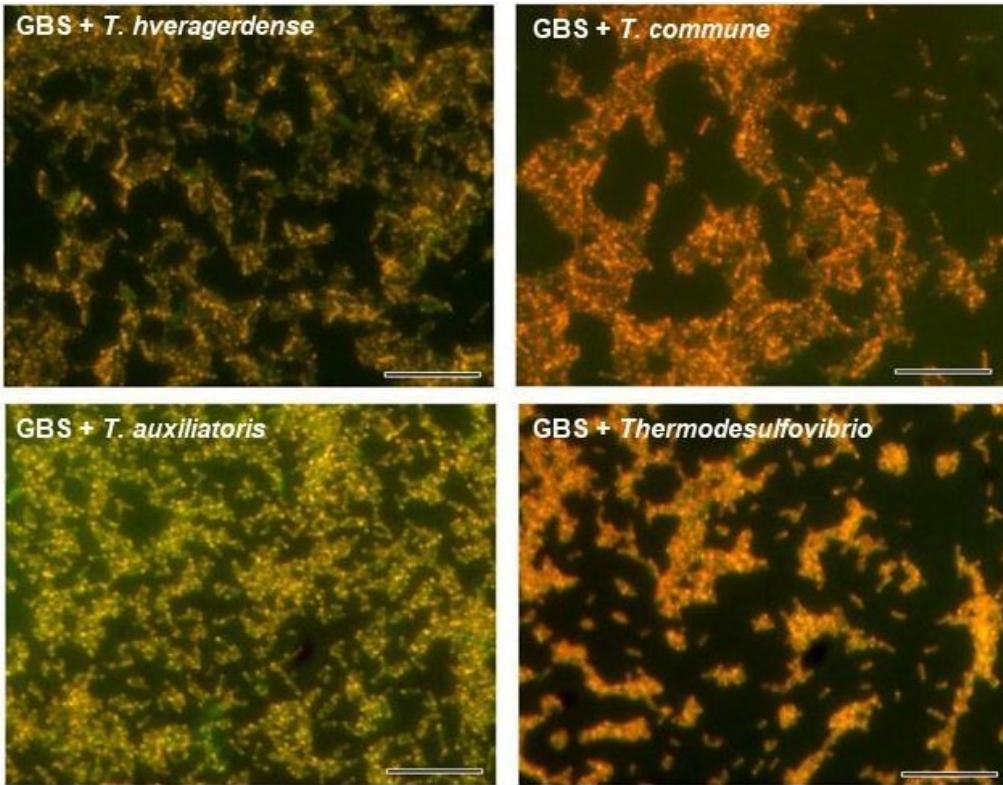
196 **Supplementary Fig. 2. Xyloglucan enrichment metagenome and FISH.** (A) Contigs in 2016
 197 xyloglucan culture. Clusters of contigs corresponding to MAGs are indicated, with *C.*
 198 *saccharofermentans* and *Thermodesulfobacterium* MAGs shown in orange and blue, respectively.
 199 (B) Fluorescence in situ hybridization of fixed cells from a sample of the xyloglucan culture,
 200 overlay of images showing fluorescence with probes for *Caldatribacterium* (Cy3, red/orange) and
 201 total bacteria (6FAM, green). Scale bar is 20 μ m. The image is representative of ~20 fields
 202 examined. Source data are provided as a Source Data file.


203

204 **Supplementary Fig. 3. Abundance of *Caldatribacterium* in GBS enrichments grown with**
 205 **different substrates.** Abundance of *Caldatribacterium* and total Bacteria/Archaea in cultures with
 206 various sole carbon substrates using qPCR with *Caldatribacterium*-specific primers and
 207 “universal” primers (“Total” bacteria and archaea). Black bars show means and standard
 208 deviations of replicate qPCRs (n=3) from a single culture. Source data are provided as a Source
 209 Data file.

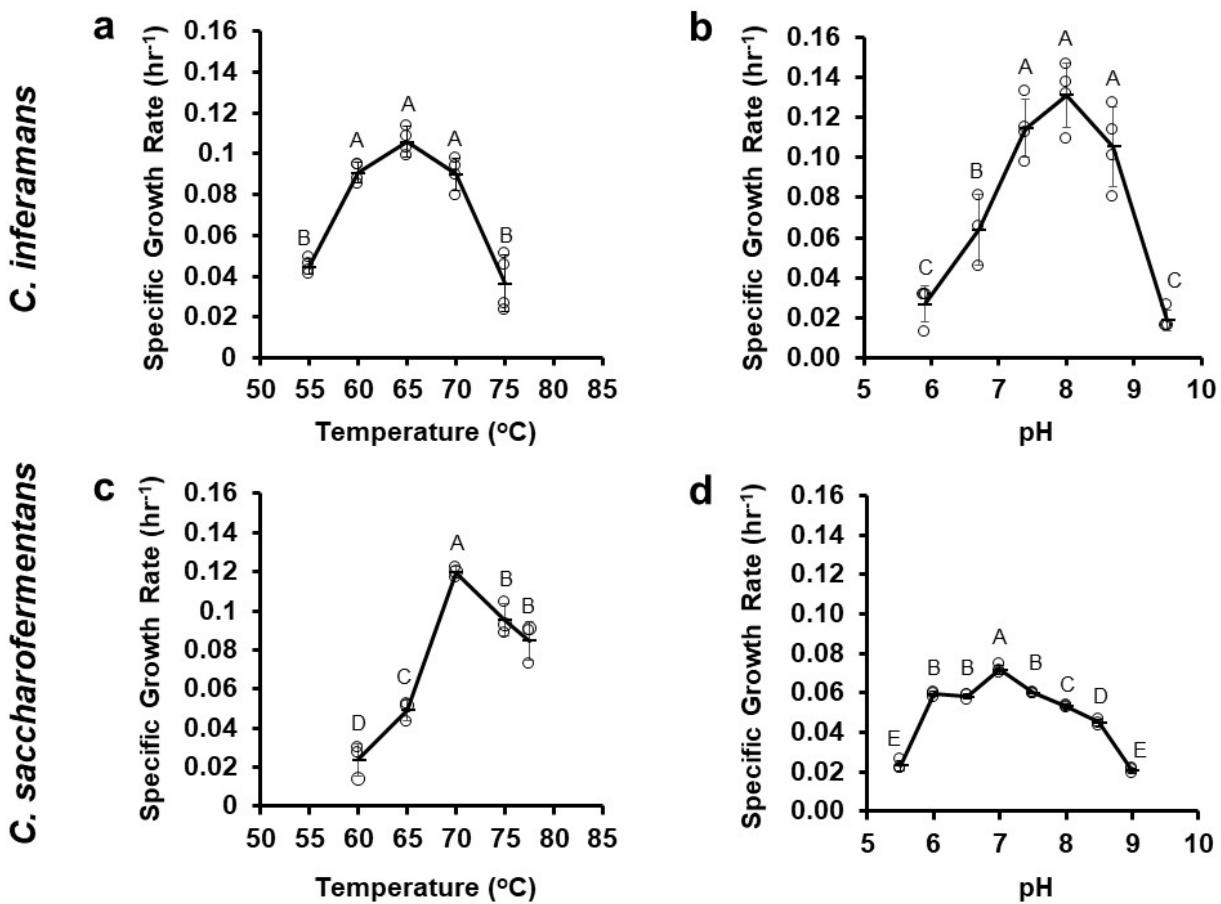

210

211 **Supplementary Fig. 4. Abundance of *Caldatribacterium* following dilution-to-extinction of**
 212 **GBS fucose enrichments.** (A) Abundance of *Caldatribacterium* and total Bacteria/Archaea in
 213 dilution-to-extinction cultures using qPCR with *Caldatribacterium*-specific primers and
 214 “universal” primers (“Total” bacteria and archaea). Black bars show means and standard
 215 deviations of replicate qPCRs (n=3) from a single culture. (B) Fluorescence in situ hybridization
 216 of fixed cells from a sample of the fucose culture after dilution-to-extinction, overlay of images
 217 showing fluorescence with probes for *Caldatribacterium* (Cy3, red/orange) and total bacteria
 218 (FAM, green). Scale bar is 20 μ m. The image is representative of ~20 fields examined. Source
 219 data are provided as a Source Data file.

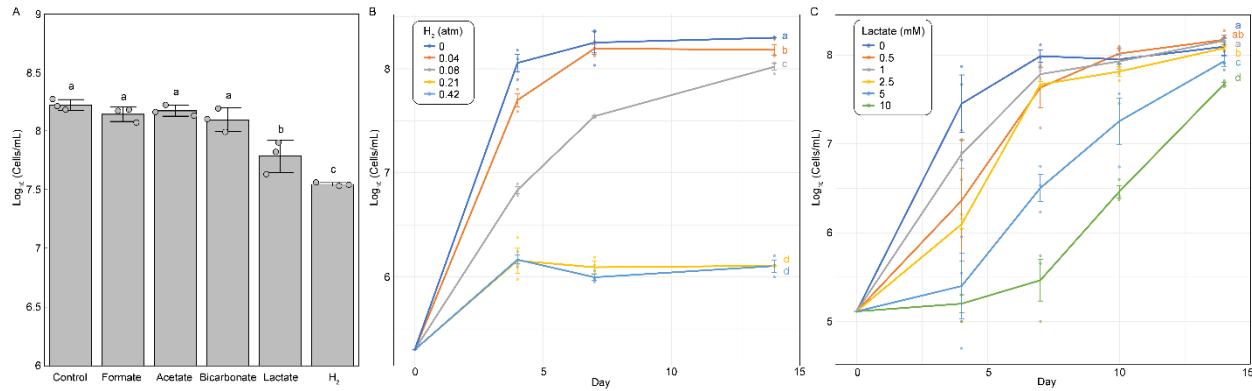


222 **Supplementary Fig. 5. Borehole Inyo-BLM 1B and polyurethane foam plugs used for in situ**
 223 **cultivation.** A) Sterile foam plugs (“sponges”) being lowered into Inyo-BLM1B in November
 224 2014. B) Sponges were retrieved in February 2015 and quickly stored in premade reduced artificial
 225 ground water media (AGM). (C) Borehole Inyo-BLM1 well design and geological cross section.
 226 Total depth at 1036 m before open wall collapse, and relative location below the water table.
 227 Location is 36° 24'04.19 N / 116° 28'06.58 W. Image modified from Bredehoeft J, *et al*, 2005.

228

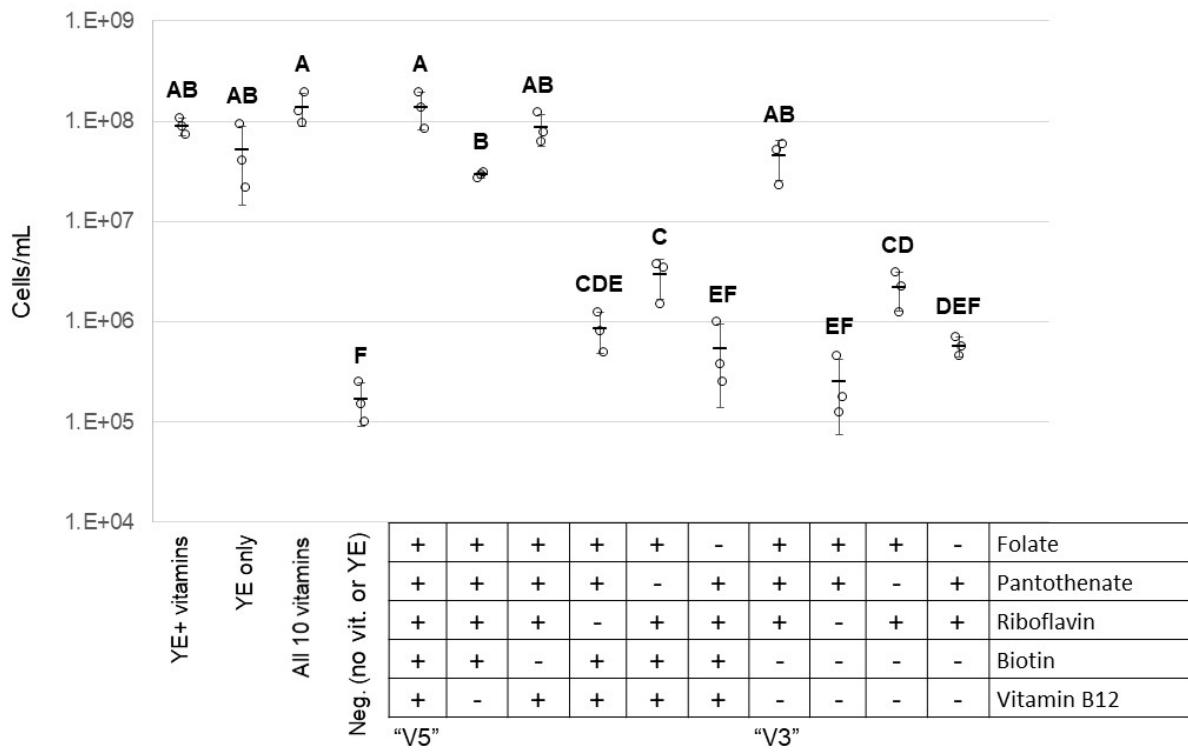


229 **Supplementary Fig. 6.** FISH images showing purity of axenic cultures. (A) Strain GBS^T and (B)
230 SIUC1^T. Overlays of images showing fluorescence with probes for *Caldatribacterium* (Cy3,
231 red/orange) and total bacteria (FAM, green). Scale bars are 20 μ m. The images are representative
232 of ~20 fields examined.

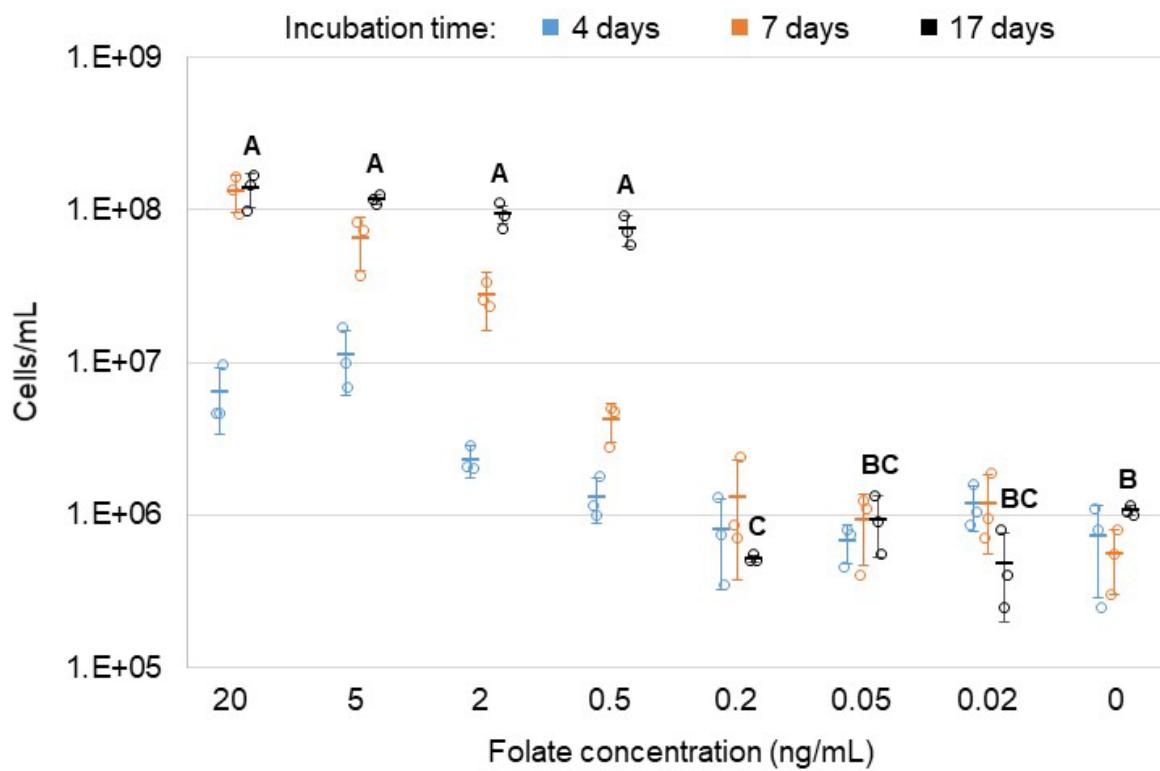


233

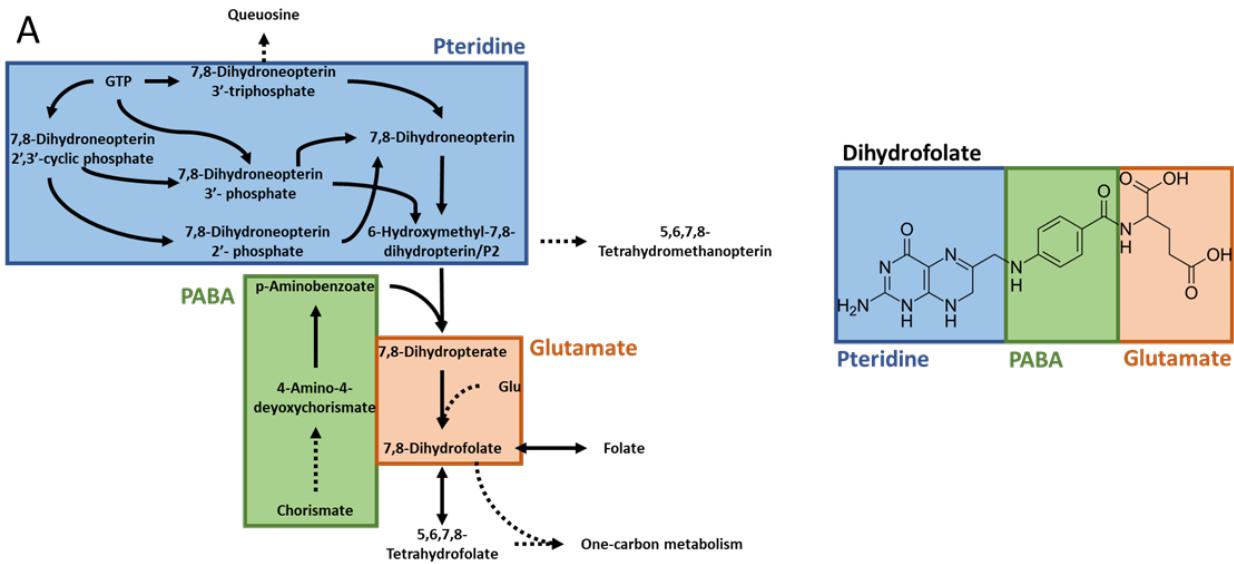
234 **Supplementary Fig. 7.** FISH images of strain GBS and various partner SRBs. Representative
 235 FISH results on co-cultures showing *C. saccharifermentans* GBS^T cells (GBS, Cy3-labeled
 236 *Caldatribacterium* probe, orange cells) and sulfate-reducer partner cells (bacterial 6FAM-labeled
 237 probe, green cells), showing that the vast majority of cells in the co-culture are *Caldatribacterium*.
 238 SRBs: *Thermodesulfobacterium hveragerdense* DSM 12571^T; *Thermodesulfobacterium commune*
 239 DSM 2178^T; *Thermodesulfobacterium auxiliatoris*; and *Thermodesulfovibrio yellowstonii*. Scale
 240 bars represent 20 μ m. The images are representative of ~20 fields examined.



Supplementary Fig. 8. Growth optimization of *Caldatribacterium* isolates. Growth ranges and optima for *C. inferamans* strain SIUC1^T (panels a and b) and *C. saccharofermentans* strain GBS^T (panels c and d). Bars show the mean and standard deviation ($n=4$ for *C. inferamans*, $n=3$ for *C. saccharofermentans*). Different capital letters show experimental groups that are significantly different ($p < 0.05$; ANOVA with post-hoc Tukey's). Source data are provided as a Source Data file.

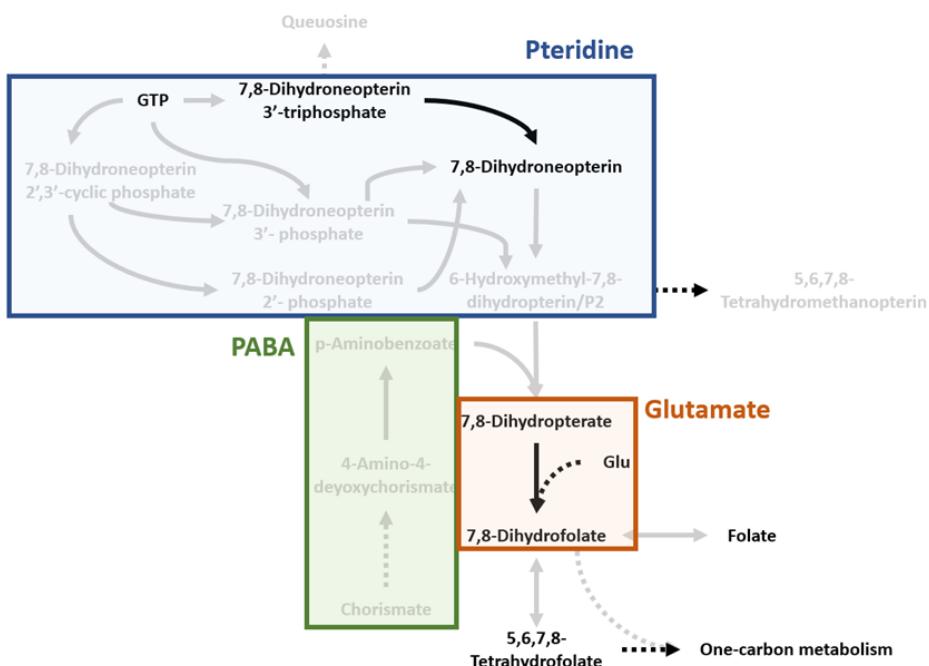

250

251 **Supplementary Fig. 9.** (A) Growth of *Caldatribacteirum saccharofermentans* strain GBS^T in the
 252 presence of potential fermentation products at 1 mM or 0.08 atm (for H₂) after seven days of
 253 incubation. Data with different letters are significantly different ($p < 0.05$; One-way ANOVA
 254 followed by Tukey's post-hoc test). Growth of strain GBS^T at different levels of (B) hydrogen or
 255 (C) lactate over a time course of two weeks. Different letters indicate significant differences ($p <$
 256 0.05; Student's t-test). All bars/points show averages and standard deviations ($n=3$). Source data
 257 are provided as a Source Data file.

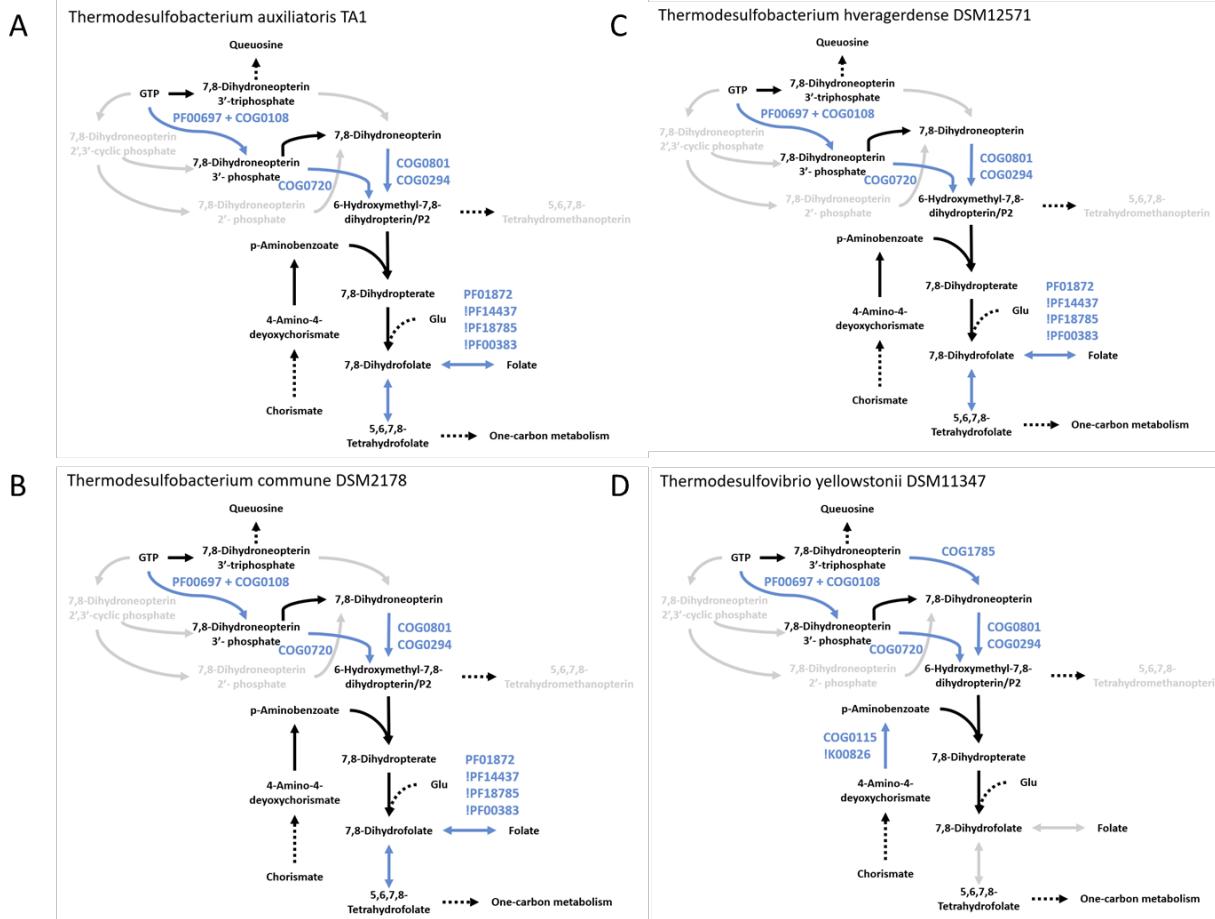


258

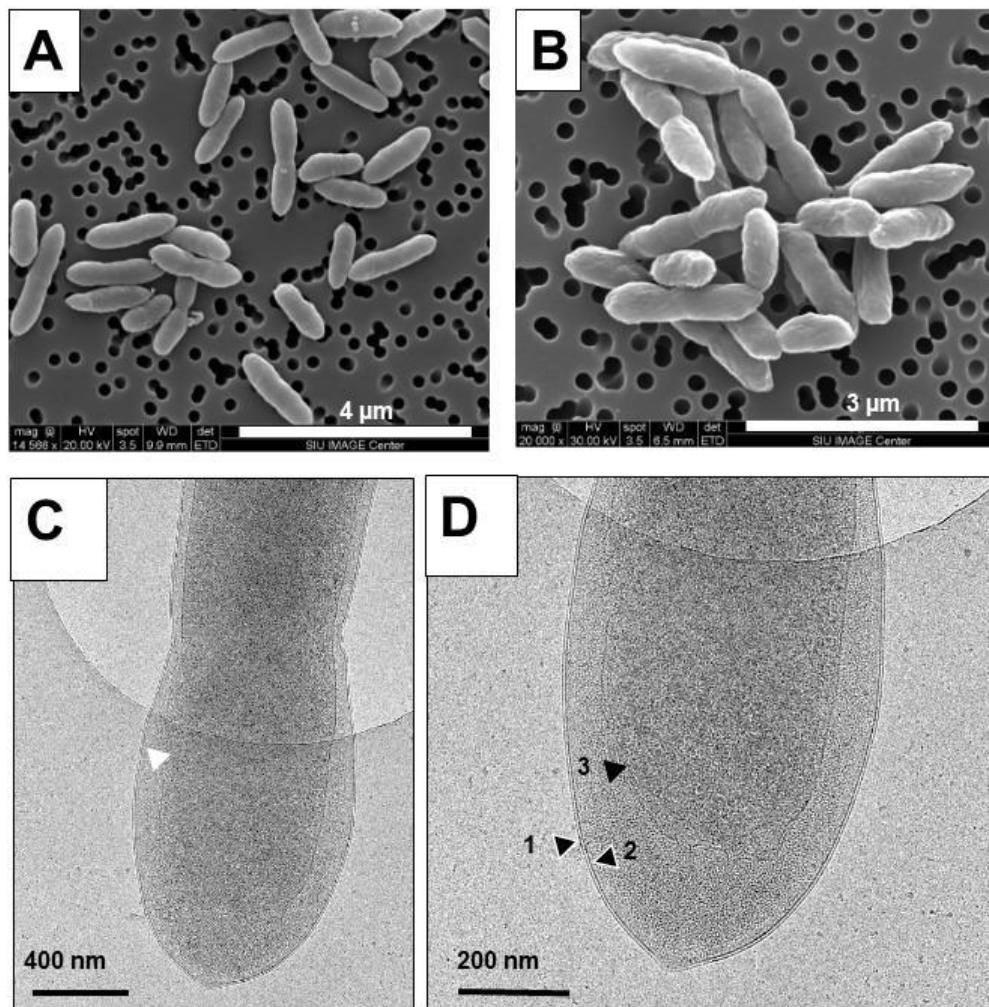
259 **Supplementary Fig. 10.** Growth of *C. saccharofermentans* GBS^T in the presence or absence of
 260 yeast extract and various autoclaved vitamins. Circles show individual replicates and bars show
 261 mean and standard deviation (N=3). Letters indicate significantly different (p <0.05) means based
 262 on ANOVA and Tukey's post-hoc tests. Source data are provided as a Source Data file.



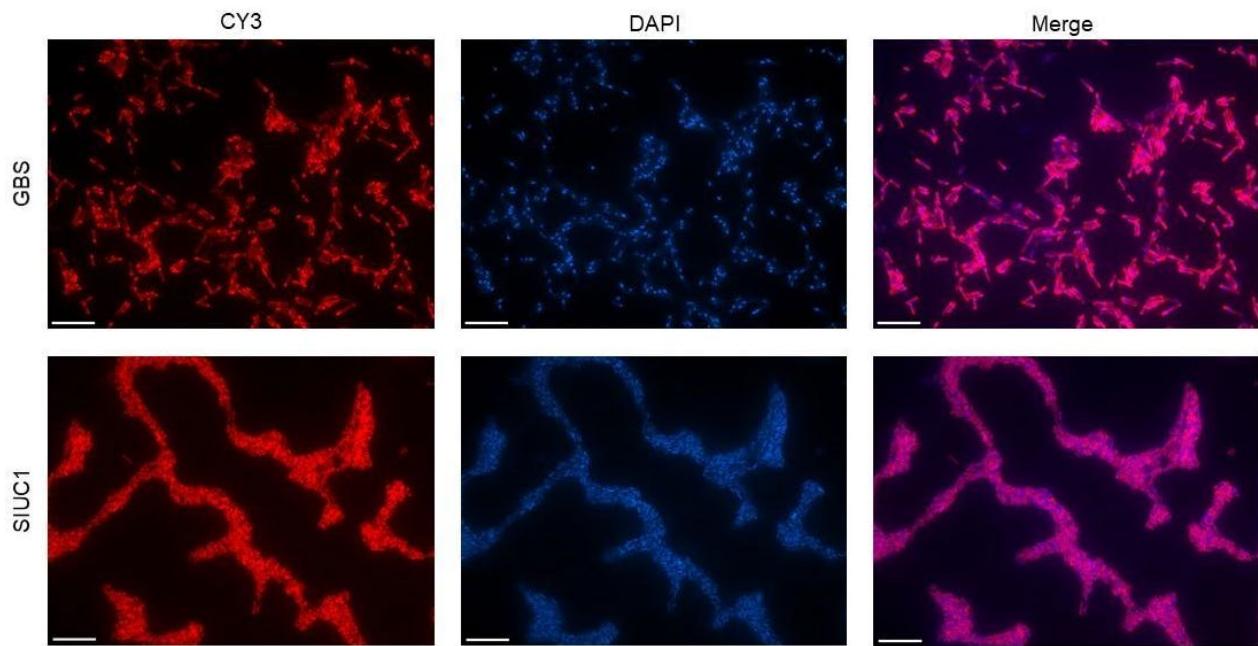
Supplementary Fig. 11. **Growth of *C. saccharofermentans* GBST at different concentrations of folate.** Different concentrations of folate, decreasing from the standard 20 ng mL⁻¹, were added along with standard concentrations of riboflavin, biotin, pantothenate, and vitamin B12 used in the autoclaved vitamin mix. Circles show individual replicates and bars show mean and standard deviation (N=3). Letters indicate significantly different (p <0.05) means at the final (17 day) time point based on ANOVA and Tukey's post-hoc tests. Source data are provided as a Source Data file.


B

Caldatribacterium saccharofermentans GBS^T

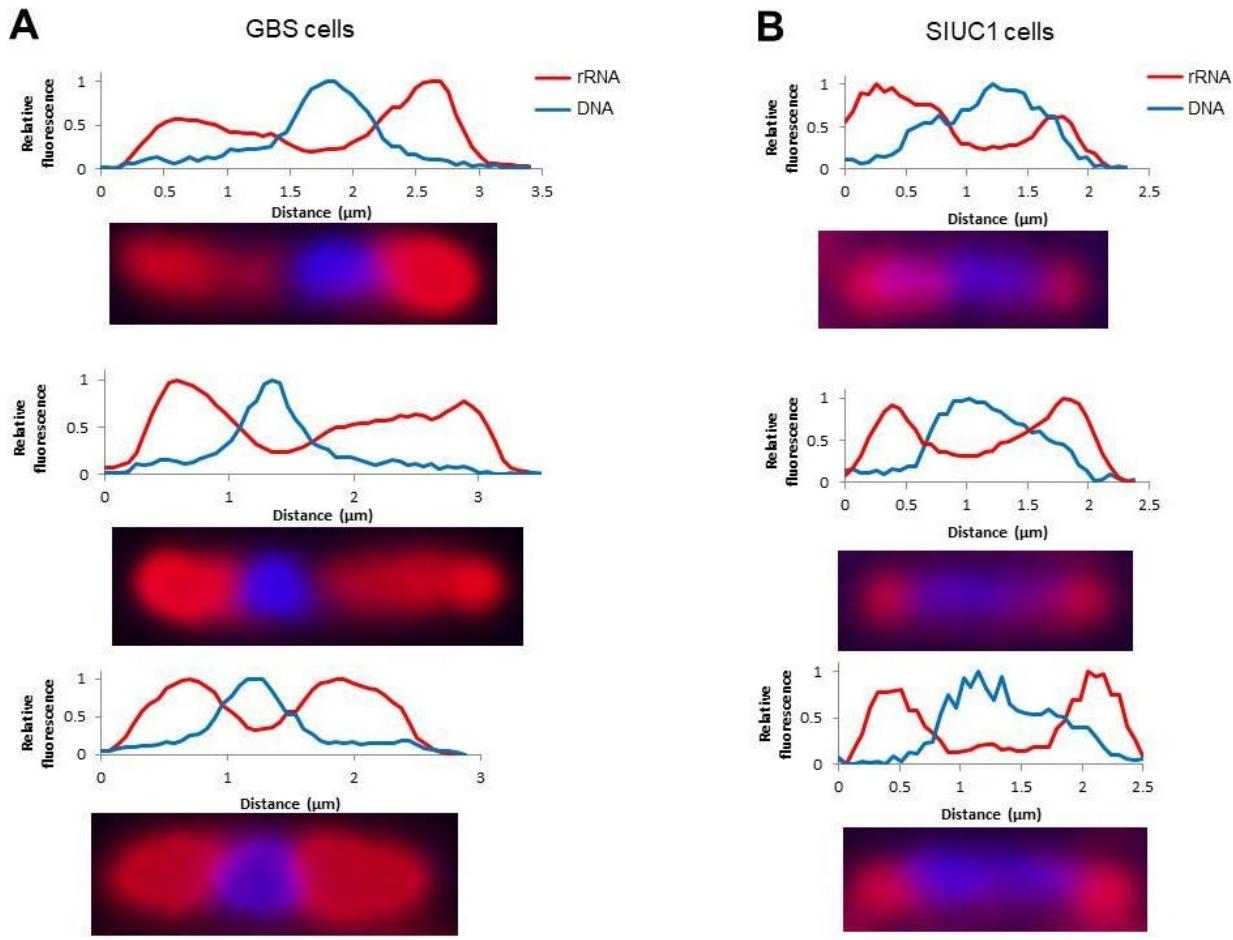

273

274 **Supplementary Fig. 12. Folate biosynthetic pathway in *Caldatribacterium***
 275 ***saccharofermentans* GBS^T.** Folate biosynthetic pathway showing incompleteness of pterin and
 276 pABA branches but presence folylpolyglutamyl synthase (FPGS) necessary for glutamylation
 277 reactions that would be necessary for use of transported folate. The same enzymes are present in
 278 *Caldatribacterium inferamans* SUIC1^T. Black, annotated enzymes; grey, not annotated.
 279 Annotations are provided in **Supplementary Data 4**.

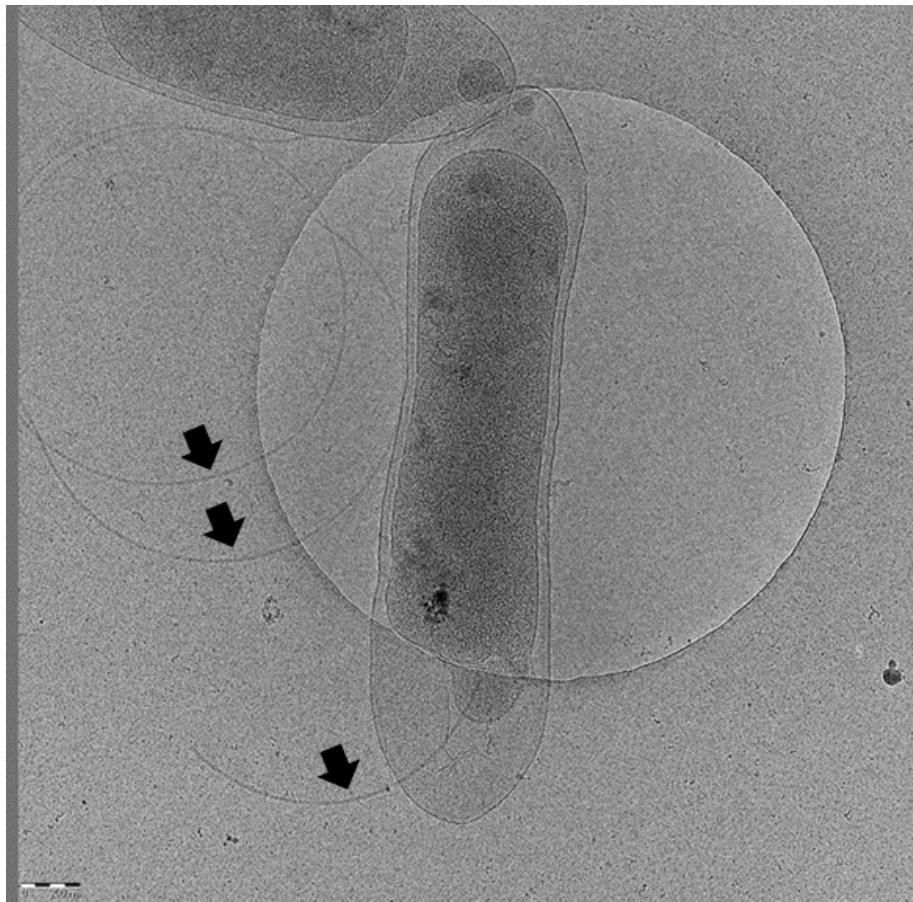


280

281 **Supplementary Fig. 13. Folate biosynthetic pathway in SRBs.** Folate biosynthetic pathway
 282 showing completeness of folate biosynthetic pathways in the SRBs used in the experiments. Black,
 283 annotated enzymes; blue, annotated using COG or pfam; grey, not annotated. Blue pfams preceded
 284 by exclamation points are absent, consistent with our annotation criteria (see Methods). KO
 285 annotations for folate and other vitamin synthesis pathways are provided in **Supplementary Data**
 286 **4.**

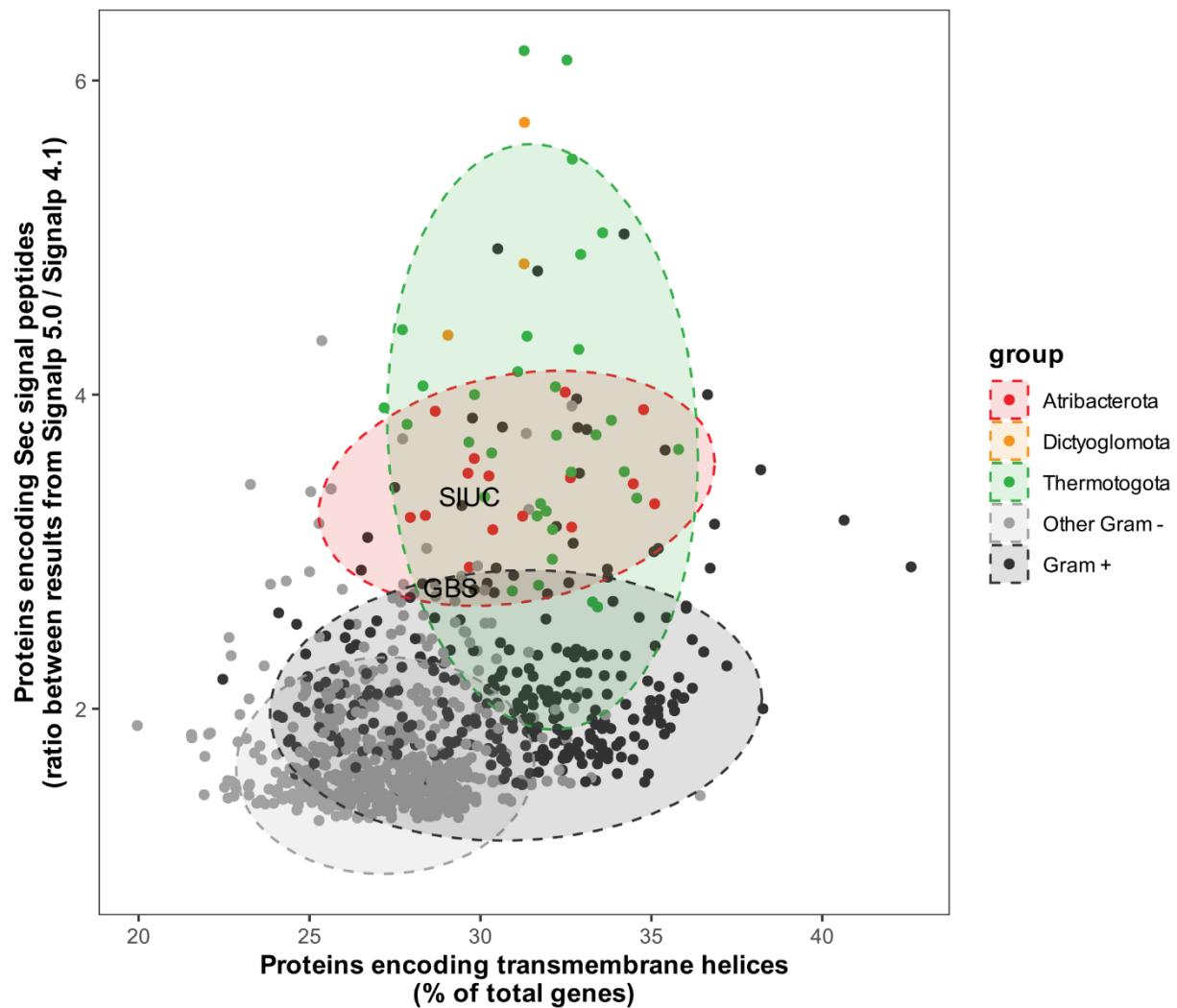


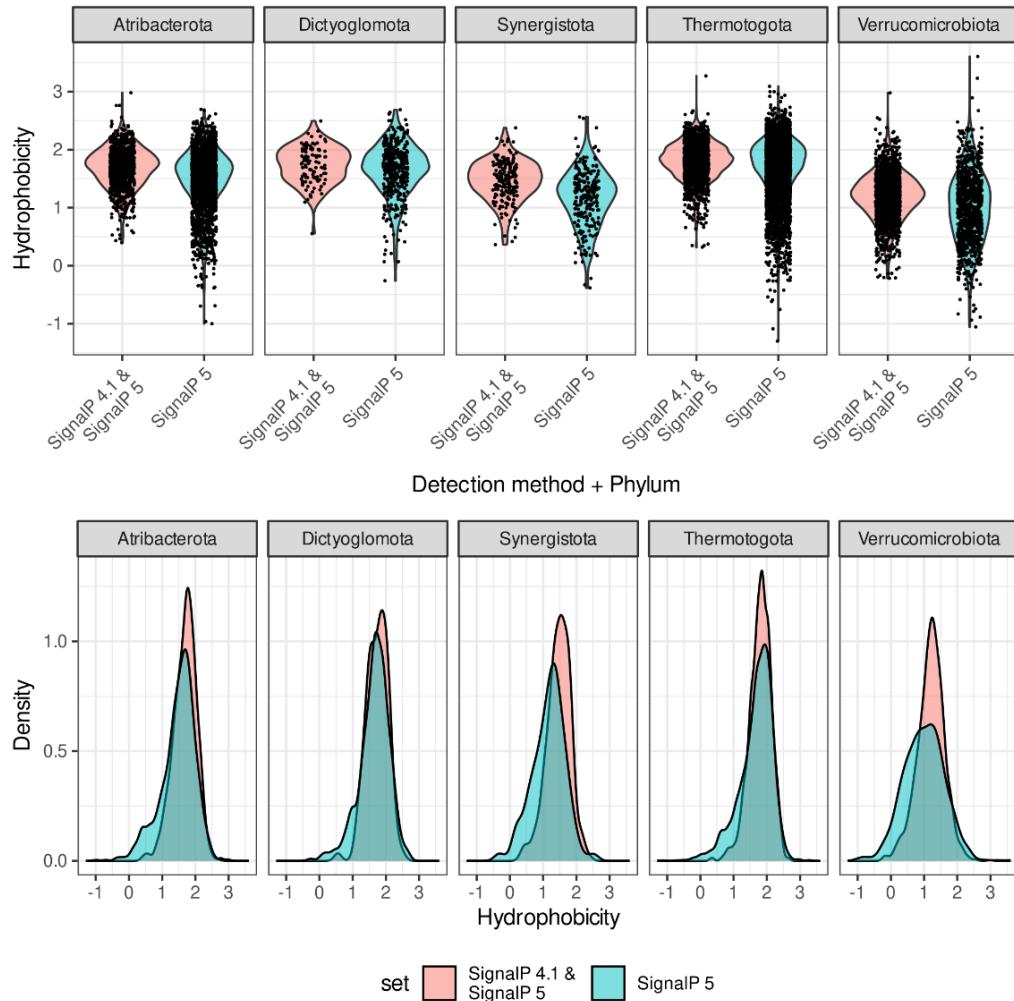
294


295

296 **Supplementary Fig. 15. Fluorescence microscopy of GBS^T and $SIUC1^T$ showing rRNA and**
297 **DNA staining and localization.** Fixed cells were hybridized with *Caldatrivacterium*-specific
298 rRNA probe and counterstained with DAPI. Scale bars are 10 μ m. The images are representative
299 of \sim 20 fields examined.

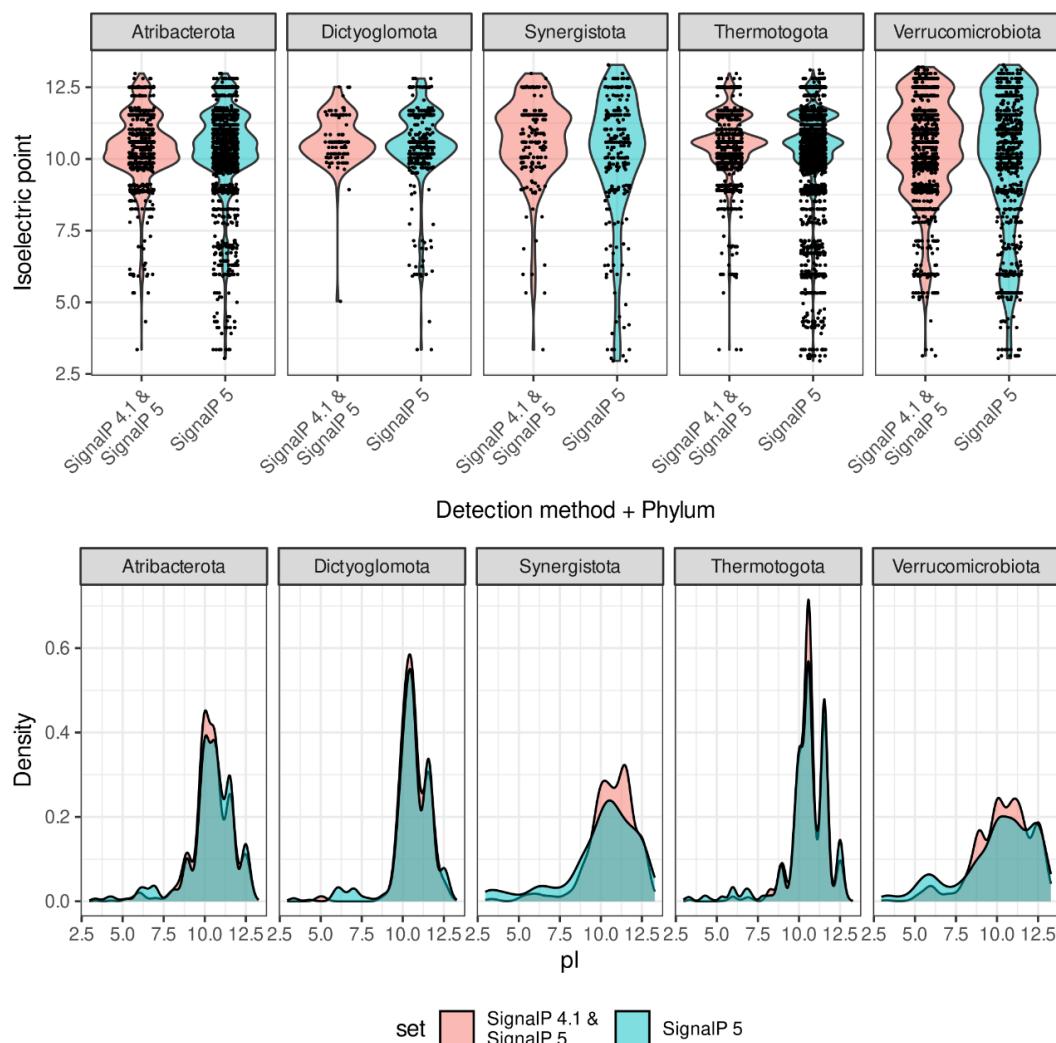
300


301 **Supplementary Fig. 16. Profiles of localization of DNA and rRNA in cells of strains GBS^T**
 302 **and SIUC1^T.** (A) GBS^T and (B) SIUC1^T subjected to FISH with a Cy3-labeled probe targeting
 303 *Caldatribacterium* rRNA and DAPI counterstain. The images and profiles are representative of
 304 ~20 cells examined for each strain.

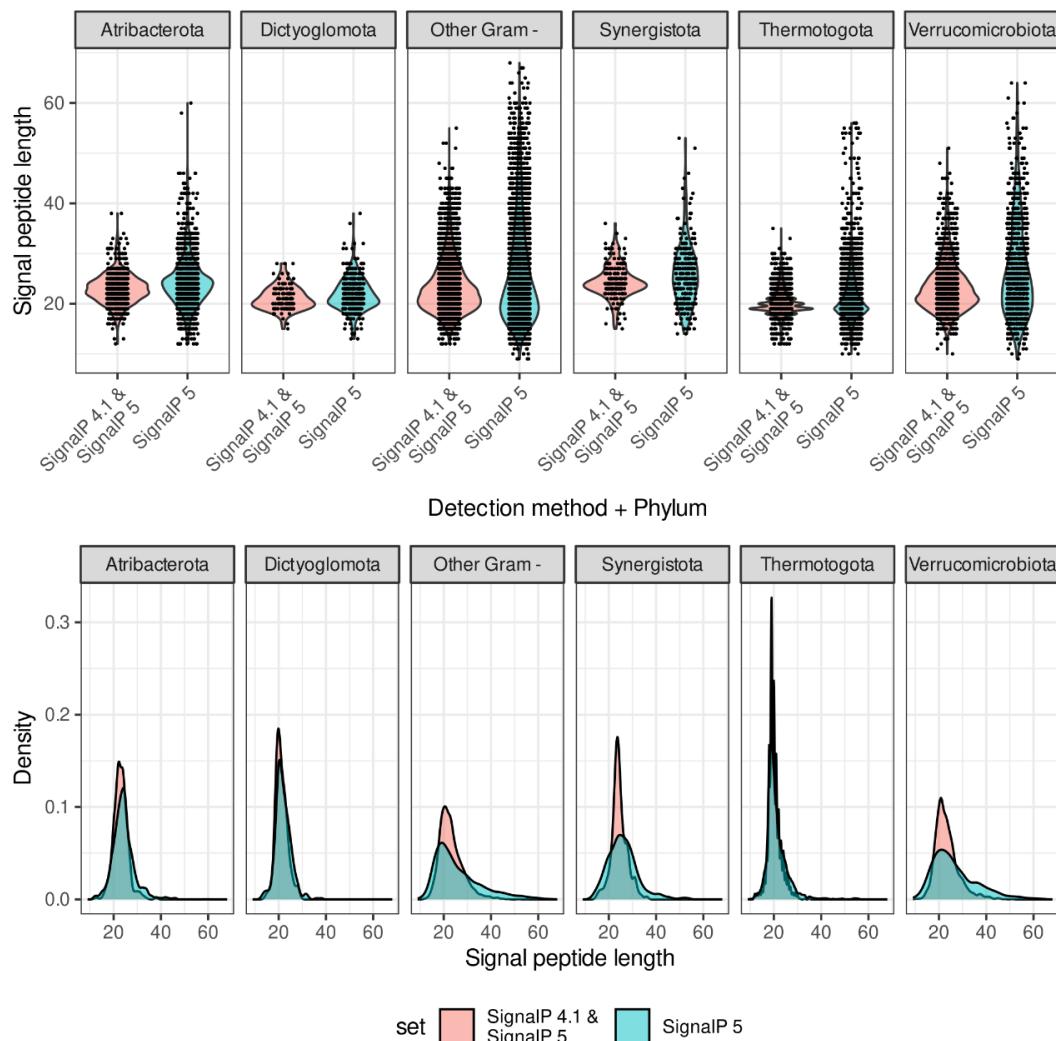

305

306 **Supplementary Fig. 17. Detached flagella in cryo-EM image of SIUC1^T.** Several detached
307 flagella are shown (black arrows). Detached flagella were visible in 11 of 34 imaged fields from
308 two different grids. Attached flagella were not observed. Flagella were not observed in cryo-EMs
309 of strain GBS^T. The images and profiles are representative of >15 detached flagella. Raw data on
310 measurements of flagella are available in **Supplementary Data 8**.

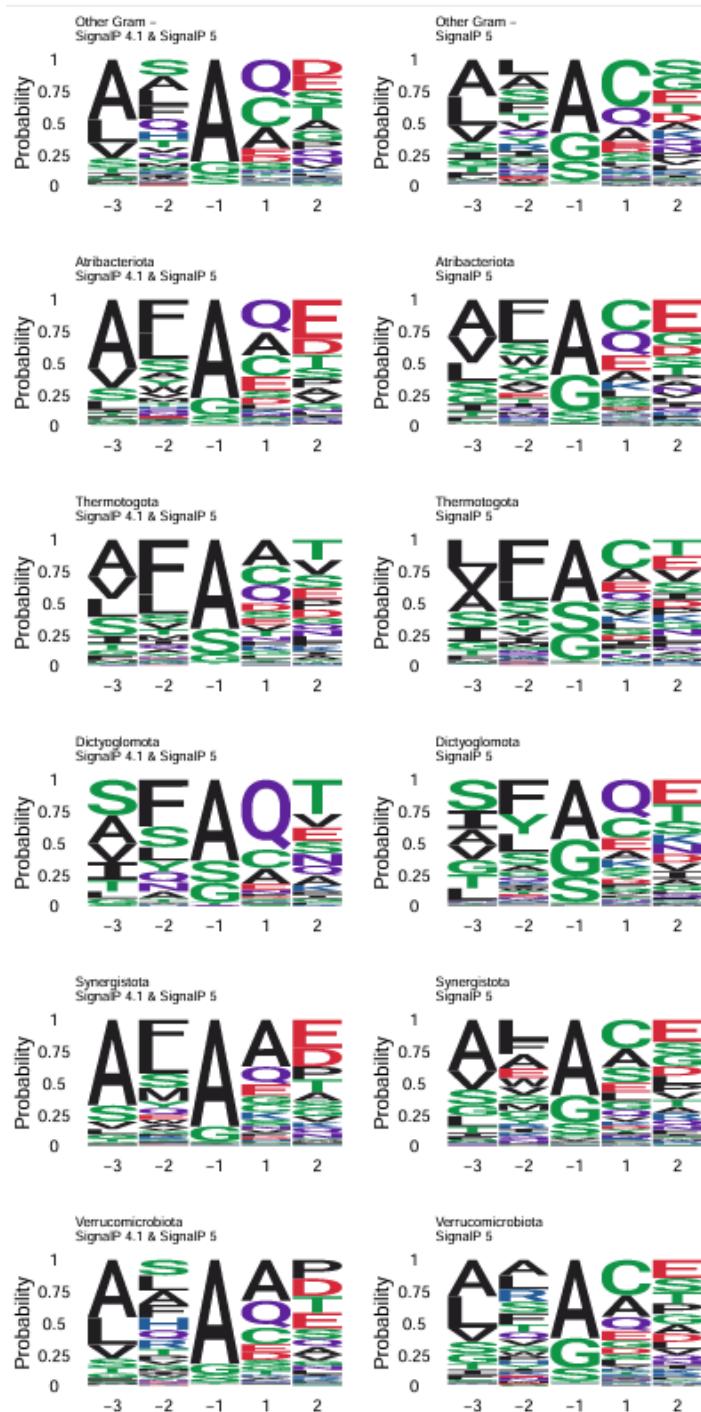
311



312
 313 **Supplementary Fig. 18. Unique profiles of predicted secreted and membrane proteins in**
 314 ***Atribacterota*.** Plot based on Katayama et al., 2020. *Atribacterota* proteomes have a higher ratio
 315 of Sec sequences predicted by SignalP-5.0 over SignalP-4.1 compared to other Gram-negative
 316 bacteria ($P = 1.87e-6$) and Gram-positive bacteria ($P = 1.08e-6$), but not compared to *Thermotogota*
 317 ($P = 0.416$) or *Dictyoglomota* ($P = 0.136$). *Thermotogota* and *Dictyoglomota* were noted as outliers
 318 previously (Katayama et al., 2020). *Atribacterota* proteomes also have a higher percentage of
 319 transmembrane proteins compared to other Gram-negative bacteria ($P = 6.51e-7$), but not Gram-
 320 positive bacteria ($P = 0.710$), *Thermotogota* ($P = 0.548$), or *Dictyoglomota* ($p = 0.722$). Statistical
 321 significance was assessed via Wald test. Source data are provided as a Source Data file.



322


323 **Supplementary Fig 19. SignalP-5 improves predictions of *Atribacterota* secreted proteins**
 324 **with signal peptides that are less hydrophobic.** Top, hydrophobicity of signal peptides predicted
 325 by SignalP-4.1 and SignalP-5 versus those predicted only by SignalP-5. Differences between
 326 SignalP versions were detected. Bottom, histograms showing the distributions of predicted
 327 hydrophobicity for signal peptides predicted by SignalP-4.1 and SignalP-5 versus those predicted
 328 only by SignalP-5. *Atribacterota* signal peptides annotated by SignalP-4.1 and SignalP-5 were
 329 more hydrophobic than those annotated by SignalP-5 alone (difference = 0.21 Kyte-Doolittle units,
 330 $p < 1e-7$; permutation test). The predicted hydrophobicity of *Atribacterota* signal peptides detected
 331 only by SignalP-5 were lower than those from *Dictyoglomota* (difference = 0.17 Kyte-Doolittle
 332 units, $p = 0$; ANOVA + Tukey's HSD) and *Thermotogota* (0.19 Kyte-Doolittle units, $p < 1e-7$),
 333 but were higher than those from *Synergistota* (0.31 Kyte-Doolittle units, $p < 1e-7$), and
 334 *Verrucomicrobiota* (0.47 Kyte-Doolittle units, $p < 1e-7$). The predicted hydrophobicity of
 335 *Atribacterota* signal peptides detected by both SignalP-5 and SignalP-4.1 was lower than
 336 *Thermotogota* (0.11 Kyte-Doolittle units, $p = 0$), higher than those from *Synergistota* (0.22 Kyte-
 337 Doolittle units, $p = 0$) and *Verrucomicrobiota* (0.48 Kyte-Doolittle units, $p < 1e-7$), but did not
 338 differ from *Dictyoglomota* (0.05 Kyte-Doolittle units, $p = 0.65$). Source data are provided as a
 339 Source Data file.

Supplementary Fig 20. SignalP-5 improves predictions of *Atribacterota* secreted proteins with signal peptides with a lower pI. Top, predicted isoelectric point (pI) of signal peptides predicted by SignalP-4.1 and SignalP-5 versus those predicted only by SignalP-5. Bottom, histograms showing the distributions of pI values for signal peptides predicted by SignalP-4.1 and SignalP-5 versus those predicted only by SignalP-5. *Atribacterota* signal peptides annotated by SignalP-4.1 and SignalP-5 were higher in pI compared to those annotated by only SignalP-5 (difference = 0.21 pH units, $p = 0$; permutation test). The predicted pI of *Atribacterota* signal peptides detected only by SignalP-5 were lower than those from *Thermotogota* (difference = 0.12 pH units, $p = 0.031$; ANOVA + Tukey's HSD), higher than those from *Verrucomicrobiota* (0.32 pH, $p = 8e-6$), trended higher than those from *Synergistota* (0.30 pH, $p = 0.053$), and were not different from *Dictyoglomota* (0.15 pH, $p = 0.39$). The predicted pI of *Atribacterota* signal peptides detected by both SignalP-5 and SignalP-4.1 was lower than *Thermotogota* (0.21 pH, $p = 0.0037$), and not significantly different from *Synergistota* (0.21 pH, $p = 0.331$), *Verrucomicrobiota* (0.04 pH, $p = 0.973$), or *Dictyoglomota* (0.25 pH, $p = 0.397$). Source data are provided as a Source Data file.

Supplementary Fig 21. SignalP-5 improves predictions of *Atribacterota* secreted proteins with longer signal peptides. Top, length of signal peptides predicted by SignalP-4.1 and SignalP-5 versus those predicted only by SignalP-5. Bottom, histograms showing the distributions of the lengths of signal peptides predicted by SignalP-4.1 and SignalP-5 versus those predicted only by SignalP-5. Signal peptides annotated by SignalP-4.1 and SignalP-5 were shorter than those annotated by SignalP-5 (difference = 1.18 AA residues, $p = 0$; permutation test). *Atribacterota* signal peptides detected only by SignalP-5 were shorter than those from *Dictyoglomota* (difference = 2.27 AA residues, $p = 1E-7$; ANOVA + Tukey's HSD) and *Thermotogota* (3.00 AA, $p = 1E-6$), and longer than those from *Synergistota* (1.80 AA, $p = 0.003$), *Verrucomicrobiota* (difference = 2.4 AA, $p = 0$), or other Gram-negative bacteria (1.83 AA, $p = 0$). *Atribacterota* signal peptides detected by both SignalP-5 and SignalP-4.1 were shorter than those from *Dictyoglomota* (1.81 AA, $p = 0.002$) and *Thermotogota* (2.73 AA, $p = 0$), longer than those from *Synergistota* (1.46 AA, $p = 0.001$), and did not differ in length from *Verrucomicrobiota* (difference = 0.34 AA, $p = 0.494$) or other Gram-negative bacteria (0.12 AA, $p = 0.975$). Source data are provided as a Source Data file.

376 **Supplementary Fig 22. Signal peptidase recognition sites in *Atribacterota*.** Plot showing
 377 probabilities of amino acids at the signal peptidase recognition sites for selected phyla predicted
 378 by SignalP-4.1 and SignalP-5 versus those predicted only by SignalP-5. Source data are provided
 379 as a Source Data file.

380 REFERENCES

381 1. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly
382 classification with the genome taxonomy database. *Bioinformatics* **38**, 5315-5316 (2022).

383 2. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an
384 ongoing census of bacterial and archaeal diversity through a phylogenetically consistent,
385 rank normalized and complete genome-based taxonomy. *Nucleic Acids Res* **50**, D785-
386 D794 (2022).

387

388 3. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their
389 own taxonomy. *ISME J* **11**, 2399-2406 (2017).

390

391 4. Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. ModelFinder: fast
392 model selection for accurate phylogenetic estimates. *Nat Methods* **14**, 587-589 (2017).

393

394 5. Minh BQ, *et al.* IQ-TREE 2: new models and efficient methods for phylogenetic inference
395 in the genomic era. *Mol Biol Evol* **37**, 1530-1534 (2020).

396

397 6. Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic
398 tree display and annotation tool. *Nucleic Acids Res* **52**, W78-W82 (2024).

399

400 7. Jiao J-Y, *et al.* Cultivation of novel *Atribacterota* from oil well provides new insight into
401 their diversity, ecology, and evolution in anoxic, carbon-rich environments. *Microbiome*
402 **12**, 123 (2024).

403

404 8. Dodsworth JA, *et al.* Single-cell and metagenomic analyses indicate a fermentative and
405 saccharolytic lifestyle for members of the OP9 lineage. *Nat Commun* **4**, 1854 (2013).

406

407 9. Peacock JP, *et al.* Pyrosequencing reveals high-temperature cellulolytic microbial
408 consortia in Great Boiling Spring after in situ lignocellulose enrichment. *PLoS One* **8**,
409 e59927 (2013).

410

411 10. Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP. Microbiology and
412 geochemistry of great boiling and mud hot springs in the United States Great Basin.
413 *Extremophiles* **13**, 447-459 (2009).

414

415 11. Bird JT, *et al.* Uncultured microbial phyla suggest mechanisms for multi-thousand-year
416 subsistence in Baltic Sea sediments. *MBio* **10**, 10.1128/mbio.02376-02318 (2019).

417

418

419 12. Vuillemin A, *et al.* Atribacteria Reproducing over Millions of Years in the Atlantic Abyssal
420 Subseafloor. *mBio* **11**, 10.1128/mbio.01937-01920 (2020).

421

422 13. Gluch MF, Typke D, Baumeister W. Motility and thermotactic responses of *Thermotoga*
423 *maritima*. *J Bacteriol* **177**, 5473-5479 (1995).

424

425 14. Sexton DL, Hashimi A, Beskrovnaya P, Sibanda L, Huan T, Tocheva EI. The cell envelope
426 of *Thermotogae* suggests a mechanism for outer membrane biogenesis. *Proc Natl Acad Sci*
427 **120**, e2303275120 (2023).

428

429 15. Tran BM, Punter CM, Linnik D, Iyer A, Poolman B. Single-protein Diffusion in the
430 Periplasm of *Escherichia coli*. *J Mol Biol* **436**, 168420 (2024).

431

432 16. Driessens AJ, Albers SV. Membrane adaptations of (hyper) thermophiles to high
433 temperatures. *Physiology and biochemistry of extremophiles*, 104-116 (2007).

434

435 17. Koga Y. Thermal adaptation of the archaeal and bacterial lipid membranes. *Archaea* **2012**,
436 789652 (2012).

437

438