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I. SPECIFIC STEPS OF THE MECHANISM USING PROMISING REGION AND PARALLEL DISTANCE IN PREA [1]

The mechanism using promising region and parallel distance prunes the feasible elite set Archive, which exceeds size N ,
to a specific size of N through the following steps:

1) Translate the positions of all individuals in the objective space to Rm
+ using the formula:

f̄i(x) = fi(x)− fFmin
i + 10−6, i = 1, ...,m, (1)

where fFmin
i is the minimum value found on the i-th objective fi so far.

2) Calculate the I-indicator value for any individual x1 in Archive evaluated by other one x2:
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(2)

3) Define the minimum I-indicator value from all other individuals for x1 as its fitness value within Archive:

Fitness(x1|Archive) = min
x2∈Archive\{x1}

I(x1|x2). (3)

4) Identify the Pareto optimal solution set L1 and the inferior solution set L2 within Archive based on comparison result
between fitness value and 1: {

L1 = {x ∈ Archive|Fitness(x|Archive) > 1},
L2 = Archive \ L1.

(4)

5) Set Archive = L1. If the size of Archive is smaller than N , directly select the (N − |Archive|) individuals with the
largest fitness values from L2 to fill Archive, terminating the process and outputting Archive as the result. Otherwise,
proceed to step 6).

6) Select the N individuals with the largest fitness values from L1 to construct the promising region PR: [0, fFmax
1 ] ×

[0, fFmax
2 ]× ...× [0, fFmax

m ], where fFmax
1 , ..., fFmax

m are determined as follows

fFmax
i = max

xj∈L1
f̄i(x

j), i = 1, ...,m. (5)

7) Remove the individuals of Archive that lie outside of PR.
8) Calculate the crowding distance between any two individuals in Archive,

Crowd(xi|Archive) = min
xj∈Archive\{xi}

Paral(xi,xj), (6)

where Paral(xi,xj) is a function measuring the parallel distance of two individuals, computed as follows:

Paral(xi,xj) =

√√√√ m∑
p=1

(
f̄i(xi)− f̄i(xj)

fFmax
i

)2 −
(
∑m

p=1(f̄i(x
i)− f̄i(xj))/fFmax

i )2

m
. (7)

9) Iteratively remove the individual with the lowest fitness value among the two individuals with the smallest crowding
distance in Archive until the size of Archive is reduced to N . Output Archive as the final result.
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II. BRIEF DESCRIPTION OF THE COMPARISON ALGORITHMS

• CMOCSO [2] is a cooperative multi-population, multi-criterion algorithm. It employs a competitive swarm optimizer based
on a constraint relaxation mechanism to search for the CPF, while a cooperative cooperative swarm optimizer utilizing
constraint-ignoring CHT is used to explore the UPF. Additionally, it incorporates a feasibility-driven CHT to update the
discovered set of optimal solutions, known as the elite set.

• CCMO [3] also utilizes two distinct populations to separately search for CPF and UPF. A notable feature of this algorithm
is the minimal interaction between the two populations, which only exchange useful information through offspring
contributions after the generation of new individuals.

• DSPCMDE [4] dynamically adjusts the quality assessment of individuals throughout the evaluation process. In its early
stages, it emphasizes convergence and diversity by ignoring feasibility, thus preventing the population from becoming
trapped in local optima. In the later stages, it employs a feasibility-driven CHT to guide the population toward the CPF.

• ICMA [5] adopts a uniform exploration strategy to identify the CPFs. It prioritizes the elimination of the individual with
the highest constraint violation among the two closest individuals in promising regions, while maintaining an elite set
based on feasibility-driven CHT to record the optimal individuals discovered.

• MTCMO [6] introduces a corresponding auxiliary optimization problem when addressing CMaOP, where the tolerance
levels for constraints gradually decrease as the evolutionary process advances. It simultaneously tackles both the original
and auxiliary optimization problems through multi-task optimization techniques, effectively escaping local optima regions.

III. PERFORMANCE METRICS

Two commonly used metrics, inverted generational distance (IGD) [7] and hypervolume (HV) [8], are employed to assess
the quality of the final results obtained by the considered algorithms in this paper. Given that infeasible solutions lack practical
significance for the optimization problems, only feasible solutions are considered when evaluating the quality of algorithms’
outcomes. If a algorithm’s final results do not contain any feasible solutions, both its IGD and HV values are marked as ”NaN”.
To prevent excessive numerical values, prior to computing these two metrics, we normalize the variation range of the CPF to
the space [0, 1]m. Subsequently, the final outcomes obtained by each algorithm undergo corresponding transformations within
the objective space. Let P be a uniformly distributed set of points across the CPF of considering CMaOP, and X∗ be the final
set of feasible solutions obtained by a algorithm on this problem. The formulas for calculating the IGD and HV values of the
algorithm on this CMaOP are as follows: IGD(X∗|P) =

∑
p∈P minx∗∈X∗ ∥p−F(x∗)∥2

|P| ,

HV (X∗) = V ol(
⊎

x∗∈X∗

∏m
i=1[fi(x

∗), 1.1]), (8)

where V ol(•) is the Lebesgue measure. It is evident that when X∗ closely approximate the CPF, it typically exhibits smaller
IGD value and larger HV value.

IV. EXPERIMENTAL SETTING DETAILS

• Platform: The numerical experiments were conducted using the platform PlatEMO, which can be downloaded from the
website https://github.com/BIMK/PlatEMO.

• Common Parameters: Each test problem was evaluated across three objective dimensions: 5, 8, and 10. The corresponding
population sizes were set to 126, 156, and 275, respectively. Each algorithm was independently run 20 times with a
maximum of 1500 evolutionary generations per test problem.

• Specific Parameters: The private parameters of the five comparison algorithms were set to their recommended values in
their publications, matching the default settings on the platform PlatEMO. Specifically, in CMOCSO, the parameters used
to adjust the value of ϵ are set as follows: cp = 2, α = 0.95, and τ = 0.05. In CCMO, the parameter type controlling the
genetic operation operator is set to 1, indicating the use of SBX. In ICMA, the probability pc of an individual selecting
a mate from its neighbors is set to 0.7. Parameters for DSPCMDE, MTCMO, and the proposed DDEEA were predefined
within their algorithmic frameworks and did not include any additional private parameters. Besides, for the three genetic
operators, i.e., SBX, DE, and the polynomial mutation, their parameters are set to {pc = 1, ηc = 20}, {CR = 1, F = 0.5},
and {pm = 1/D, ηm = 20}, respectively.

• Results Presentation: The Wilcoxon rank-sum test was employed to assess whether there exists a statistically significant
difference in performance between the proposed DDEEA and the other comparison algorithms. For clarity, we utilized
symbols ”+”, ”–”, and ”=” to respectively indicate whether a comparison algorithm’s performance was superior to, inferior
to, or approximately equal to that of DDEEA. Additionally, symbol ”*” were used to highlight the algorithm that achieved
the best performance at each test problem.
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TABLE A-1: The comparison results among DDEEA-D, DDEEA-I, DDEEA-M, and DDEEA in T1 test series.

Metric Type Problem M DDEEA-D DDEEA-I DDEEA-M DDEEA

IGD
T1

C1–DTLZ1
5 1.286e-1 = 1.225e-1 +* 1.346e-1 = 0.1291
8 2.095e-1 = 2.014e-1 +* 2.119e-1 – 0.2085
10 2.193e-1 = 2.083e-1 +* 2.255e-1 – 0.2185

C3–DTLZ4
5 1.600e-1 = 1.579e-1 +* 1.609e-1 = 0.1594
8 2.623e-1 = 2.722e-1 – 2.626e-1 = 0.2622*
10 3.006e-1 = 3.142e-1 – 2.986e-1 +* 0.3002

DC2–DTLZ1
5 1.343e-1 = 1.363e-1 – 1.367e-1 = 0.1335*
8 2.730e-1 = 3.088e-1 – 2.666e-1 =* 0.2702
10 3.896e-1 – 3.888e-1 – 5.788e-1 – 0.3548*

LYO1
5 2.494e-1 – 2.565e-1 – 2.643e-1 – 0.2357*
8 6.202e-1 = 5.789e-1 +* 6.272e-1 = 0.6164
10 6.820e-1 = 6.447e-1 +* 6.875e-1 = 0.6880

LYO2
5 1.390e-1 = 1.374e-1 =* 3.301e-1 – 0.1382
8 6.478e-1 – 2.647e-1 =* 7.500e-1 – 0.2798
10 8.668e-1 – 3.108e-1 – 8.950e-1 – 0.3094*

LYO3
5 3.401e-1 – 3.185e-1 = 1.171e+0 – 0.1794*
8 9.003e-1 – 1.455e-1 =* 4.037e-1 – 0.1556
10 5.545e-1 – 1.350e-1 = 5.605e-1 – 0.1319*

LYO4
5 1.543e-1 – 1.520e-1 – 1.704e-1 = 0.1502*
8 2.804e-1 – 2.639e-1 – 2.680e-1 = 0.2609*
10 3.180e-1 – 3.056e-1 – 3.144e-1 = 0.2959*

Summary (+/–/=) 0/10/11 6/10/5 1/10/10

HV
T1

C1–DTLZ1
5 9.722e-1 = 9.683e-1 – 9.581e-1 = 0.9723*
8 9.955e-1 = 9.925e-1 – 9.955e-1 = 0.9957*
10 9.984e-1 = 9.963e-1 – 9.987e-1 +* 0.9983

C3–DTLZ4
5 9.572e-1 = 9.567e-1 – 9.579e-1 +* 0.9572
8 9.961e-1 = 9.954e-1 – 9.962e-1 =* 0.9961
10 9.994e-1 = 9.991e-1 – 9.994e-1 +* 0.9993

DC2–DTLZ1
5 9.707e-1 = 9.662e-1 – 9.711e-1 =* 0.9709
8 9.883e-1 = 9.568e-1 – 9.918e-1 +* 0.9894
10 9.500e-1 – 9.230e-1 – 7.104e-1 – 0.9776*

LYO1
5 7.119e-1 – 6.885e-1 – 7.132e-1 – 0.7248*
8 5.834e-1 = 6.449e-1 +* 5.897e-1 = 0.5900
10 6.747e-1 = 7.445e-1 +* 6.678e-1 = 0.6597

LYO2
5 9.704e-1 = 9.701e-1 – 7.563e-1 – 0.9706*
8 4.556e-1 – 9.909e-1 =* 3.617e-1 – 0.9741
10 2.153e-1 – 9.909e-1 +* 2.196e-1 – 0.9644

LYO3
5 6.605e-1 – 7.608e-1 = 1.491e-1 – 0.9121*
8 2.660e-1 – 9.245e-1 = 6.584e-1 – 0.9486*
10 4.523e-1 – 9.115e-1 = 6.109e-1 – 0.9280*

LYO4
5 9.593e-1 – 9.599e-1 – 9.437e-1 = 0.9615*
8 9.881e-1 – 9.918e-1 – 9.914e-1 = 0.9930*
10 9.961e-1 – 9.971e-1 – 9.952e-1 = 0.9980*

Summary (+/–/=) 0/10/11 3/14/4 4/8/9
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TABLE A-2: The comparison results among DDEEA-D, DDEEA-I, DDEEA-M, and DDEEA in T2 and T3 test series.

Metric Type Problem M DDEEA-D DDEEA-I DDEEA-M DDEEA

IGD

T2

C2–DTLZ2
5 1.712e-1 = 1.661e-1 +* 1.739e-1 – 0.1714
8 2.677e-1 = 2.620e-1 +* 2.738e-1 – 0.2682
10 2.792e-1 = 2.768e-1 +* 2.848e-1 – 0.2807

DC1–DTLZ1
5 9.883e-2 = 9.904e-2 – 9.782e-2 = 0.0976*
8 3.880e-1 =* 4.288e-1 – 4.365e-1 = 0.3936
10 3.441e-1 – 3.261e-1 – 3.181e-1 = 0.3086*

DC3–DTLZ1
5 9.909e-2 = 7.026e-2 +* 2.036e+0 – 0.0777
8 3.216e+0 – 2.812e-1 =* 4.347e+0 – 1.4000
10 4.516e+0 = 5.417e+0 = 4.498e+0 = 3.8800*

T3

LYO5
5 1.384e-1 = 1.393e-1 – 1.386e-1 = 0.1381*
8 2.310e-1 = 2.370e-1 – 2.289e-1 +* 0.2304
10 2.496e-1 = 2.561e-1 – 2.474e-1 =* 0.2489

LYO6
5 6.671e-2 = 6.416e-2 +* 6.870e-2 = 0.0666
8 9.111e-2 = 9.217e-2 = 9.020e-2 =* 0.0915
10 9.018e-2 = 9.120e-2 = 8.855e-2 = 0.0883*

LYO7
5 2.029e-1 +* 2.145e-1 – 2.055e-1 = 0.2056
8 3.659e-1 – 3.729e-1 – 3.663e-1 = 0.3633*
10 4.246e-1 – 4.318e-1 – 4.168e-1 +* 0.4193

LYO8
5 1.492e-1 – 1.564e-1 – 1.466e-1 =* 0.1470
8 2.613e-1 = 2.704e-1 – 2.597e-1 =* 0.2601
10 2.886e-1 = 3.039e-1 – 2.887e-1 = 0.2880*

Summary (+/–/=) 1/5/15 5/12/4 2/5/14

HV

T2

C2–DTLZ2
5 7.067e-1 = 7.201e-1 +* 6.996e-1 – 0.7062
8 8.227e-1 = 8.337e-1 +* 8.111e-1 – 0.8209
10 8.863e-1 = 8.969e-1 +* 8.762e-1 – 0.8842

DC1–DTLZ1
5 8.067e-1 = 8.056e-1 – 8.069e-1 =* 0.8068
8 5.936e-1 = 5.514e-1 – 5.654e-1 = 0.5940*
10 8.167e-1 – 8.158e-1 – 8.277e-1 = 0.8283*

DC3–DTLZ1
5 7.235e-1 – 7.409e-1 – 5.268e-2 – 0.7467*
8 8.862e-2 – 5.339e-1 =* 0.000e+0 – 0.4507
10 4.756e-2 =* 3.165e-2 = 2.441e-2 = 0.0009

T3

LYO5
5 9.712e-1 =* 9.700e-1 – 9.711e-1 = 0.9711
8 9.968e-1 = 9.960e-1 – 9.969e-1 =* 0.9969
10 9.996e-1 = 9.994e-1 – 9.996e-1 =* 0.9996

LYO6
5 9.997e-1 =* 9.997e-1 = 9.997e-1 = 0.9997
8 1.000e+0 = 1.000e+0 = 1.000e+0 =* 1.0000
10 1.000e+0 =* 1.000e+0 = 1.000e+0 = 1.0000

LYO7
5 7.793e-1 = 7.574e-1 – 7.763e-1 – 0.7803*
8 8.965e-1 – 8.827e-1 – 8.984e-1 – 0.9024*
10 9.447e-1 – 9.336e-1 – 9.498e-1 = 0.9511*

LYO8
5 9.626e-1 – 9.590e-1 – 9.643e-1 =* 0.9642
8 9.935e-1 – 9.919e-1 – 9.939e-1 = 0.9939*
10 9.983e-1 – 9.974e-1 – 9.984e-1 = 0.9984*

Summary (+/–/=) 0/8/13 3/13/5 0/7/14


