

1 **Note S1**

2 We conducted a literature review to retrieve information about N_2O emissions and NO_3^- leaching
3 in the U.S. Corn Belt. The search was conducted through Web of Science®. The 31 of June 2024
4 was selected as a cut-off date, after which literature searches were no longer conducted. The
5 implemented keywords were: “fertilizer”, “nitrogen” OR “N”, “agriculture”, “nitrous oxide”,
6 “emissions”, “nitrate”, and “leaching”. The selection criteria were: (i) the experiment was
7 conducted in the studied states within the United States of America (Iowa, Illinois, Indiana,
8 Minnesota, Missouri, North Dakota, Nebraska, and Wisconsin); (ii) the experiments were
9 performed in field conditions; (iii) only corn-based systems were considered; (iv) the implemented
10 N rates were between 50 kg N ha^{-1} and 300 kg N ha^{-1} because N_2O emissions and NO_3^- leaching
11 were calculated at the E[AONR], E[EONR], and the 0.3 quantile of the EONR; and (v) manure
12 were not included because of uncertainty and variability in nutrient composition. Out of the
13 retrieved articles, a total of 31 studies were considered to summarize N_2O emissions and NO_3^-
14 leaching in the U.S. Corn Belt (**Table S3**).

15 **Supplementary Tables**

16

17 **Table S1.** Prior probability distributions of the parameters in the quadratic plateau models fitted
 18 to the relationship between grain yield and nitrogen rates. Inside the parenthesis for the
 19 hyperparameters column, the left and the right numbers indicate the shape and the rate of the
 20 distribution, respectively.

State	Parameter	Probability Distribution	Hyperparameters
Iowa	β_0	gamma	(10.89, 0.0015)
	β_1		(3.26, 0.0467)
	β_2		(1.5, 10.00)
	σ_ε		(3.75, 0.0025)
Illinois	β_0	gamma	(9.389, 0.0014)
	β_1		(2.82, 0.043)
	β_2		(0.96, 8.00)
	σ_ε		(3.75, 0.0025)
Indiana	β_0	gamma	(10.43, 0.0015)
	β_1		(2.64, 0.039)
	β_2		(1.22, 8.75)
	σ_ε		(3.75, 0.0025)
Minnesota	β_0	gamma	(9.041, 0.0015)
	β_1		(2.16, 0.045)
	β_2		(1.025, 11.39)
	σ_ε		(6.51, 0.0042)
Missouri	β_0	gamma	(13.68, 0.0021)
	β_1		(1.98, 0.0415)
	β_2		(1.20, 7.083)
	σ_ε		(8.026, 0.0044)

21 **Table S1** (continued).

State	Parameter	Probability Distribution	Hyperparameters
North Dakota	β_0	gamma	(13.26, 0.0018)
	β_1		(0.914, 0.0307)
	β_2		(0.916, 8.33)
	σ_ε		(9.17, 0.0042)
Nebraska	β_0	gamma	(20.28, 0.00205)
	β_1		(1.838, 0.0416)
	β_2		(0.89, 8.14)
	σ_ε		(8.105, 0.0043)
Wisconsin	β_0	gamma	(20.17, 0.00217)
	β_1		(1.703, 0.0382)
	β_2		(1.071, 7.1428)
	σ_ε		(5.266, 0.00315)

22

23

24 **Table S2.** Reason justifying why the sites in this table were not included to analyze nitrogen
 25 reductions. AONR stands for the agronomic optimum nitrogen rate, $E[AONR]$ is the expected
 26 value of the AONR. N rate represents the nitrogen fertilization rate applied to maize crop at
 27 planting. EONR represents the economic optimum nitrogen rate. \hat{R} (“R hat”) indicates the Gelman-
 28 Rubin diagnostic. The column site indicates the number of the experiment in the original dataset.

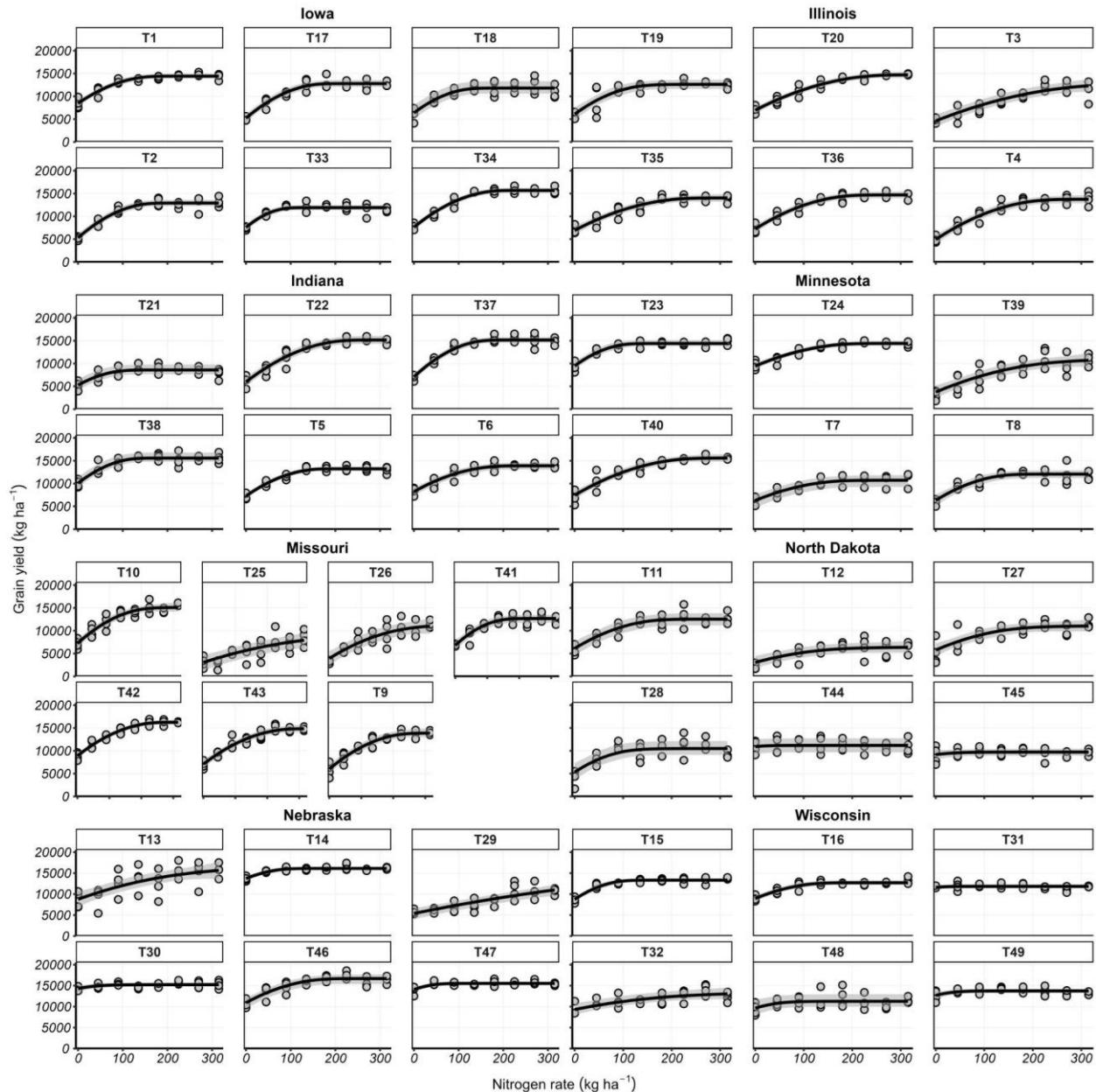
State	Site	Reason
Illinois	T3	$E[AONR] > \text{max}(N \text{ rate})$
Minnesota	T39	$E[AONR] > \text{max}(N \text{ rate})$
Missouri	T25	$E[AONR] > \text{max}(N \text{ rate})$ and $\hat{R} > 1.02$ for EONR
Missouri	T26	$E[AONR] > \text{max}(N \text{ rate})$ and $\hat{R} > 1.02$ for EONR
North Dakota	T12	$E[AONR] > \text{max}(N \text{ rate})$ and $\hat{R} > 1.02$ for EONR
North Dakota	T27	$\hat{R} > 1.02$ for EONR
North Dakota	T28	$\hat{R} > 1.02$ for EONR
North Dakota	T44	$\hat{R} > 1.02$ for AONR and EONR
North Dakota	T45	$\hat{R} > 1.02$ for AONR and EONR
Nebraska	T13	$E[AONR] > \text{max}(N \text{ rate})$ and $\hat{R} > 1.02$ for EONR
Nebraska	T29	$E[AONR] > \text{max}(N \text{ rate})$ and $\hat{R} > 1.02$ for EONR
Nebraska	T30	$\hat{R} > 1.02$ for AONR and EONR
Nebraska	T47	$\hat{R} > 1.02$ for AONR and EONR
Wisconsin	T31	$\hat{R} > 1.02$ for EONR
Wisconsin	T32	$E[AONR] > \text{max}(N \text{ rate})$ and $\hat{R} > 1.02$ for EONR
Wisconsin	T48	$\hat{R} > 1.02$ for EONR
Wisconsin	T49	$\hat{R} > 1.02$ for AONR and EONR

29 **Table S3.** Descriptive statistics for the retrieved studies addressing N_2O emissions and NO_3^- leaching in the United States Corn Belt.
 30 The last column indicates the minimum (Min), 0.25 quantile (Q0.25), the mean, the variance, 0.75 quantile (Q0.75), and the maximum
 31 value of N_2O emissions and NO_3^- leaching across all the studies.

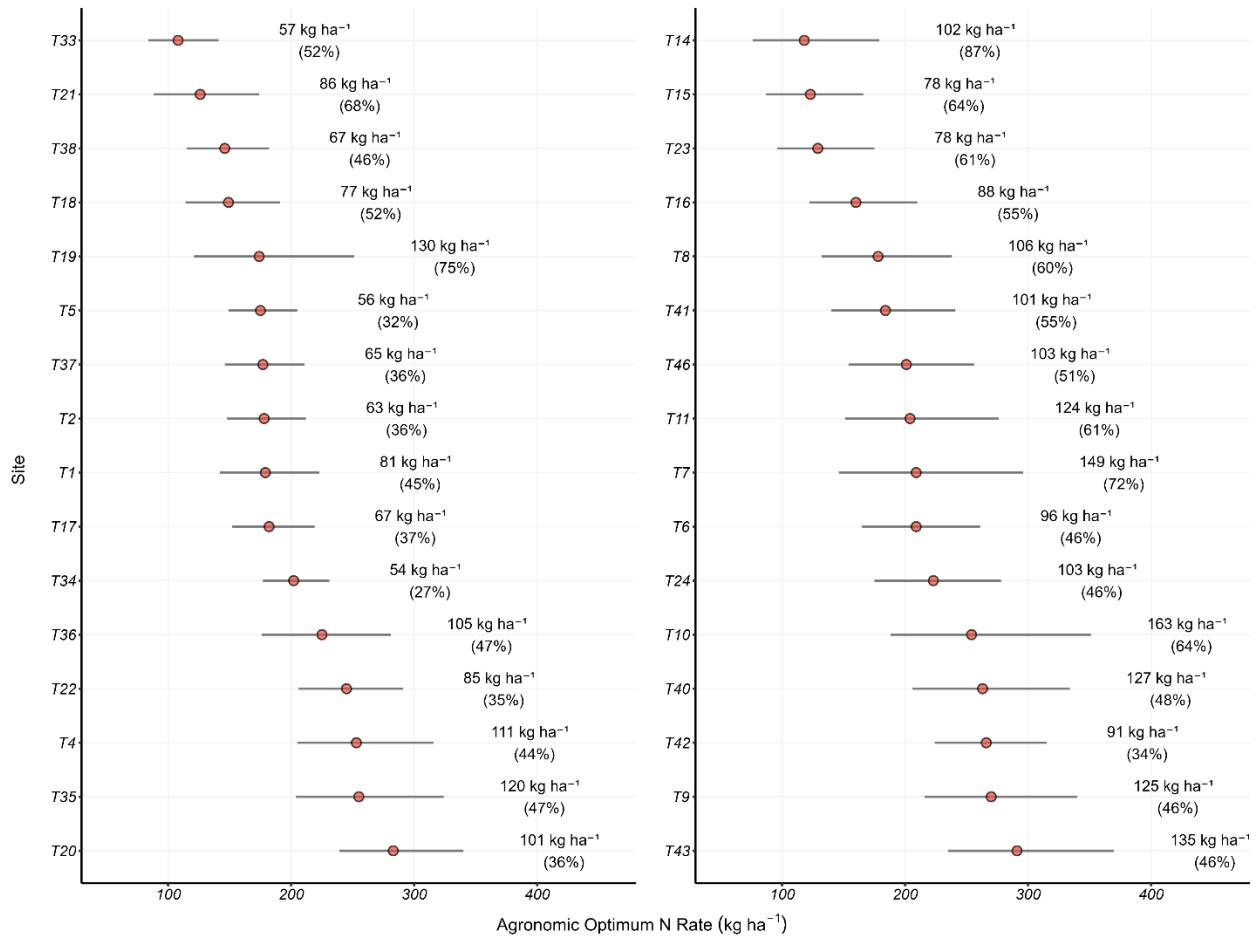
Reference	Number of Obs.	State	$\text{N}_2\text{O} - \text{N}$ (kg ha^{-1})		$\text{N}_2\text{O} - \text{N}$ (kg ha^{-1})				
			Mean	Variance	Min	Q0.25	Mean	Variance	Q0.75
Adviento-Borbe et al. (2007) ¹	10	NE	3.71	5.71					
Fujinuma et al. (2011) ²	6	MN	0.90	0.24					
Maharjan and Venterea (2013) ³	3	MN	2.43	0.82					
Maharjan et al. (2014) ⁴	3	MN	0.34	0.01					
Parkin and Hatfield (2010) ⁵	2	IA	6.14	1.57					
Phillips et al. (2009) ⁶	2	ND	0.48	0.01					
Smith et al. (2011) ⁷	8	IN	2.82	0.22					
Venterea et al. (2010) ⁸	12	MN	1.59	0.65	0.28	1.29	3.93	11.65	5.37
Hernandez-Ramirez et al. (2009) ⁹	4	IN	5.65	1.08					
Johnson et al. (2010) ¹⁰	9	MN	5.29	0.77					
Mitchell et al. (2013) ¹¹	4	IA	4.49	1.00					
Omonode and Vyn (2013) ¹²	8	IN	4.09	29.47					
Johnson II et al. (2024) ¹³	2	IA	1.01	0.12					
Preza-Fontes et al. (2023) ¹⁴	9	IL	10.40	3.29					

32

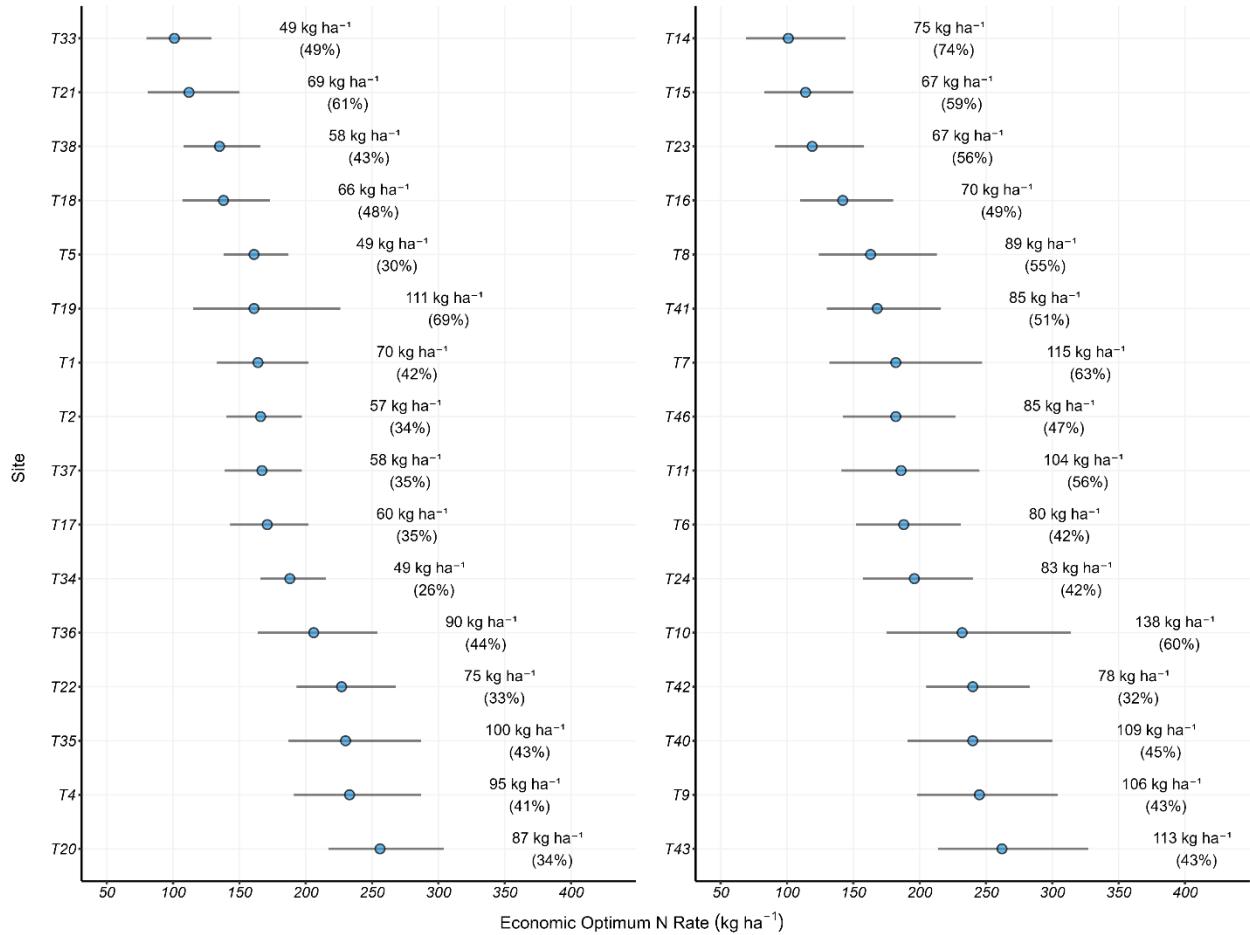
33

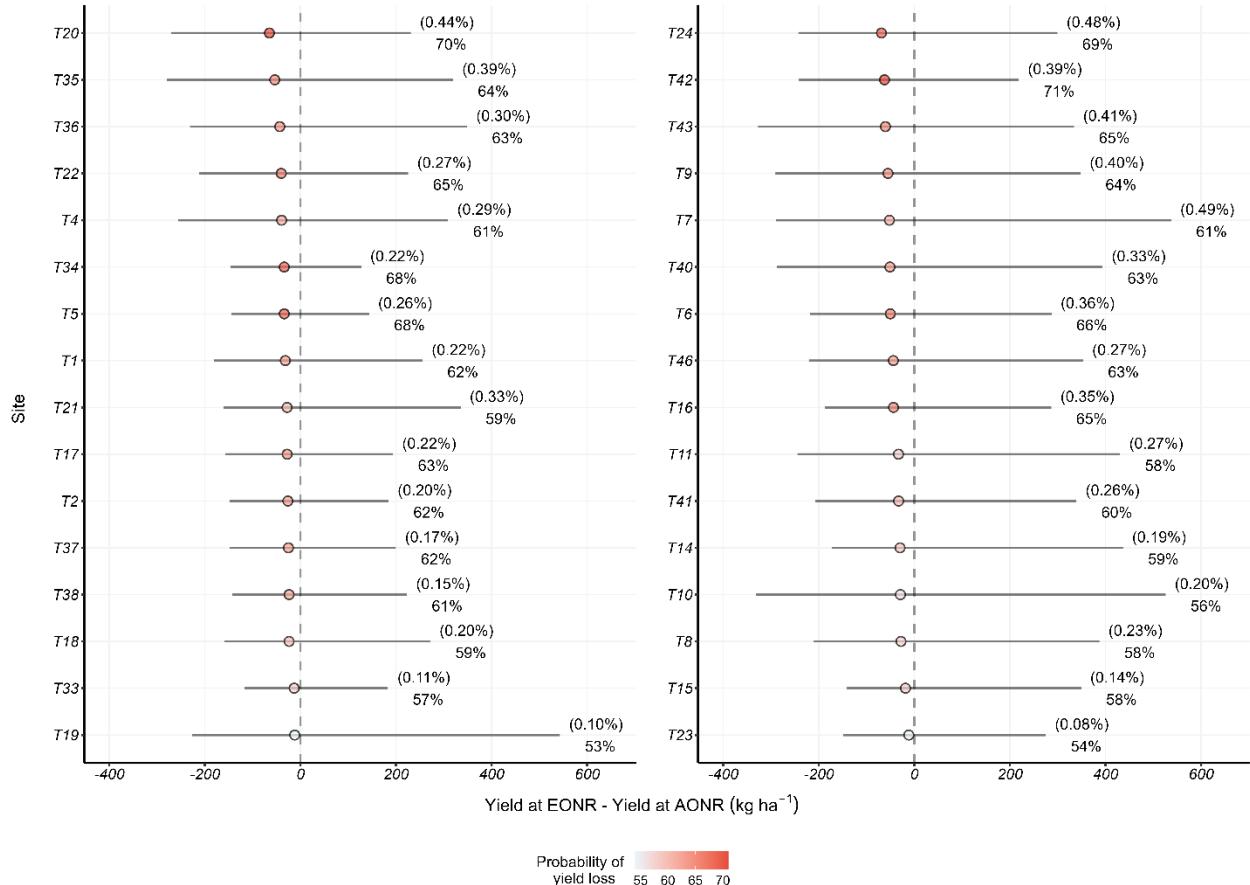

34 **Table S3** (continued).

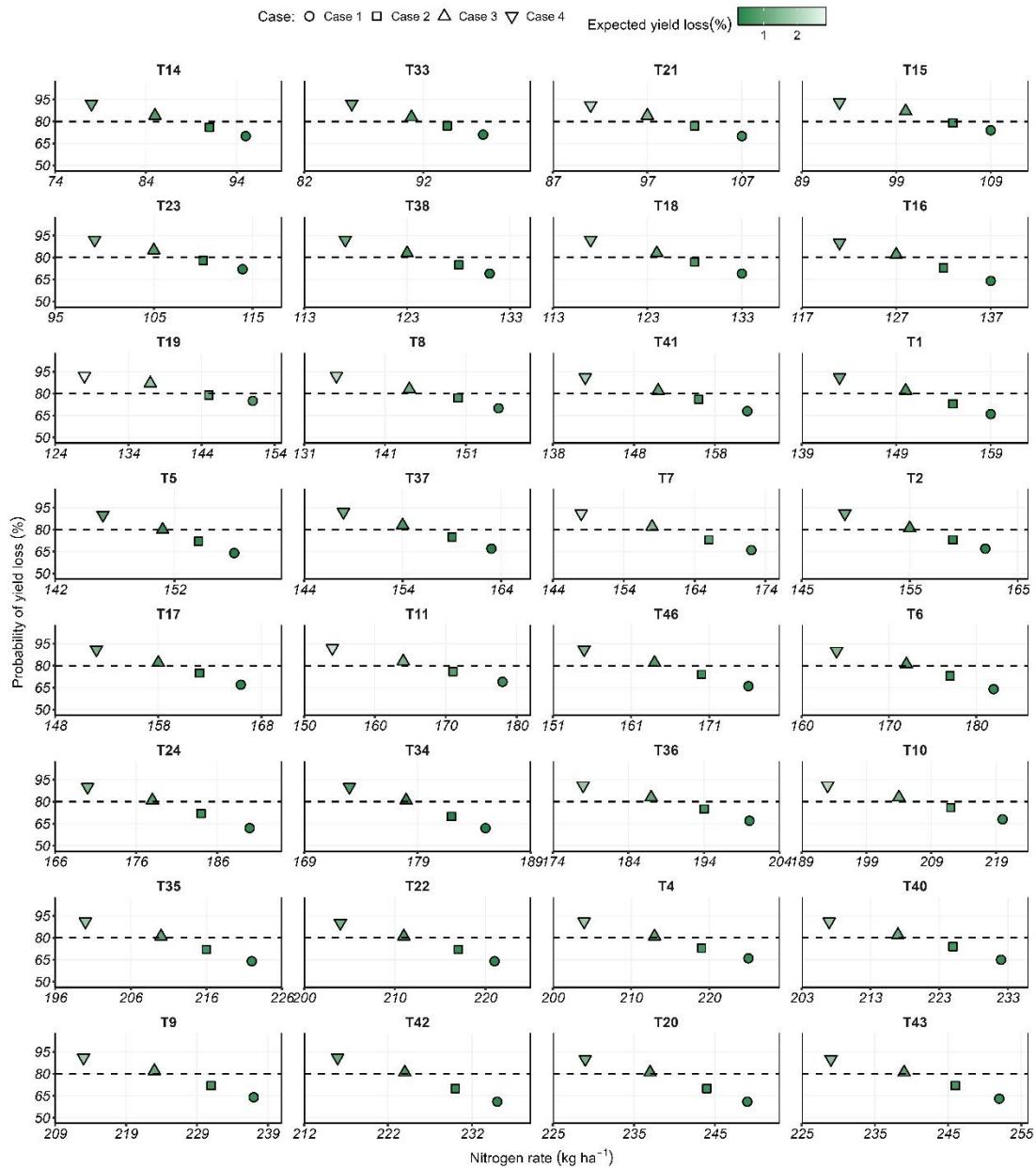
35

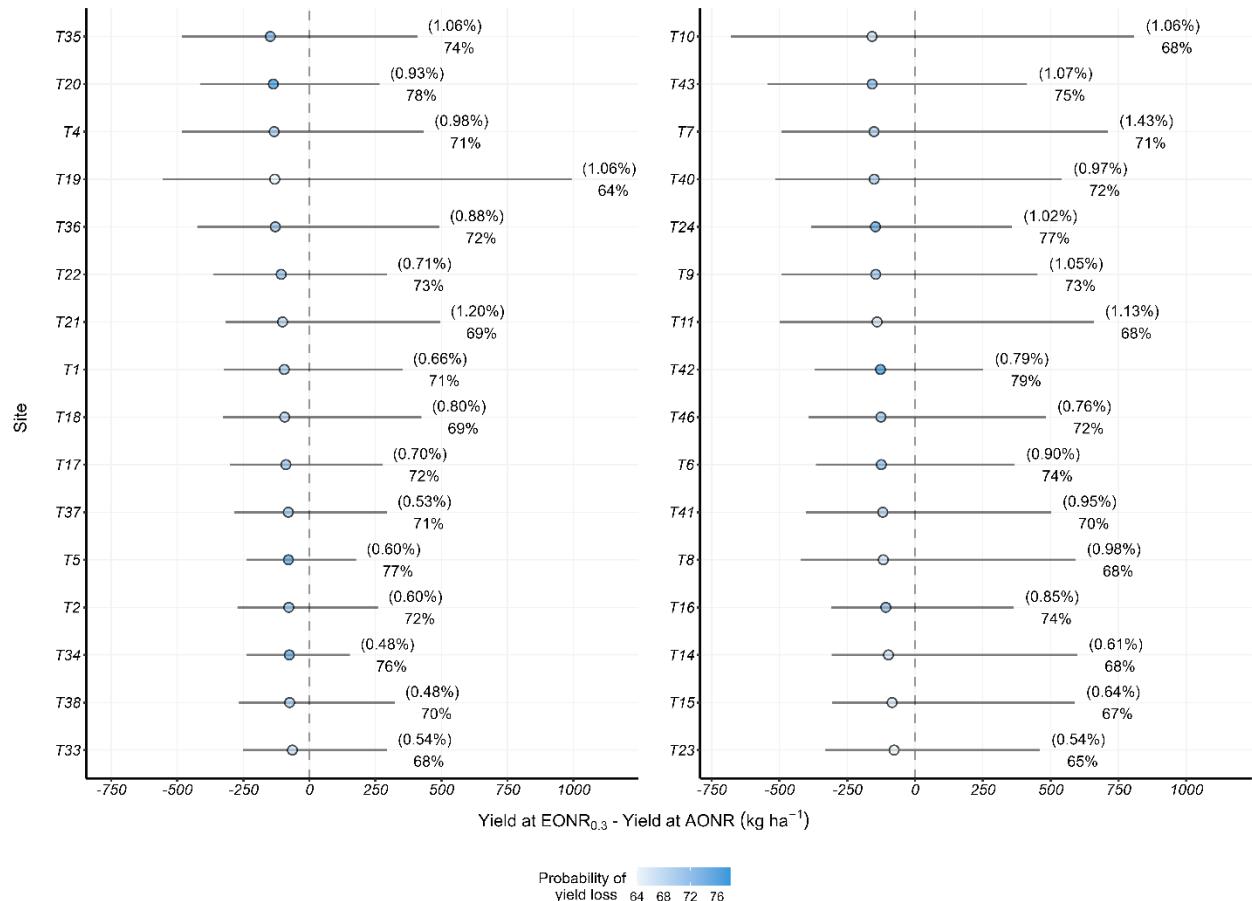

Reference	Number of Obs.	State	$\text{NO}_3^- - \text{N}$ (kg ha^{-1})		$\text{NO}_3^- - \text{N}$ (kg ha^{-1})					
			Mean	Variance	Min	Q0.25	Mean	Variance	Q0.75	Max
Bakhsh et al. (2007) ¹⁵	5	IA	10.1	48						
Bakhsh et al. (2010) ¹⁶	10	IA	11.4	55						
Helmers et al. (2012) ¹⁷	28	IA	46.7	403						
Jaynes (2013) ¹⁸	6	IA	32.3	127						
Jaynes et al. (2001) ¹⁹	6	IA	47.5	107						
Kucharik and Brye (2003) ²⁰	10	WI	56.1	3161						
Maharjan et al. (2014) ⁴	3	MN	25.8	19						
Prunty and Greenland (1997) ²¹	4	ND	47.2	2822						
Randall et al. (2003) ²²	24	MN	36.0	1209	0.02	14.0	34.8	1005	47.7	201.1
Randall and Vetsch (2005) ²³	24	MN	17.4	256						
Sexton et al. (1996) ²⁴	12	MN	60.0	1831						
Walters and Malzer (1990) ²⁵	24	MN	49.2	1726						
Kalita et al. (2006) ²⁶	21	IL	24.8	330						
O'Brien et al. (2022) ²⁷	10	IA	14.8	149						
Preza-Fontes et al. (2023) ¹⁴	3	IL	21.9	24						
Johnson II et al. (2024) ¹³	2	IA	26.1	283						
Gentry et al. (2023) ²⁸	6	IL	27.8	49						

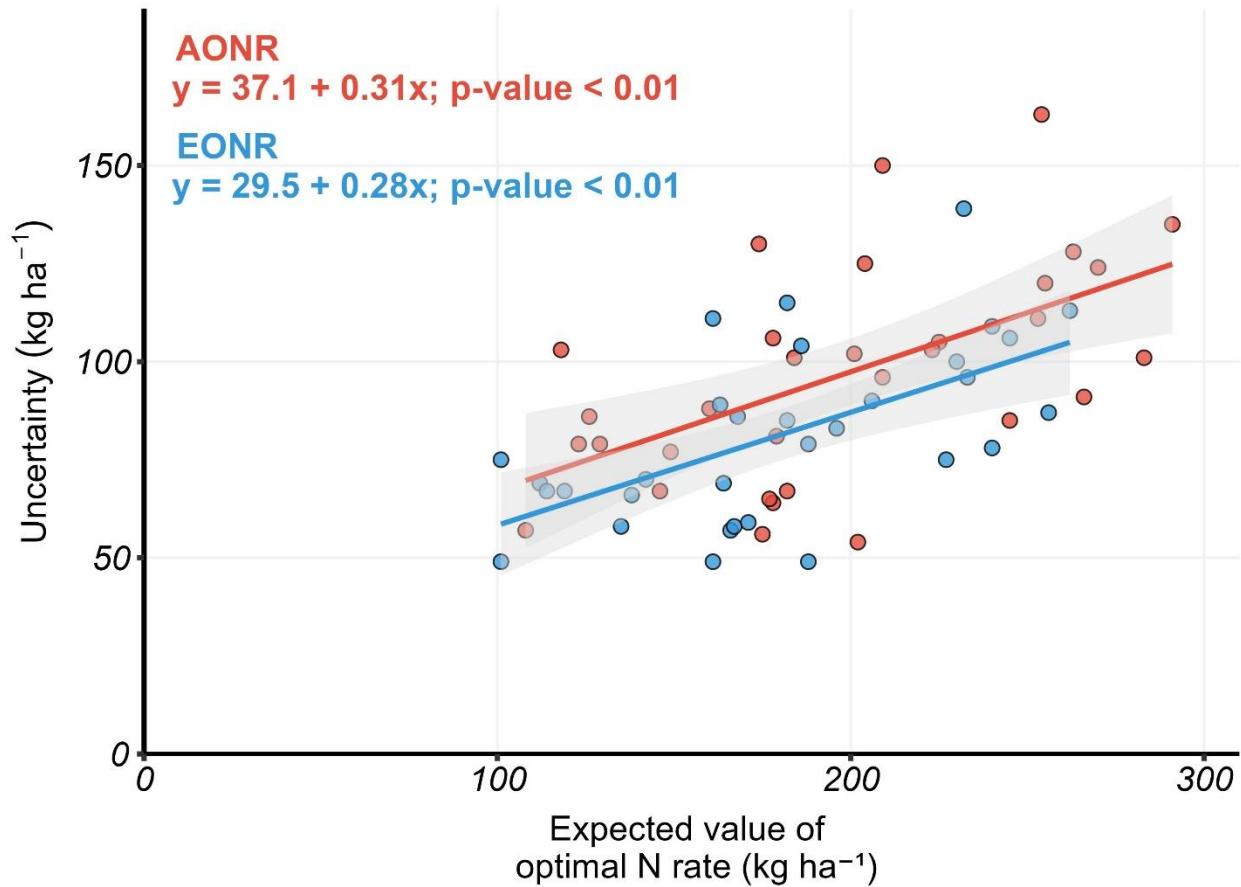
36 **Supplementary Figures**

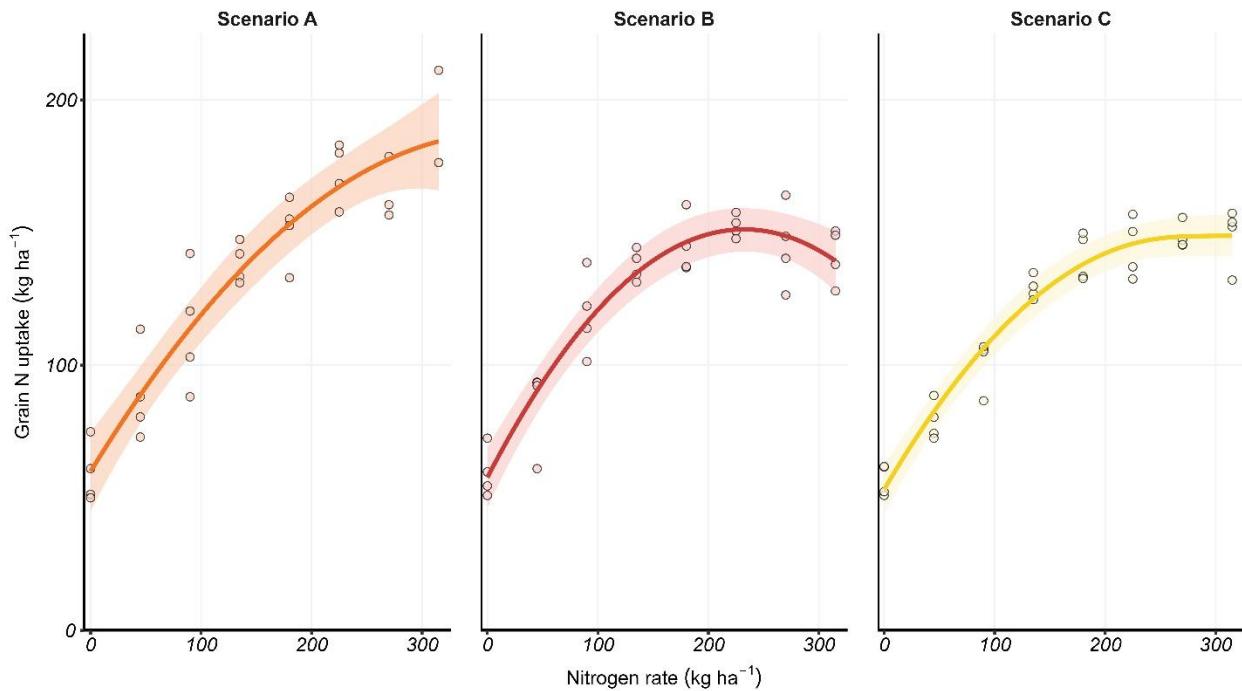

37


38 **Fig. S1.** Relationship between maize grain yield (y) and nitrogen rate (x) in each of the studied
 39 sites. The solid lines represent the expected grain yield at different nitrogen rates. The shadow
 40 areas indicate the 95% credible interval of the posterior predictive distributions. The label in each
 41 plot indicates the number of the trial in the original dataset.

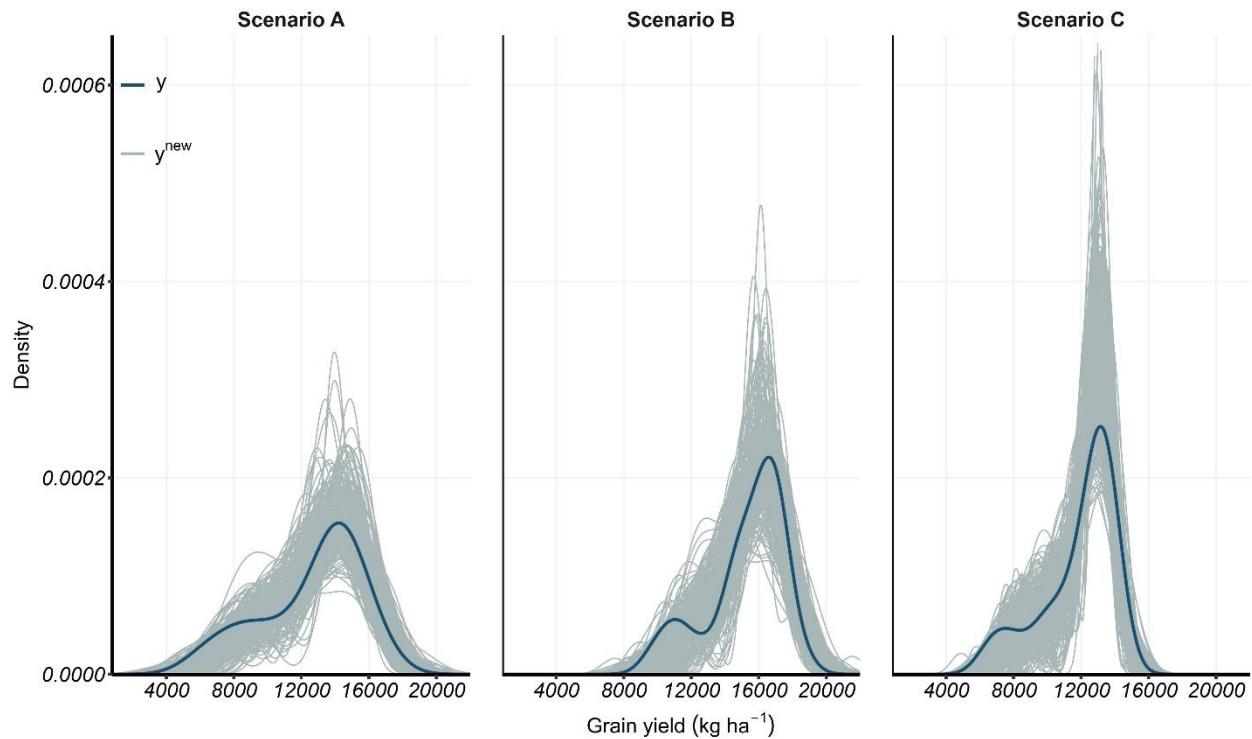

42 **Fig. S2.** Summary of the agronomic optimum nitrogen rate (AONR) for each of the selected sites.
43 Circles indicate the expected value of the distribution (E[AONR]), the horizontal bars and upper
44 values on the right indicate the 95% credible interval of the AONR, and the lower values, between
45 parentheses, on the right indicate the proportion of the uncertainty with respect to E[AONR]. The
46 labels in the y axis indicate the number of the trial in the original dataset.


48 **Fig. S3.** Summary of the economic optimum nitrogen rate (EONR) for each of the selected sites.
49 Circles indicate the expected value of the distribution ($E[\text{EONR}]$), the horizontal bars and upper-
50 level values on the right indicate the 95% credible interval of the EONR, and the lower-level
51 values, between parentheses, on the right indicate the proportion of the uncertainty with respect
52 to $E[\text{EONR}]$. The labels in the y axis indicate the number of the trial in the original dataset.

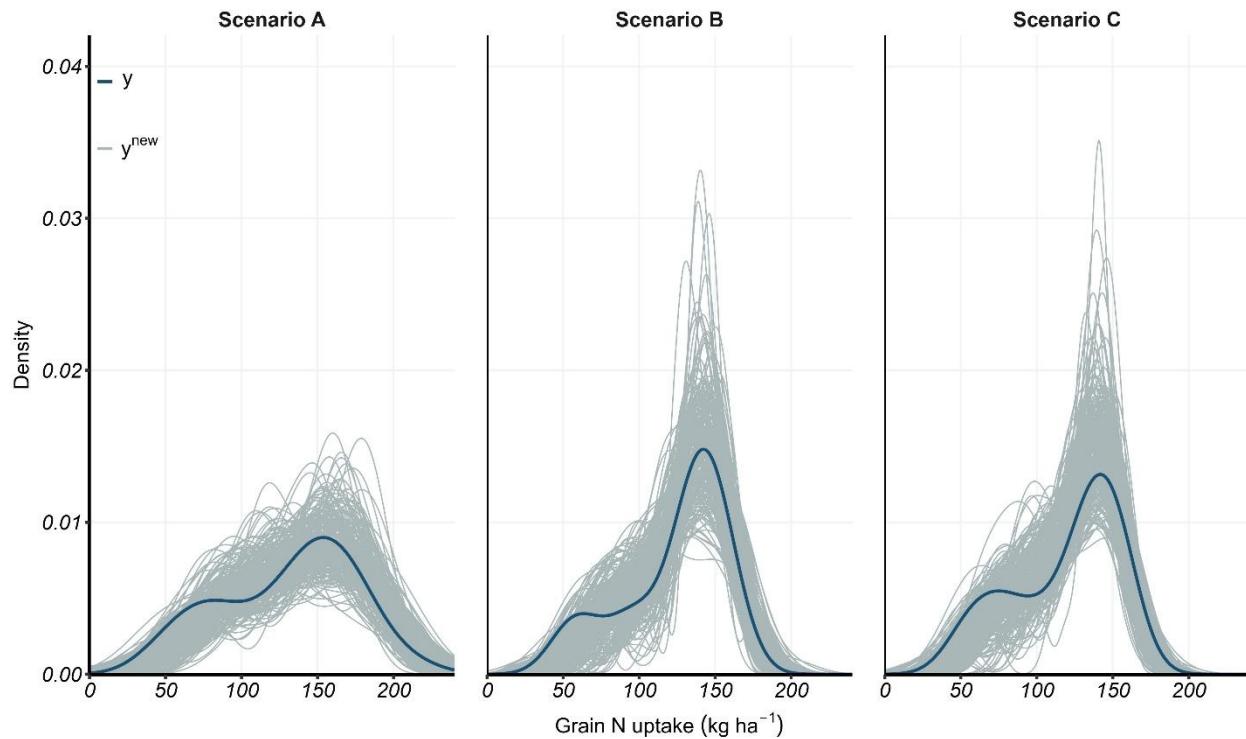

54 **Fig. S4.** Yield loss and its probability when reducing the nitrogen rate from the expected value of
 55 the agronomic optimum nitrogen rate probability distribution ($E[AONR]$) to expected value of the
 56 economic optimum nitrogen rate probability distribution ($E[EONR]$). This corresponds to Phase I
 57 of nitrogen reductions. Circles indicate the expected yield loss, the horizontal bars and indicate
 58 the 95% credible interval of the yield loss estimation. The upper-level values, between
 59 parentheses, on the right indicate the proportion of yield loss with respect to $E[AONR]$ and the
 60 lower-level values on the right and circle colors indicate the probability associated to each yield
 61 loss estimation. The labels in the y axis indicate the number of the trial in the original dataset.


63 **Fig. S5.** Probability of yield loss and expected yield loss with respect to yield at the economic
 64 optimum nitrogen rate (EONR) (Phase II) in a given quadratic plateau model within each site for
 65 each case of nitrogen fertilization reduction. Cases 1, 2, 3, and 4 represent the 0.4, 0.3, 0.2, and
 66 0.1 quantiles of the EONR probability distribution, respectively. The label in each plot indicates
 67 the number of the trial in the original dataset.

69 **Fig. S6.** Yield loss and its probability when reducing the nitrogen rate from the expected value of
70 the agronomic optimum nitrogen rate probability distribution (E[AONR]) to the 0.3 quantile of the
71 economic optimum nitrogen rate probability distribution (EONR_{0.3}). This corresponds to the total
72 nitrogen fertilization reductions Phases I and II. Circles indicate the expected yield loss, the
73 horizontal bars and indicate the 95% credible interval of the yield loss estimation. The upper-level
74 values, between parentheses, on the right indicate the proportion of yield loss with respect to
75 E[AONR] and the lower-level values on the right and circle colors indicate the probability
76 associated to each yield loss estimation. The labels in the y axis indicate the number of the trial
77 in the original dataset.



79 **Fig. S7.** Relationship between the expected value of the optimal nitrogen rates (AONR and
80 EONR) and their associated uncertainties. Solid line is the least square estimation of the
81 regression between the dependent (y) and independent (x) variables in this plot. Shadow area
82 represents the 95% confidence interval of the regression line. P-values < 0.01 indicate that the
83 slopes were different from zero for $\alpha = 0.01$.


85 **Fig. S8.** Relationship between grain nitrogen uptake (y) and nitrogen rate (x) in each of the
86 selected scenarios. The solid lines represent the expected nitrogen uptake at different nitrogen
87 rates. The shadow areas indicate the 95% credible interval of the posterior predictive distributions.

88

89 **Fig. S9.** Posterior predictive distributions for the models fitted to the maize grain yield versus
90 nitrogen rate relationship in each of the selected scenarios. The blue lines are the distribution of
91 the observed values of grain yield. The gray lines are two hundred curves representing the
92 distribution of 32 observations (total number of observations in each scenario) randomly sampled
93 from the posterior predictive distributions for grain yield.

94

95 **Fig. S10.** Posterior predictive distributions for the models fitted to the grain nitrogen uptake versus
96 nitrogen rate relationship in each of the selected scenarios. The blue lines are the distribution of
97 the observed values of grain nitrogen uptake. The gray lines are two hundred curves representing
98 the distribution of 32 observations (total number of observations in each scenario) randomly
99 sampled from the posterior predictive distributions for grain nitrogen uptake.

100

101 **References Table S3**

- 102 1. Adviento-Borbe, M. a. A., Haddix, M. L., Binder, D. L., Walters, D. T. & Dobermann, A. Soil
103 greenhouse gas fluxes and global warming potential in four high-yielding maize systems.
104 *Global Change Biology* **13**, 1972–1988 (2007).
- 105 2. Fujinuma, R., Venterea, R. T. & Rosen, C. Broadcast Urea Reduces N₂O but Increases NO
106 Emissions Compared with Conventional and Shallow-Applied Anhydrous Ammonia in a
107 Coarse-Textured Soil. *Journal of Environmental Quality* **40**, 1806–1815 (2011).
- 108 3. Maharjan, B. & Venterea, R. T. Nitrite intensity explains N management effects on N₂O
109 emissions in maize. *Soil Biology and Biochemistry* **66**, 229–238 (2013).
- 110 4. Maharjan, B., Venterea, R. T. & Rosen, C. Fertilizer and Irrigation Management Effects on
111 Nitrous Oxide Emissions and Nitrate Leaching. *Agronomy Journal* **106**, 703–714 (2014).
- 112 5. Parkin, T. B. & Hatfield, J. L. Influence of nitrpyrin on N₂O losses from soil receiving fall-
113 applied anhydrous ammonia. *Agriculture, Ecosystems & Environment* **136**, 81–86 (2010).
- 114 6. Phillips, R. L., Tanaka, D. L., Archer, D. W. & Hanson, J. D. Fertilizer Application Timing
115 Influences Greenhouse Gas Fluxes Over a Growing Season. *Journal of Environmental
116 Quality* **38**, 1569–1579 (2009).
- 117 7. Smith, D. R., Hernandez-Ramirez, G., Armstrong, S. D., Bucholtz, D. L. & Stott, D. E. Fertilizer
118 and Tillage Management Impacts on Non-Carbon-Dioxide Greenhouse Gas Emissions. *Soil
119 Science Society of America Journal* **75**, 1070–1082 (2011).
- 120 8. Venterea, R. T., Dolan, M. S. & Ochsner, T. E. Urea Decreases Nitrous Oxide Emissions
121 Compared with Anhydrous Ammonia in a Minnesota Corn Cropping System. *Soil Science
122 Society of America Journal* **74**, 407–418 (2010).
- 123 9. Hernandez-Ramirez, G., Brouder, S. M., Smith, D. R. & Van Scyoc, G. E. Greenhouse Gas
124 Fluxes in an Eastern Corn Belt Soil: Weather, Nitrogen Source, and Rotation. *Journal of
125 Environmental Quality* **38**, 841–854 (2009).
- 126 10. Johnson, J. M. F., Archer, D. & Barbour, N. Greenhouse Gas Emission from Contrasting
127 Management Scenarios in the Northern Corn Belt. *Soil Science Society of America Journal*
128 **74**, 396–406 (2010).
- 129 11. Mitchell, D. C., Castellano, M. J., Sawyer, J. E. & Pantoja, J. Cover Crop Effects on Nitrous
130 Oxide Emissions: Role of Mineralizable Carbon. *Soil Science Society of America Journal* **77**,
131 1765–1773 (2013).
- 132 12. Omonode, R. A. & Vyn, T. J. Nitrification Kinetics and Nitrous Oxide Emissions when Nitrpyrin
133 is Coapplied with Urea–Ammonium Nitrate. *Agronomy Journal* **105**, 1475–1486 (2013).

- 134 13. Johnson, F. E., Roth, R. T., Ruffatti, M. D. & Armstrong, S. D. Cover crop impacts on nitrogen
135 losses and environmental damage cost. *Agriculture, Ecosystems & Environment* **363**, 108859
136 (2024).
- 137 14. Preza-Fontes, G., Christianson, L. E., Greer, K., Bhattarai, R. & Pittelkow, C. M. In-season
138 split nitrogen application and cover cropping effects on nitrous oxide emissions in rainfed
139 maize. *Agriculture, Ecosystems & Environment* **326**, 107813 (2022).
- 140 15. Bakhsh, A., Kanwar, R. S., Pederson, C. & Bailey, T. B. N-Source Effects on Temporal
141 Distribution of NO₃-N Leaching Losses to Subsurface Drainage Water. *Water Air Soil Pollut*
142 **181**, 35–50 (2007).
- 143 16. Bakhsh, A., Kanwar, R. S. & Baker, J. L. N-Application Methods and Precipitation Pattern
144 Effects on Subsurface Drainage Nitrate Losses and Crop Yields. *Water Air Soil Pollut* **212**,
145 65–76 (2010).
- 146 17. Helmers, M. J., Zhou, X., Baker, J. L., Melvin, S. W. & Lemke, D. W. Nitrogen loss on tile-
147 drained Mollisols as affected by nitrogen application rate under continuous corn and corn-
148 soybean rotation systems. *Can. J. Soil. Sci.* **92**, 493–499 (2012).
- 149 18. Jaynes, D. B. Nitrate loss in subsurface drainage and corn yield as affected by timing of
150 sidedress nitrogen. *Agricultural Water Management* **130**, 52–60 (2013).
- 151 19. Jaynes, D. b., Colvin, T. s., Karlen, D. I., Cambardella, C. a. & Meek, D. w. Nitrate Loss in
152 Subsurface Drainage as Affected by Nitrogen Fertilizer Rate. *Journal of Environmental Quality*
153 **30**, 1305–1314 (2001).
- 154 20. Kucharik, C. J. & Brye, K. R. Integrated Biosphere Simulator (IBIS) Yield and Nitrate Loss
155 Predictions for Wisconsin Maize Receiving Varied Amounts of Nitrogen Fertilizer. *Journal of*
156 *Environmental Quality* **32**, 247–268 (2003).
- 157 21. Prunty, L. & Greenland, R. Nitrate leaching using two potato-corn N-fertilizer plans on sandy
158 soil. *Agriculture, Ecosystems & Environment* **65**, 1–13 (1997).
- 159 22. Randall, G. W., Vetsch, J. A. & Huffman, J. R. Nitrate Losses in Subsurface Drainage from a
160 Corn–Soybean Rotation as Affected by Time of Nitrogen Application and Use of Nitrpyrin.
161 *Journal of Environmental Quality* **32**, 1764–1772 (2003).
- 162 23. Randall, G. W. & Vetsch, J. A. Nitrate Losses in Subsurface Drainage from a Corn–Soybean
163 Rotation as Affected by Fall and Spring Application of Nitrogen and Nitrpyrin. *Journal of*
164 *Environmental Quality* **34**, 590–597 (2005).
- 165 24. Sexton, B. T., Moncrief, J. F., Rosen, C. J., Gupta, S. C. & Cheng, H. H. Optimizing Nitrogen
166 and Irrigation Inputs for Corn Based on Nitrate Leaching and Yield on a Coarse-Textured Soil.
167 *Journal of Environmental Quality* **25**, 982–992 (1996).

- 168 25. Walters, D. T. & Malzer, G. L. Nitrogen Management and Nitrification Inhibitor Effects on
169 Nitrogen-15 Urea: II. Nitrogen Leaching and Balance. *Soil Science Society of America Journal*
170 **54**, 122–130 (1990).
- 171 26. Kalita, P. K., Algoazany, A. S., Mitchell, J. K., Cooke, R. A. C. & Hirschi, M. C. Subsurface
172 water quality from a flat tile-drained watershed in Illinois, USA. *Agriculture, Ecosystems &*
173 *Environment* **115**, 183–193 (2006).
- 174 27. O'Brien, P. L. *et al.* Nitrate losses and nitrous oxide emissions under contrasting tillage and
175 cover crop management. *Journal of Environmental Quality* **51**, 683–695 (2022).
- 176 28. Gentry, L. E. *et al.* Split fertilizer nitrogen application with a cereal rye cover crop reduces tile
177 nitrate loads in a corn–soybean rotation. *Journal of Environmental Quality* **53**, 90–100 (2024).
- 178