
Note S1  1 

We conducted a literature review to retrieve information about N2O emissions and 𝑁𝑂3
− leaching 2 

in the U.S. Corn Belt. The search was conducted through Web of Science®. The 31 of June 2024 3 

was selected as a cut-off date, after which literature searches were no longer conducted The 4 

implemented keywords were: “fertilizer”, “nitrogen” OR “N“, “agriculture”, “nitrous oxide”, 5 

“emissions”, “nitrate”, and “leaching”. The selection criteria were: (i) the experiment was 6 

conducted in the studied states within the United States of America (Iowa, Illinois, Indiana, 7 

Minnesota, Missouri, North Dakota, Nebraska, and Wisconsin); (ii) the experiments were 8 

performed in field conditions; (iii) only corn-based systems were considered; (iv) the implemented 9 

N rates were between 50 kg N ha-1 and 300 kg N ha-1 because N2O emissions and 𝑁𝑂3
− leaching 10 

were calculated at the E[AONR], E[EONR], and the 0.3 quantile of the EONR; and (v) manure 11 

were not included because of uncertainty and variability in nutrient composition. Out of the 12 

retrieved articles, a total of 31 studies were considered to summarize N2O emissions and 𝑁𝑂3
− 13 

leaching in the U.S. Corn Belt (Table S3).  14 



Supplementary Tables 15 

 16 

Table S1. Prior probability distributions of the parameters in the quadratic plateau models fitted 17 

to the relationship between grain yield and nitrogen rates. Inside the parenthesis for the 18 

hyperparameters column, the left and the right numbers indicate the shape and the rate of the 19 

distribution, respectively. 20 

 

State 
Parameter 

Probability 

Distribution 
Hyperparameters 

    

Iowa 

β0 

gamma 

(10.89, 0.0015) 

β1 (3.26, 0.0467) 

β2 (1.5, 10.00) 

σε (3.75, 0.0025) 

    

Illinois 

β0 

gamma 

(9.389, 0.0014) 

β1 (2.82, 0.043) 

β2 (0.96, 8.00) 

σε (3.75, 0.0025) 

    

Indiana 

β0 

gamma 

(10.43, 0.0015) 

β1 (2.64, 0.039) 

β2 (1.22, 8.75) 

σε (3.75, 0.0025) 

    

Minnesota 

β0 

gamma 

(9.041, 0.0015) 

β1 (2.16, 0.045) 

β2 (1.025, 11.39) 

σε (6.51, 0.0042) 

    

Missouri 

β0 

gamma 

(13.68, 0.0021) 

β1 (1.98, 0.0415) 

β2 (1.20, 7.083) 

σε (8.026, 0.0044) 



Table S1 (continued). 21 

 22 

  23 

State Parameter 
Probability 

Distribution 
Hyperparameters 

    

North Dakota 

β0 

gamma 

(13.26, 0.0018) 

β1 (0.914, 0.0307) 

β2 (0.916, 8.33) 

σε (9.17, 0.0042) 

    

Nebraska 

β0 

gamma 

(20.28, 0.00205) 

β1 (1.838, 0.0416) 

β2 (0.89, 8.14) 

σε (8.105, 0.0043) 

    

Wisconsin 

β0 

gamma 

(20.17, 0.00217) 

β1 (1.703, 0.0382) 

β2 (1.071, 7.1428) 

σε (5.266, 0.00315) 



Table S2. Reason justifying why the sites in this table were not included to analyze nitrogen 24 

reductions. AONR stands for the agronomic optimum nitrogen rate, E[AONR] is the expected 25 

value of the AONR. N rate represents the nitrogen fertilization rate applied to maize crop at 26 

planting. EONR represents the economic optimum nitrogen rate. R̂ (“R hat”) indicates the Gelman-27 

Rubin diagnostic. The column site indicates the number of the experiment in the original dataset. 28 

State Site Reason 

   

Illinois T3 E[AONR] > max(N rate) 

Minnesota T39 E[AONR] > max(N rate) 

Missouri T25 E[AONR] > max(N rate) and R̂ >1.02 for EONR 

Missouri T26 E[AONR] > max(N rate) and R̂ >1.02 for EONR 

North Dakota T12 E[AONR] > max(N rate) and R̂ >1.02 for EONR 

North Dakota T27 R̂ >1.02 for EONR 

North Dakota T28 R̂ >1.02 for EONR 

North Dakota T44 R̂ >1.02 for AONR and EONR 

North Dakota T45 R̂ >1.02 for AONR and EONR 

Nebraska T13 E[AONR] > max(N rate) and R̂ >1.02 for EONR 

Nebraska T29 E[AONR] > max(N rate) and R̂ >1.02 for EONR 

Nebraska T30 R̂ >1.02 for AONR and EONR 

Nebraska T47 R̂ >1.02 for AONR and EONR 

Wisconsin T31 R̂ >1.02 for EONR 

Wisconsin T32 E[AONR] > max(N rate) and R̂ >1.02 for EONR 

Wisconsin T48 R̂ >1.02 for EONR 

Wisconsin T49 R̂ >1.02 for AONR and EONR 



Table S3. Descriptive statistics for the retrieved studies addressing N2O emissions and NO3
− leaching in the United States Corn Belt. 29 

The last column indicates the minimum (Min), 0.25 quantile (Q0.25), the mean, the variance, 0.75 quantile (Q0.75), and the maximum 30 

value of N2O emissions and NO3
− leaching across all the studies. 31 

 32 

  33 

Reference 
Number 
of Obs. 

State  
N2O – N 
(kg ha-1) 

 

N2O – N 
(kg ha-1) 

    Mean Variance  Min Q0.25 Mean Variance Q0.75 Max 

Adviento-Borbe et al. (2007)1 10 NE  3.71 5.71  

0.28 1.29 3.93 11.65 5.37 16.26 

Fujinuma et al. (2011)2 6 MN  0.90 0.24  

Maharjan and Venterea (2013)3 3 MN  2.43 0.82  

Maharjan et al. (2014)4 3 MN  0.34 0.01  

Parkin and Hatfield (2010)5 2 IA  6.14 1.57  

Phillips et al. (2009)6 2 ND  0.48 0.01  

Smith et al. (2011)7 8 IN  2.82 0.22  

Venterea et al. (2010)8 12 MN  1.59 0.65  

Hernandez-Ramirez et al. (2009)9 4 IN  5.65 1.08  

Johnson et al. (2010)10 9 MN  5.29 0.77  

Mitchell et al. (2013)11 4 IA  4.49 1.00  

Omonode and Vyn (2013)12 8 IN  4.09 29.47  

Johnson II et al. (2024)13 2 IA  1.01 0.12  

Preza-Fontes et al. (2023)14 9 IL  10.40 3.29  



Table S3 (continued). 34 

35 

Reference 
Number 
of Obs. 

State  
NO3

− −N 
(kg ha-1) 

 
NO3

− − N 
(kg ha-1) 

    Mean Variance  Min Q0.25 Mean Variance Q0.75 Max 

Bakhsh et al. (2007)15 5 IA  10.1 48  

0.02 14.0 34.8 1005 47.7 201.1 

Bakhsh et al. (2010)16 10 IA  11.4 55  

Helmers et al. (2012)17 28 IA  46.7 403  

Jaynes (2013)18 6 IA  32.3 127  

Jaynes et al. (2001)19 6 IA  47.5 107  

Kucharik and Brye (2003)20 10 WI  56.1 3161  

Maharjan et al. (2014)4 3 MN  25.8 19  

Prunty and Greenland (1997)21 4 ND  47.2 2822  

Randall et al. (2003)22 24 MN  36.0 1209  

Randall and Vetsch (2005)23 24 MN  17.4 256  

Sexton et al. (1996)24 12 MN  60.0 1831  

Walters and Malzer (1990)25 24 MN  49.2 1726  

Kalita et al. (2006)26 21 IL  24.8 330  

O’Brien et al. (2022)27 10 IA  14.8 149  

Preza-Fontes et al. (2023)14 3 IL  21.9 24  

Johnson II et al. (2024)13 2 IA  26.1 283  

Gentry et al. (2023)28 6 IL  27.8 49  



Supplementary Figures 36 

 37 

Fig. S1. Relationship between maize grain yield (y) and nitrogen rate (x) in each of the studied 38 

sites. The solid lines represent the expected grain yield at different nitrogen rates. The shadow 39 

areas indicate the 95% credible interval of the posterior predictive distributions. The label in each 40 

plot indicates the number of the trial in the original dataset.41 



Fig. S2. Summary of the agronomic optimum nitrogen rate (AONR) for each of the selected sites. 42 

Circles indicate the expected value of the distribution (E[AONR]), the horizontal bars and upper 43 

values on the right indicate the 95% credible interval of the AONR, and the lower values, between 44 

parentheses, on the right indicate the proportion of the uncertainty with respect to E[AONR]. The 45 

labels in the y axis indicate the number of the trial in the original dataset. 46 

  47 



Fig. S3. Summary of the economic optimum nitrogen rate (EONR) for each of the selected sites. 48 

Circles indicate the expected value of the distribution (E[EONR]), the horizontal bars and upper-49 

level values on the right indicate the 95% credible interval of the EONR, and the lower-level 50 

values, between parentheses, on the right indicate the proportion of the uncertainty with respect 51 

to E[EONR]. The labels in the y axis indicate the number of the trial in the original dataset. 52 

  53 



Fig. S4. Yield loss and its probability when reducing the nitrogen rate from the expected value of 54 

the agronomic optimum nitrogen rate probability distribution (E[AONR]) to expected value of the 55 

economic optimum nitrogen rate probability distribution (E[EONR]). This corresponds to Phase I 56 

of nitrogen reductions. Circles indicate the expected yield loss, the horizontal bars and indicate 57 

the 95% credible interval of the yield loss estimation. The upper-level values, between 58 

parentheses, on the right indicate the proportion of yield loss with respect to E[AONR] and the 59 

lower-level values on the right and circle colors indicate the probability associated to each yield 60 

loss estimation. The labels in the y axis indicate the number of the trial in the original dataset. 61 

  62 



Fig. S5. Probability of yield loss and expected yield loss with respect to yield at the economic 63 

optimum nitrogen rate (EONR) (Phase II) in a given quadratic plateau model within each site for 64 

each case of nitrogen fertilization reduction. Cases 1, 2, 3, and 4 represent the 0.4, 0.3, 0.2, and 65 

0.1 quantiles of the EONR probability distribution, respectively. The label in each plot indicates 66 

the number of the trial in the original dataset. 67 

  68 



Fig. S6. Yield loss and its probability when reducing the nitrogen rate from the expected value of 69 

the agronomic optimum nitrogen rate probability distribution (E[AONR]) to the 0.3 quantile of the 70 

economic optimum nitrogen rate probability distribution (EONR0.3). This corresponds to the total 71 

nitrogen fertilization reductions Phases I and II. Circles indicate the expected yield loss, the 72 

horizontal bars and indicate the 95% credible interval of the yield loss estimation. The upper-level 73 

values, between parentheses, on the right indicate the proportion of yield loss with respect to 74 

E[AONR] and the lower-level values on the right and circle colors indicate the probability 75 

associated to each yield loss estimation. The labels in the y axis indicate the number of the trial 76 

in the original dataset. 77 

  78 



Fig. S7. Relationship between the expected value of the optimal nitrogen rates (AONR and 79 

EONR) and their associated uncertainties. Solid line is the least square estimation of the 80 

regression between the dependent (y) and independent (x) variables in this plot. Shadow area 81 

represents the 95% confidence interval of the regression line. P-values < 0.01 indicate that the 82 

slopes were different from zero for 𝛼 = 0.01. 83 

  84 



Fig. S8. Relationship between grain nitrogen uptake (y) and nitrogen rate (x) in each of the 85 

selected scenarios. The solid lines represent the expected nitrogen uptake at different nitrogen 86 

rates. The shadow areas indicate the 95% credible interval of the posterior predictive distributions. 87 

  88 



Fig. S9. Posterior predictive distributions for the models fitted to the maize grain yield versus 89 

nitrogen rate relationship in each of the selected scenarios. The blue lines are the distribution of 90 

the observed values of grain yield. The gray lines are two hundred curves representing the 91 

distribution of 32 observations (total number of observations in each scenario) randomly sampled 92 

from the posterior predictive distributions for grain yield. 93 

  94 



Fig. S10. Posterior predictive distributions for the models fitted to the grain nitrogen uptake versus 95 

nitrogen rate relationship in each of the selected scenarios. The blue lines are the distribution of 96 

the observed values of grain nitrogen uptake. The gray lines are two hundred curves representing 97 

the distribution of 32 observations (total number of observations in each scenario) randomly 98 

sampled from the posterior predictive distributions for grain nitrogen uptake. 99 

  100 
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