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Note S1

We conducted a literature review to retrieve information about N2O emissions and NO3 leaching
in the U.S. Corn Belt. The search was conducted through Web of Science®. The 31 of June 2024
was selected as a cut-off date, after which literature searches were no longer conducted The
implemented keywords were: “fertilizer”, “nitrogen” OR “NY, *“agriculture”, “nitrous oxide”,
“‘emissions”, “nitrate”, and “leaching”. The selection criteria were: (i) the experiment was
conducted in the studied states within the United States of America (lowa, lllinois, Indiana,
Minnesota, Missouri, North Dakota, Nebraska, and Wisconsin); (ii) the experiments were
performed in field conditions; (iii) only corn-based systems were considered; (iv) the implemented
N rates were between 50 kg N ha"and 300 kg N ha™' because N,O emissions and NO;3 leaching
were calculated at the E[AONR], E[EONR], and the 0.3 quantile of the EONR; and (v) manure
were not included because of uncertainty and variability in nutrient composition. Out of the
retrieved articles, a total of 31 studies were considered to summarize N.O emissions and NO3

leaching in the U.S. Corn Belt (Table S3).
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Supplementary Tables

Table S1. Prior probability distributions of the parameters in the quadratic plateau models fitted

to the relationship between grain yield and nitrogen rates. Inside the parenthesis for the

hyperparameters column, the left and the right numbers indicate the shape and the rate of the

distribution, respectively.

Probability
Parameter Hyperparameters

State Distribution

Bo (10.89, 0.0015)

B1 (3.26, 0.0467)
lowa gamma

B, (1.5, 10.00)

O¢ (3.75, 0.0025)

Bo (9.389, 0.0014)

B1 (2.82, 0.043)
lllinois gamma

B, (0.96, 8.00)

O¢ (3.75, 0.0025)

Bo (10.43, 0.0015)

B1 (2.64, 0.039)
Indiana gamma

B, (1.22, 8.75)

O¢ (3.75, 0.0025)

Bo (9.041, 0.0015)

: B1 (2.16, 0.045)

Minnesota gamma

B, (1.025, 11.39)

O¢ (6.51, 0.0042)

Bo (13.68, 0.0021)

. . B1 (1.98, 0.0415)

Missouri gamma

B2 (1.20, 7.083)

(8.026, 0.0044)




21  Table $1 (continued).

Probability
State Parameter o Hyperparameters
Distribution
Bo (13.26, 0.0018)
B1 (0.914, 0.0307)
North Dakota gamma
B2 (0.916, 8.33)
O¢ (9.17, 0.0042)
Bo (20.28, 0.00205)
B1 (1.838, 0.0416)
Nebraska gamma
B2 (0.89, 8.14)
O¢ (8.105, 0.0043)
Bo (20.17, 0.00217)
. . B1 (1.703, 0.0382)
Wisconsin gamma
B (1.071, 7.1428)
O¢ (5.266, 0.00315)

22
23
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Table S2. Reason justifying why the sites in this table were not included to analyze nitrogen
reductions. AONR stands for the agronomic optimum nitrogen rate, E[AONR] is the expected
value of the AONR. N rate represents the nitrogen fertilization rate applied to maize crop at
planting. EONR represents the economic optimum nitrogen rate. R (‘R hat”) indicates the Gelman-

Rubin diagnostic. The column site indicates the number of the experiment in the original dataset.

State Site Reason

lllinois T3 E[AONR] > max(N rate)

Minnesota T39 E[AONR] > max(N rate)

Missouri T25 E[AONR] > max(N rate) and R >1.02 for EONR
Missouri T26 E[AONR] > max(N rate) and R >1.02 for EONR
North Dakota T12 E[AONR] > max(N rate) and R >1.02 for EONR
North Dakota T27 R >1.02 for EONR

North Dakota T28 R >1.02 for EONR

North Dakota T44 R >1.02 for AONR and EONR

North Dakota  T45 R >1.02 for AONR and EONR

Nebraska T13 E[AONR] > max(N rate) and R >1.02 for EONR
Nebraska T29 E[AONR] > max(N rate) and R >1.02 for EONR
Nebraska T30 R >1.02 for AONR and EONR
Nebraska T47 R >1.02 for AONR and EONR

Wisconsin T31 R >1.02 for EONR
Wisconsin T32 E[AONR] > max(N rate) and R >1.02 for EONR
Wisconsin T48 R >1.02 for EONR

Wisconsin T49 R >1.02 for AONR and EONR
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Table S3. Descriptive statistics for the retrieved studies addressing N-O emissions and NO3 leaching in the United States Corn Belt.

The last column indicates the minimum (Min), 0.25 quantile (Q0.25), the mean, the variance, 0.75 quantile (Q0.75), and the maximum

value of N2O emissions and NO3 leaching across all the studies.

Reference g?ggg State ?lléoh;j\; ?l'éoh;.ﬁ\;
Mean Variance Min Q0.25 Mean Variance Q0.75 Max
Adviento-Borbe et al. (2007)' 10 NE 3.71 5.71
Fujinuma et al. (2011)? 6 MN 0.90 0.24
Maharjan and Venterea (2013)3 3 MN 2.43 0.82
Maharjan et al. (2014)* 3 MN 0.34 0.01
Parkin and Hatfield (2010)° 2 1A 6.14 1.57
Phillips et al. (2009)° 2 ND 0.48 0.01
Smith et al. (2011)7 8 IN 2.82 0.22
Venterea et al. (2010)® 12 MN 1.59 0.65 028 129 393 11.65 537 16.26
Hernandez-Ramirez et al. (2009)° 4 IN 5.65 1.08
Johnson et al. (2010)"° 9 MN 5.29 0.77
Mitchell et al. (2013)" 4 1A 4.49 1.00
Omonode and Vyn (2013)"? 8 IN 4.09 29.47
Johnson Il et al. (2024)"3 2 IA 1.01 0.12
Preza-Fontes et al. (2023)™ 9 IL 10.40 3.29
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Table S3 (continued).

Reference E?gg:_r State I(\Ik%3h;_1l\; 1(\Ik%3h;'}\;
Mean Variance Min Q0.25 Mean Variance QO0.75 Max

Bakhsh et al. (2007)15 5 IA 10.1 48
Bakhsh et al. (2010)16 10 IA 11.4 55
Helmers et al. (2012)" 28 1A 46.7 403
Jaynes (2013)® 6 IA 32.3 127
Jaynes et al. (2001)"° 6 IA 47.5 107
Kucharik and Brye (2003)% 10 Wi 56.1 3161
Maharjan et al. (2014)* 3 MN 25.8 19
Prunty and Greenland (1997)%' 4 ND 47.2 2822
Randall et al. (2003)?? 24 MN 36.0 1209 0.02 14.0 34.8 1005 47.7 2011
Randall and Vetsch (2005)% 24 MN 17.4 256
Sexton et al. (1996)* 12 MN 60.0 1831
Walters and Malzer (1990)% 24 MN 49.2 1726
Kalita et al. (2006)%° 21 IL 24.8 330
O’Brien et al. (2022)* 10 IA 14.8 149
Preza-Fontes et al. (2023)" 3 IL 21.9 24
Johnson Il et al. (2024)"3 2 1A 26.1 283
Gentry et al. (2023)% 6 IL 27.8 49
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38 Fig. S1. Relationship between maize grain yield (y) and nitrogen rate (x) in each of the studied
39 sites. The solid lines represent the expected grain yield at different nitrogen rates. The shadow
40 areas indicate the 95% credible interval of the posterior predictive distributions. The label in each
11 plot indicates the number of the trial in the original dataset.
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Fig. S2. Summary of the agronomic optimum nitrogen rate (AONR) for each of the selected sites.

Circles indicate the expected value of the distribution (E[AONRY]), the horizontal bars and upper
values on the right indicate the 95% credible interval of the AONR, and the lower values, between
parentheses, on the right indicate the proportion of the uncertainty with respect to E[AONR]. The

labels in the y axis indicate the number of the trial in the original dataset.
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Fig. S3. Summary of the economic optimum nitrogen rate (EONR) for each of the selected sites.

Circles indicate the expected value of the distribution (E[EONR]), the horizontal bars and upper-
level values on the right indicate the 95% credible interval of the EONR, and the lower-level
values, between parentheses, on the right indicate the proportion of the uncertainty with respect

to E[EONR]. The labels in the y axis indicate the number of the trial in the original dataset.
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Fig. S4. Yield loss and its probability when reducing the nitrogen rate from the expected value of
the agronomic optimum nitrogen rate probability distribution (E[AONR]) to expected value of the
economic optimum nitrogen rate probability distribution (E[EONR]). This corresponds to Phase |
of nitrogen reductions. Circles indicate the expected yield loss, the horizontal bars and indicate
the 95% credible interval of the vyield loss estimation. The upper-level values, between
parentheses, on the right indicate the proportion of yield loss with respect to E[AONR] and the
lower-level values on the right and circle colors indicate the probability associated to each yield

loss estimation. The labels in the y axis indicate the number of the trial in the original dataset.
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Fig. S5. Probability of yield loss and expected yield loss with respect to yield at the economic
optimum nitrogen rate (EONR) (Phase Il) in a given quadratic plateau model within each site for
each case of nitrogen fertilization reduction. Cases 1, 2, 3, and 4 represent the 0.4, 0.3, 0.2, and
0.1 quantiles of the EONR probability distribution, respectively. The label in each plot indicates
the number of the trial in the original dataset.
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Fig. S6. Yield loss and its probability when reducing the nitrogen rate from the expected value of
the agronomic optimum nitrogen rate probability distribution (E[AONRY]) to the 0.3 quantile of the
economic optimum nitrogen rate probability distribution (EONRo3). This corresponds to the total
nitrogen fertilization reductions Phases | and Il. Circles indicate the expected yield loss, the
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in the original dataset.
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Fig. $8. Relationship between grain nitrogen uptake (y) and nitrogen rate (x) in each of the
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rates. The shadow areas indicate the 95% credible interval of the posterior predictive distributions.
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Fig. S9. Posterior predictive distributions for the models fitted to the maize grain yield versus

nitrogen rate relationship in each of the selected scenarios. The blue lines are the distribution of
the observed values of grain yield. The gray lines are two hundred curves representing the
distribution of 32 observations (total number of observations in each scenario) randomly sampled

from the posterior predictive distributions for grain yield.
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Fig. S10. Posterior predictive distributions for the models fitted to the grain nitrogen uptake versus

nitrogen rate relationship in each of the selected scenarios. The blue lines are the distribution of
the observed values of grain nitrogen uptake. The gray lines are two hundred curves representing
the distribution of 32 observations (total number of observations in each scenario) randomly

sampled from the posterior predictive distributions for grain nitrogen uptake.



101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

References Table S3

1.

10.

1.

12.

Adviento-Borbe, M. a. A., Haddix, M. L., Binder, D. L., Walters, D. T. & Dobermann, A. Soil
greenhouse gas fluxes and global warming potential in four high-yielding maize systems.
Global Change Biology 13, 1972-1988 (2007).

Fujinuma, R., Venterea, R. T. & Rosen, C. Broadcast Urea Reduces N20 but Increases NO
Emissions Compared with Conventional and Shallow-Applied Anhydrous Ammonia in a
Coarse-Textured Soil. Journal of Environmental Quality 40, 1806—1815 (2011).

Maharjan, B. & Venterea, R. T. Nitrite intensity explains N management effects on N20
emissions in maize. Soil Biology and Biochemistry 66, 229-238 (2013).

Maharjan, B., Venterea, R. T. & Rosen, C. Fertilizer and Irrigation Management Effects on
Nitrous Oxide Emissions and Nitrate Leaching. Agronomy Journal 106, 703—714 (2014).
Parkin, T. B. & Hatfield, J. L. Influence of nitrapyrin on N20O losses from soil receiving fall-
applied anhydrous ammonia. Agriculture, Ecosystems & Environment 136, 81-86 (2010).
Phillips, R. L., Tanaka, D. L., Archer, D. W. & Hanson, J. D. Fertilizer Application Timing
Influences Greenhouse Gas Fluxes Over a Growing Season. Journal of Environmental
Quality 38, 1569—-1579 (2009).

Smith, D. R., Hernandez-Ramirez, G., Armstrong, S. D., Bucholtz, D. L. & Stott, D. E. Fertilizer
and Tillage Management Impacts on Non-Carbon-Dioxide Greenhouse Gas Emissions. Soil
Science Society of America Journal 75, 1070-1082 (2011).

Venterea, R. T., Dolan, M. S. & Ochsner, T. E. Urea Decreases Nitrous Oxide Emissions
Compared with Anhydrous Ammonia in a Minnesota Corn Cropping System. Soil Science
Society of America Journal 74, 407—-418 (2010).

Hernandez-Ramirez, G., Brouder, S. M., Smith, D. R. & Van Scoyoc, G. E. Greenhouse Gas
Fluxes in an Eastern Corn Belt Soil: Weather, Nitrogen Source, and Rotation. Journal of
Environmental Quality 38, 841-854 (2009).

Johnson, J. M. F., Archer, D. & Barbour, N. Greenhouse Gas Emission from Contrasting
Management Scenarios in the Northern Corn Belt. Soil Science Society of America Journal
74, 396-406 (2010).

Mitchell, D. C., Castellano, M. J., Sawyer, J. E. & Pantoja, J. Cover Crop Effects on Nitrous
Oxide Emissions: Role of Mineralizable Carbon. Soil Science Society of America Journal 77,
1765-1773 (2013).

Omonode, R. A. & Vyn, T. J. Nitrification Kinetics and Nitrous Oxide Emissions when Nitrapyrin
is Coapplied with Urea—Ammonium Nitrate. Agronomy Journal 105, 1475-1486 (2013).



134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Johnson, F. E., Roth, R. T., Ruffatti, M. D. & Armstrong, S. D. Cover crop impacts on nitrogen

losses and environmental damage cost. Agriculture, Ecosystems & Environment 363, 108859
(2024).

Preza-Fontes, G., Christianson, L. E., Greer, K., Bhattarai, R. & Pittelkow, C. M. In-season
split nitrogen application and cover cropping effects on nitrous oxide emissions in rainfed
maize. Agriculture, Ecosystems & Environment 326, 107813 (2022).

Bakhsh, A., Kanwar, R. S., Pederson, C. & Bailey, T. B. N-Source Effects on Temporal
Distribution of NO3-N Leaching Losses to Subsurface Drainage Water. Water Air Soil Pollut
181, 35-50 (2007).

Bakhsh, A., Kanwar, R. S. & Baker, J. L. N-Application Methods and Precipitation Pattern
Effects on Subsurface Drainage Nitrate Losses and Crop Yields. Water Air Soil Pollut 212,
65-76 (2010).

Helmers, M. J., Zhou, X., Baker, J. L., Melvin, S. W. & Lemke, D. W. Nitrogen loss on tile-
drained Mollisols as affected by nitrogen application rate under continuous corn and corn-
soybean rotation systems. Can. J. Soil. Sci. 92, 493-499 (2012).

Jaynes, D. B. Nitrate loss in subsurface drainage and corn yield as affected by timing of
sidedress nitrogen. Agricultural Water Management 130, 52—60 (2013).

Jaynes, D. b., Colvin, T. s., Karlen, D. I., Cambardella, C. a. & Meek, D. w. Nitrate Loss in
Subsurface Drainage as Affected by Nitrogen Fertilizer Rate. Journal of Environmental Quality
30, 1305-1314 (2001).

Kucharik, C. J. & Brye, K. R. Integrated Blosphere Simulator (IBIS) Yield and Nitrate Loss
Predictions for Wisconsin Maize Receiving Varied Amounts of Nitrogen Fertilizer. Journal of
Environmental Quality 32, 247-268 (2003).

Prunty, L. & Greenland, R. Nitrate leaching using two potato-corn N-fertilizer plans on sandy
soil. Agriculture, Ecosystems & Environment 65, 1-13 (1997).

Randall, G. W., Vetsch, J. A. & Huffman, J. R. Nitrate Losses in Subsurface Drainage from a
Corn—Soybean Rotation as Affected by Time of Nitrogen Application and Use of Nitrapyrin.
Journal of Environmental Quality 32, 1764-1772 (2003).

Randall, G. W. & Vetsch, J. A. Nitrate Losses in Subsurface Drainage from a Corn—-Soybean
Rotation as Affected by Fall and Spring Application of Nitrogen and Nitrapyrin. Journal of
Environmental Quality 34, 590-597 (2005).

Sexton, B. T., Moncrief, J. F., Rosen, C. J., Gupta, S. C. & Cheng, H. H. Optimizing Nitrogen
and Irrigation Inputs for Corn Based on Nitrate Leaching and Yield on a Coarse-Textured Soil.
Journal of Environmental Quality 25, 982—992 (1996).



168
169
170
171
172
173
174
175
176
177
178

25.

26.

27.

28.

Walters, D. T. & Malzer, G. L. Nitrogen Management and Nitrification Inhibitor Effects on
Nitrogen-15 Urea: Il. Nitrogen Leaching and Balance. Soil Science Society of America Journal
54, 122-130 (1990).

Kalita, P. K., Algoazany, A. S., Mitchell, J. K., Cooke, R. A. C. & Hirschi, M. C. Subsurface
water quality from a flat tile-drained watershed in lllinois, USA. Agriculture, Ecosystems &
Environment 115, 183—193 (2006).

O’Brien, P. L. et al. Nitrate losses and nitrous oxide emissions under contrasting tillage and
cover crop management. Journal of Environmental Quality 51, 683—695 (2022).

Gentry, L. E. et al. Split fertilizer nitrogen application with a cereal rye cover crop reduces tile

nitrate loads in a corn—soybean rotation. Journal of Environmental Quality 53, 90—100 (2024).



