Appendix

The proofs and analysis of the main theorems

Proof of Theorem 1.

Consider a ground truth y, a target operator h, an optimal MLP operator f7,,
and an VQC-MLPNet operator f;. The approximation error €,p, can be upper bounded
using the triangle inequality as:

€app = R(for) = R(I") < [R(for) = R(fp)|l + IR (i) — R(A7)]. (1)

Moreover, the expected risk R is taken as the cross-entropy loss function such that:

R(for) = R(faup)| + IR(frp) = RO < Leell for — frapllz + Leell fap — 27ll25 - (2)

where L. is a Lipschitz constant induced by the gradient of the cross-entropy loss
function with a softmax activation.
Leveraging Cybenco’s universal approximation theory, the term we further derive:
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Next, we define f7,, and fg operators explicitly:
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and assuming a Lipschitz-continuous activation function o(-), we apply the Cauchy-
Swartz inequality, resulting in:
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where |[W ' — WW| is an induced norm of matrix as:
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Then, using the triangle inequality, we have:
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On the one hand, the term HW( WS)H corresponds to the error associated
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with amplitude encoding. The Ly s group norm of HW( - Wg H
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By the definition of amplitude encoding, it requires normalized input vectors that
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cannot preserve all the information from the classical data, leading to the encoding error

<0 (2611[]) (10)

where the constant §; € (0,1] is a scaling factor. The above term means that for a

el @) o

On the other hand, we consider the expressive error re, as the term of Ly o group
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scaling factor 3 € (0, 5], we have:
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matrix W* is smooth, we leverage the quantum Fourier-like expansion technique and
exponential decay of coefficients, we have:

E <Y Jal <O (). (13)
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Then, for a constant C, > 0 and a = 27 > 0, we have:

Texp = [

<O (e ). (14)
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To sum up, for two constants Cy > 0 and C3 > 0, we have:
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Finally, we obtain the upper bound as:
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€app < ||f9* - mlp||2 + Hfmlp —h HQ < \/M r + 25_(] (]‘6)

The NTK Technique for VQC-MLPNet’s Trainability. To analyze the
trainability of the MLP VQC model, we consider the operator f,,, with a quantum-
enhanced weight W = fiin © fvqe © fae(W ), where fyqc is parameterized by 04 =

{a1.v, Br.u, 1.v}, and the final layer uses classical weights 0y (2)
The MLP-VQC operator is given by:
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As for the gradient descent of f,,, w.r.t. ay, By, 7. and wy,’, we have:
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m. — f 0 3f;q° o fae(wfn)) relies on the VQC’s architecture and is

not related to the welght parameters wiy. Accordingly, we define a constant C, and
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obtain:

Similarly, given the constants Cg and C, we obtain the following terms:

U (ow®\ " [ owd
x(5) (5)-o @




U .

Z owl) owl)

u=1 ( 0% ) ( 6% - C’y. (24)
Next, we define the NTK C,,, as:

Kim = Kyqe + Ky (25)

Since the VQC component of the NTK can be decomposed into contributions from
the parameterized quantum gates, for any two data vectors x; and Xz, the related NTK
Kyqe(x%1,%2) can be further decomposed as:

’CVqC(Xl, XQ) = ]C( )<X Xz) + ICvgg(Xl, ) + K:ch(Xl, XQ). (26)

Each component is computed over the quantum-enhanced features. For instance,
given a constant Cy, the a-parameter NTK contribution is:
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With similar expressions for e qc ) and K7 C using constants Cg and Cy, we obtain
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Moreover, the classical linear layer NTK is given by:
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In the infinite-width limit M — oo, the NTKs converge to their expected values

under the initialization distribution. This yields constant kernels for each component
(Egs. [31{32)), enabling analytical tractability of convergence behavior.
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Thus, the over-parameterized regime (large-width) ensures the NTK K, remains
nearly constant throughout training. We then compute the minimum eigenvalue
Amin(Kym ). Since classical kernels often have better-conditioned NTKs, introducing
the classical component can boost the lowest eigenvalue: Apin(Kym) > Anin (Kiy2))-

Next, we prove the upper bound on the optimization error based on the constant
NTK Ky and Apin (KCym ). Given the set of training data {(x1, 1), (X2, ¥2), .-, (Xn, Yn) },
we aim to minimize the cross-entropy loss:

Rlfo) == D wnlog (o fo(x.))). (3)

where o.(-) denotes the softmax probabilities. Since the parameter update follows

gradient flow dynamics:
de

== —VoR(fo). (36)
we have: J dfy d6
T fo(X) = 202 = Ko (0:(f6(X)) —y). (37)

where we define the data matrix X = [x;Xs...xy] and the label vector y = [y1...yn] "
Furthermore, due to the nonlinearity of the activation function o.(-), we further
simplify it by expanding the softmax around the initial predictions. Typically, this

linearization approximation is:

0e(fo,(X)) = 0c(foo (X)) + Vefoo (X) " (fo,(X) — fo, (X)), (38)



Now we have a linear, time-invariant ordinary differential equation (ODE):

%fot(X) ~ —Kom - ([0c(foo (X)) = ¥] + Vo foo (X) " (fo.(X) — fo,(X))) - (39)

Define the perturbation around initialization as u(t) = fg,(X) — fg,(X). Then, the
linearized gradient flow dynamics can be written explicitly:

Sult) = K Vo fou (Xu(t) ~ K- (e fn (X)) =), (10)

which becomes a linear, time-invariant ODE system:

e Initial condition: «(0) = 0.

e Define the matrices clearly:

A=K Vo(fo, (X)), b=Kim - (00c(f8,(X)) —y). (41)
Then, the solution for the prediction evolution is:
u(t) = —A7H (I — e . (42)
Thus, we obtain:

fo,(X) = fo,(X) = (Vefo, (X)) (I — e TVelea X)) (0, (fp,(X)) — y)- (43)

To minimize fg,(X), we obtain the optimal 8* such that

for (X) = fo..(X) = fo,(X) — (Vo fo, (X)) (0c(fo,(X)) — y)- (44)

As for the optimization error €., at epoch t, we set 8, = 6 and further derive that:

sup (R(f5) = R(fa)) < Leellfo(X) = fo (X))
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< Lee [[(VoSoo (X)), e ¥l B0 floe( o, (X)) = 11,
(45)

Using the technique of eigen-decomposition: e vmVefoo(X)t — [e=M{T and
e M = diag(e M1, .., e, our expression becomes simpler:

sup (R(f3) = R(for)) < Lee[|(Fofon (X)) [, [T U |, el fou (X)) = ¥l (46)
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Since U is orthogonal, it doesn’t affect the operator norm (||U|]2 = 1), and we use

the tricks: ]

1(Vefo, (X)), = o (Vo fon (X))

(47)




He_lcvm'vﬂfeo(x)t”Q — max efAi(Kvm'VBfeo(X)t — efAmin(}CVm'vefeo(X))t‘ (48)
%

Then, we can upper bound the optimization error €,y as:
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In practice, since the term Vg fg,(x) is typically bounded and stable, the primary
determinant of convergence rate is the minimum eigenvalue Ayin(Kym). Thus, we

simplify the above term as:
€opt = SUP (7%(]09‘) - ﬁ/(f(?*)) < Cﬂe_Amin(’Cvm)t’ <50)
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where the constant Cy = Lc,e\“?cé@s J(“Z( )())Z));”2
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