
1

Appendix

The proofs and analysis of the main theorems

Proof of Theorem 1.

Consider a ground truth y, a target operator h, an optimal MLP operator f ∗
mlp,

and an VQC-MLPNet operator f ∗
θ . The approximation error ϵapp can be upper bounded

using the triangle inequality as:

ϵapp = R(fθ∗)−R(h∗) ≤ |R(fθ∗)−R(f ∗
mlp)|+ |R(f ∗

mlp)−R(h∗)|. (1)

Moreover, the expected risk R is taken as the cross-entropy loss function such that:

|R(fθ∗)−R(f ∗
mlp)|+ |R(f ∗

mlp)−R(h∗)| ≤ Lce∥fθ∗ − f ∗
mlp∥2 + Lce∥f ∗

mlp − h∗∥2, (2)

where Lce is a Lipschitz constant induced by the gradient of the cross-entropy loss

function with a softmax activation.

Leveraging Cybenco’s universal approximation theory, the term we further derive:

∥fθ∗ − f ∗
mlp∥2 ≤

C1√
M

. (3)

Next, we define f ∗
mlp and f ∗

θ operators explicitly:

f ∗
mlp(x) = W(2)⊤σ(W(1)⊤

∗ x), fθ∗(x) = W(2)⊤σ(Ŵ
(1)⊤

x), (4)

and assuming a Lipschitz-continuous activation function σ(·), we apply the Cauchy-

Swartz inequality, resulting in:

∥fθ∗ − f ∗
mlp∥2 =

∥∥∥W(2)⊤σ(Ŵ
(1)⊤

x)−W(2)⊤σ(W(1)⊤
∗ x)

∥∥∥
2

≤ max
1≤j≤J

(
M∑

m=1

∣∣w(2)
m (j)

∣∣)∥∥∥σ(Ŵ(1)
x)− σ(Ŵ

(1)

∗ x)
∥∥∥
2

≤ max
1≤j≤J

(
M∑

m=1

∣∣w(2)
m (j)

∣∣) ∥x∥2
∥∥∥Ŵ(1)

−W(1)
∗

∥∥∥
2
,

(5)

where
∥∥∥Ŵ(1)

−W(1)
∗

∥∥∥
2
is an induced norm of matrix as:∥∥∥Ŵ(1)

−W(1)
∗

∥∥∥
2
= sup

∥x∥2≤1

∥∥∥(Ŵ(1)
−W(1)

∗)x
∥∥∥
2
. (6)

Next, we consider Ŵ
(1)

Q as:

Ŵ
(1)

Q =
[
|ŵ(1)

1 ⟩, |ŵ(1)
2 ⟩, ..., |ŵ(1)

D ⟩
]

(7)

2

Then, using the triangle inequality, we have:∥∥∥Ŵ(1)
−W(1)

∗

∥∥∥
2
=
∥∥∥Ŵ(1)

− Ŵ
(1)

Q + Ŵ
(1)

Q −W(1)
∗

∥∥∥
2

≤
∥∥∥Ŵ(1)

− Ŵ
(1)

Q

∥∥∥
2︸ ︷︷ ︸

renc

+
∥∥∥Ŵ(1)

Q −W(1)
∗

∥∥∥
2︸ ︷︷ ︸

rexp

. (8)

On the one hand, the term
∥∥∥Ŵ(1)

− Ŵ
(1)

Q

∥∥∥
2
corresponds to the error associated

with amplitude encoding. The L2,2 group norm of
∥∥∥Ŵ(1)

− Ŵ
(1)

Q

∥∥∥
2
is:

∥∥∥Ŵ(1)
− Ŵ

(1)

Q

∥∥∥
2
=

[
D∑

d=1

∥∥∥ŵ(1)
d − |ŵ(1)

d ⟩
∥∥∥2
2

] 1
2

. (9)

By the definition of amplitude encoding, it requires normalized input vectors that

cannot preserve all the information from the classical data, leading to the encoding error

of each
∥∥∥ŵ(1)

d − |ŵ(1)
d ⟩
∥∥∥2
2
that scales as:

∥∥∥ŵ(1)
d − |ŵ(1)

d ⟩
∥∥∥2
2
≤ O

(
1

2β1U

)
, (10)

where the constant β1 ∈ (0, 1] is a scaling factor. The above term means that for a

scaling factor β ∈ (0, 1
2
], we have:

renc =

[
D∑

d=1

∥∥∥ŵ(1)
d − |ŵ(1)

d ⟩
∥∥∥2
2

] 1
2

≤ O
(

1

2βU

)
. (11)

On the other hand, we consider the expressive error rexp as the term of L2,2 group

norm:

rexp =
∥∥∥Ŵ(1)

Q −W(1)
∗

∥∥∥
2
=

[
D∑

d=1

∥∥∥|ŵ(1)
d ⟩ −w(1)

∗

∥∥∥2
2

] 1
2

. (12)

For each
∥∥∥|ŵ(1)

d ⟩ −w
(1)
∗

∥∥∥2
2
, given a decaying factor α1 > 0, since the target

matrix W ∗ is smooth, we leverage the quantum Fourier-like expansion technique and

exponential decay of coefficients, we have:∥∥∥|ŵ(1)
d ⟩ −w(1)

∗

∥∥∥2
2
≤
∑
l>L

|cl| ≤ O
(
e−α1L

)
. (13)

Then, for a constant C2 > 0 and α = 2α1 > 0, we have:

rexp =

[
D∑

d=1

∥∥∥|ŵ(1)
d ⟩ −w(1)

∗

∥∥∥2
2

] 1
2

≤ O
(
e−αL

)
. (14)

3

To sum up, for two constants C2 > 0 and C3 > 0, we have:

∥fθ∗ − f ∗
mlp∥2 ≤ max

1≤j≤J

(
M∑

m=1

∣∣w(2)
m (j)

∣∣) ∥x∥2
∥∥∥Ŵ(1)

−W(1)
∗

∥∥∥
2

≤ C2e
−αL +

C3

2βU
.

(15)

Finally, we obtain the upper bound as:

ϵapp ≤ ∥fθ∗ − f ∗
mlp∥2 + ∥f ∗

mlp − h∗∥2 ≤
C1√
M

+ C2e
−αL +

C3

2βU
. (16)

The NTK Technique for VQC-MLPNet’s Trainability. To analyze the

trainability of the MLP-VQC model, we consider the operator fvm with a quantum-

enhanced weight Ŵ
(1)

= flin ◦ fvqc ◦ fae(W
(1)), where fvqc is parameterized by θvqc =

{α1:U , β1:U , γ1:U}, and the final layer uses classical weights θW (2) .

The MLP-VQC operator is given by:

fθ(x) =
1√
M

M∑
m=1

w(2)
m σ

(
⟨ŵ(1)

m ,x⟩
)
. (17)

As for the gradient descent of fvm w.r.t. αu, βu, γu and w
(2)
m , we have:

∂fθ
∂αu

=
1√
M

M∑
m=1

w(2)
m σ

′
(
⟨ŵ(1)

m ,x⟩
)(〈∂ŵ(1)

m

∂αu

,x

〉)
(18)

∂fθ
∂βu

=
1√
M

M∑
m=1

w(2)
m σ

′
(
⟨ŵ(1)

m ,x⟩
)(〈∂ŵ(1)

m

∂βu

,x

〉)
(19)

∂fθ
∂γu

=
1√
M

M∑
m=1

w(2)
m σ

′
(
⟨ŵ(1)

m ,x⟩
)(〈∂ŵ(1)

m

∂γu
,x

〉)
(20)

∂fvm
∂θW (2)

=
1√
M

σ
(
⟨ŵ(1)

m ,x⟩
)

(21)

In particular, ∂ŵ
(1)
m

∂αu
= flin ◦ ∂fvqc

∂αu
◦ fae(w(1)

m) relies on the VQC’s architecture and is

not related to the weight parameters w
(1)
m . Accordingly, we define a constant Cα and

obtain:
U∑

u=1

(
∂ŵ(1)

m

∂αu

)⊤(
∂ŵ(1)

m

∂αu

)
= Cα. (22)

Similarly, given the constants Cβ and Cγ , we obtain the following terms:

U∑
u=1

(
∂ŵ(1)

m

∂βu

)⊤(
∂ŵ(1)

m

∂βu

)
= Cβ, (23)

4

U∑
u=1

(
∂ŵ(1)

m

∂γu

)⊤(
∂ŵ(1)

m

∂γu

)
= Cγ . (24)

Next, we define the NTK Kvm as:

Kvm = Kvqc +KW (2) . (25)

Since the VQC component of the NTK can be decomposed into contributions from

the parameterized quantum gates, for any two data vectors x1 and x2, the related NTK

Kvqc(x1,x2) can be further decomposed as:

Kvqc(x1,x2) = K(α)
vqc(x1,x2) +K(β)

vqc(x1,x2) +K(γ)
vqc(x1,x2). (26)

Each component is computed over the quantum-enhanced features. For instance,

given a constant Cα, the α-parameter NTK contribution is:

K(α)
vqc(x1,x2) =

U∑
u=1

〈
∂fvm
∂αu

,
∂fvm
∂αu

〉

=
1

M

M∑
m=1

(w(2)
m)2σ

′
(⟨ŵ(1)

m ,x1⟩)σ
′
(⟨ŵ(1)

m ,x2⟩)
U∑

u=1

〈
∂ŵ(1)

m

∂αu

x1,
∂ŵ(1)

m

∂αu

x2

〉

=
1

M

M∑
m=1

(
w

(2)
k

)2
σ

′
(〈

ŵ(1)
m ,x1

〉)
σ

′
(〈

ŵ(1)
m ,x2

〉)
⟨x1, Cαx2⟩ ,

(27)

With similar expressions for K(β)
vqc and K(γ)

vqc using constants Cβ and Cγ , we obtain

K(β)
vqc(x1,x2) =

U∑
u=1

〈
∂fvm
∂βu

,
∂fvm
∂βu

〉
1

M

M∑
m=1

(w(2)
m)2σ

′
(⟨ŵ(1)

m ,x1⟩)σ
′
(⟨ŵ(1)

m ,x2⟩)
U∑

u=1

〈
∂ŵ(1)

m

∂βu

x1,
∂ŵ(1)

m

∂βu

x2

〉

=
1

M

M∑
m=1

(
w(2)

m

)2
σ

′
(〈

ŵ(1)
m ,x1

〉)
σ

′
(〈

ŵ(1)
m ,x2

〉)
⟨x1, Cβx2⟩ ,

(28)

K(γ)
vqc(x1,x2) =

U∑
u=1

〈
∂fvm
∂γu

,
∂fvm
∂γu

〉

=
1

M

M∑
m=1

(w(2)
m)2σ

′
(⟨ŵ(1)

m ,x1⟩)σ
′
(⟨ŵ(1)

m ,x2⟩)
U∑

u=1

〈
∂ŵ(1)

m

∂γu
x1,

∂ŵ(1)
m

∂γu
x2

〉

=
1

M

M∑
m=1

(
w(2)

m

)2
σ

′
(〈

ŵ(1)
m ,x1

〉)
σ

′
(〈

ŵ(1)
m ,x2

〉)
⟨x1, Cγx2⟩ .

(29)

5

Moreover, the classical linear layer NTK is given by:

KW (2)(x1,x2) =

〈
∂fvm
∂θW (2)

,
∂fvm
∂θW (2)

〉
=

1

M

M∑
m=1

σ
′
(
⟨ŵ(1)

m ,x1⟩
)
σ

′
(
⟨ŵ(1)

m ,x2⟩
)
. (30)

In the infinite-width limit M → ∞, the NTKs converge to their expected values

under the initialization distribution. This yields constant kernels for each component

(Eqs. 31-32), enabling analytical tractability of convergence behavior.

K(α)
vqc(x1,x2)

M→∞−−−−→ E(θvqc,θW (2))

[
(w(2)

m)2σ
′
(⟨ŵ(1)

m ,x1⟩)σ
′
(⟨ŵ(1)

m ,x2⟩) ⟨x1, Cαx2⟩
]
, (31)

K(β)
vqc(x1,x2)

M→∞−−−−→ E(θvqc,θW (2))

[
(w(2)

m)2σ
′
(⟨ŵ(1)

m ,x1⟩)σ
′
(⟨ŵ(1)

m ,x2⟩) ⟨x1, Cβx2⟩
]
, (32)

K(γ)
vqc(x1,x2)

M→∞−−−−→ E(θvqc,θW (2))

[
(w(2)

m)2σ
′
(⟨ŵ(1)

m ,x1⟩)σ
′
(⟨ŵ(1)

m ,x2⟩) ⟨x1, Cγx2⟩
]
, (33)

KW (2)(x1,x2)
M→∞−−−−→ Eθvqc

[
σ

′
(
⟨ŵ(1)

m ,x1⟩
)
σ

′
(
⟨ŵ(1)

m ,x2⟩
)]

. (34)

Thus, the over-parameterized regime (large-width) ensures the NTK Kvm remains

nearly constant throughout training. We then compute the minimum eigenvalue

λmin(Kvm). Since classical kernels often have better-conditioned NTKs, introducing

the classical component can boost the lowest eigenvalue: λmin(Kvm) ≫ λmin(KW (2)).

Next, we prove the upper bound on the optimization error based on the constant

NTK Kvm and λmin(Kvm). Given the set of training data {(x1, y1), (x2, y2), ..., (xN , yN)},
we aim to minimize the cross-entropy loss:

R̂(fθ) = − 1

N

N∑
n=1

yn log (σc(fθ(xn))) , (35)

where σc(·) denotes the softmax probabilities. Since the parameter update follows

gradient flow dynamics:
dθ

dt
= −∇θR̂(fθ), (36)

we have:
d

dt
fθ(X) =

dfθ
dθ

dθ

dt
= −Kvm · (σc(fθ(X))− y) , (37)

where we define the data matrix X = [x1x2...xN] and the label vector y = [y1y2...yN]
⊤.

Furthermore, due to the nonlinearity of the activation function σc(·), we further

simplify it by expanding the softmax around the initial predictions. Typically, this

linearization approximation is:

σc(fθt(X)) ≈ σc(fθ0(X)) +∇θfθ0(X)⊤ (fθt(X)− fθ0(X)) , (38)

6

Now we have a linear, time-invariant ordinary differential equation (ODE):

d

dt
fθt(X) ≈ −Kvm ·

(
[σc(fθ0(X))− y] +∇θfθ0(X)⊤(fθt(X)− fθ0(X))

)
. (39)

Define the perturbation around initialization as u(t) = fθt(X)− fθ0(X). Then, the

linearized gradient flow dynamics can be written explicitly:

d

dt
u(t) = −Kvm · ∇θfθ0(X)u(t)−Kvm · (σc(fθ0(X))− y) , (40)

which becomes a linear, time-invariant ODE system:

• Initial condition: u(0) = 0.

• Define the matrices clearly:

A = Kvm · ∇θ(fθ0(X)), b = Kvm · (σc(fθ0(X))− y). (41)

Then, the solution for the prediction evolution is:

u(t) = −A−1(I − e−At)b. (42)

Thus, we obtain:

fθt(X) = fθ0(X)− (∇θfθ0(X))−1
(
I − e−Kvm·∇θfθ0 (X)t

)
(σc(fθ0(X))− y). (43)

To minimize f̃θt(X), we obtain the optimal θ∗ such that

fθ∗(X) = fθ∞(X) = fθ0(X)− (∇θfθ0(X))−1(σc(fθ0(X))− y). (44)

As for the optimization error ϵopt, at epoch t, we set θt = θ̂ and further derive that:

sup
θ̂∈Θ

(
R̂(fθ̂)− R̂(fθ∗)

)
≤ Lce∥fθt(X)− fθ∗(X)∥2

= Lce

∥∥(∇θfθ0(X))−1e−Kvm·∇θfθ0 (X)t(σc(fθ0(X))− y)
∥∥
2

≤ Lce

∥∥(∇θfθ0(X))−1
∥∥
2

∥∥e−Kvm·∇θfθ0 (X)t
∥∥
2
∥σc(fθ0(X))− y∥2 .

(45)

Using the technique of eigen-decomposition: e−Kvm·∇θfθ0 (X)t = Ue−ΛtU⊤ and

e−Λt = diag(e−λ1t, .., e−λnt), our expression becomes simpler:

sup
θ̂∈Θ

(
R̂(fθ̂)− R̂(fθ∗)

)
≤ Lce

∥∥(∇θfθ0(X))−1
∥∥
2

∥∥Ue−ΛtU⊤∥∥
2
∥σc(fθ0(X))− y∥2 . (46)

Since U is orthogonal, it doesn’t affect the operator norm (∥U∥2 = 1), and we use

the tricks: ∥∥(∇θfθ0(X))−1
∥∥
2
=

1

λmin(∇θfθ0(X))
, (47)

7

∥∥e−Kvm·∇θfθ0 (X)t
∥∥
2
= max

i
e−λi(Kvm·∇θfθ0 (X)t = e−λmin(Kvm·∇θfθ0 (X))t. (48)

Then, we can upper bound the optimization error ϵopt as:

ϵopt = sup
θ̂∈Θ

(
R̂(fθ̂)− R̂(fθ∗)

)
≤ Lce

∥σc(fθ0(X))− y∥2
λmin(∇θfθ0(X))

e−λmin(Kvm·∇θfθ0 (X))t. (49)

In practice, since the term ∇θfθ0(x) is typically bounded and stable, the primary

determinant of convergence rate is the minimum eigenvalue λmin(Kvm). Thus, we

simplify the above term as:

ϵopt = sup
θ̂∈Θ

(
R̂(fθ̂)− R̂(fθ∗)

)
≤ C0e

−λmin(Kvm)t, (50)

where the constant C0 =
Lce∥σc(fθ0 (X))−y∥2

λmin(∇θfθ0 (X))
.

