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Supplementary Note 1: definition of reconfigurable topology structure 

We opt for the topology derived from the delay-based scheme as baseline. For TD-RC, each input 

𝒖(𝑡) undergoes a sample-and-hold procedure, the held time constant 𝑇′ is taken to be less than the 

period 𝑇 of the delay, 𝜃 is considered as node duration and defined by 𝜃 =
𝑇′−𝑇

𝑞
, where 1 ≤ 𝑞 < 𝑁, 

which introduces a coupling from each internal virtual node to the neighboring one1. The updates 

equation for each node state in the delay-based reservoir can be recursively computed at time step 

𝑘 and generalized as follows:  

𝑥𝑖,𝑘 = {
e−𝑖𝜃 𝑥𝑛,𝑘−1 + ∑ (1 − e−𝜃)𝑒−(𝑖−𝑗)𝜃𝑓(𝑥𝑗−1,𝑘−1,𝐖in,𝑗 𝑢𝑘)

𝑖
𝑗=𝑞  𝑖 < 𝑞 < 𝑁

e−𝑖𝜃 𝑥𝑛,𝑘−1 + ∑ (1 − e−𝜃)𝑒−(𝑖−𝑗)𝜃𝑓(𝑥𝑛−𝑞+𝑖,𝑘−2,𝐖in,𝑖 𝑢𝑘) 0 < 𝑖 ≤ 𝑞𝑖
𝑗=1

 (1) 

The coefficients e−𝑖𝜃  correspond to the values found in the last column of equivalent 

interconnection matrix, while its diagonal and off-diagonal elements are given by (1 −

e−𝜃)e−(𝑖−𝑗)𝜃. These two components explicitly describe the state coupling between consecutive 

time steps and form the approximate interconnection matrix 𝐖FixedF ∈ ℝ𝑁×𝑁: 

 𝐖FixedF(𝑖, 𝑗) = {
(1 − e−𝜃)e−(𝑖−𝑗)𝜃 , if 𝑗 ≤ N − 1

e−𝑖𝜃, if 𝑗 = N
 (2) 

For reconfigured topology 𝐖RandF ∈ ℝ
𝑁×𝑁, shares the same structure as 𝐖FixedF. Differently, the 

values of each diagonal and lower sub-diagonal are randomly generated. We have defined the 

mathematical expression for this structure as: 

 𝐖RandF = (1 − 𝑅) ∗𝐖FixedF + (𝑅 ∗𝐖FixedF) ∗ rand(0, 1)  (3) 

𝑅 ∈ [0,1] reflects the randomness of the values of the lower sub-diagonal elements. The higher the 

R value, the more random the coupling of node states. When randomness parameter 𝑅 is set to 0, 

topology 𝐖RandF transforms into 𝐖FixedF.  

𝐖RandF allows current node states to be coupled to the forward nodes with adjustable connection 

weights. By rotating 𝐖RandF  counterclockwise by 180 degrees, coupling to backward nodes is 

achieved. Combining these two connection modes results in the bidirectional coupling topology 

𝐖RandFB ∈ ℝ𝑁×𝑁: 

 𝐖RandFB = 𝐖RandF +  rot180(𝐖RandF) (4) 

The variations of the topology structures with changes in node duration 𝜃 and randomness 𝑅 are 

presented in Supplementary Figures 1 and 2.  

Unlike the above two topologies, topology 𝐖Random ∈ ℝ𝑁×𝑁 is not constrained by the direction of 

node coupling, allowing for the random coupling of arbitrary spatial nodes: 

 𝐖Random = {
rand(𝑁), with probability 𝐷
0, with probability 1 − 𝐷,

 (5) 

𝐷 ∈ [0,1]  represents the matrix node connection density. The topology structures vary with the 

density for the 𝐖Random topology is presented in Supplementary Figure 3. 

  



 

 

Supplementary Figure 1. Topology structure changes with variations in connectivity density. 

The topology structures with diagonal interconnection matrices of FixedF, RandF, and RandFB 

change with variations in node duration θ at values of 0.02, 0.2, 0.8, 1.6, and 2.0, which are 

systematically scanned. Meanwhile, the topology structure with Random matrices changes with 

variations in density D from 0.01 to 0.20. 
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Supplementary Figure 2. Topology structure changes with variations in Randomness. The 

topology structures vary with the magnitude of randomness from 0 to 1 for both types of direction-

related topology structures RandF and RandFB under fixed node duration θ=0.2 and 2.0.  
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Supplementary Note 2: Effects of topological structure randomness on MFI identification 

accuracy 

Supplementary Figure 3. Relationship between MFI recognition accuracy and the magnitude 

of randomness R introduced in the topology structures with fixed node duration θ. (a) θ = 0.2 

for RandF (b) θ = 2.0 for RandF and (c) θ = 0.2 for RandFB (d) θ = 2.0 for RandFB. 

Supplementary Fig. 3 provides a detailed relationship between MFI recognition accuracy and the 

magnitude of randomness introduced in the topology structures when the node duration θ is fixed at 

0.2 and 2.0 for RandF and RandFB. The results indicate that the topology connections achieve the 

highest recognition accuracy when the introduced randomness R is strongest, and their performance 

is significantly superior to fixed topological connections without randomness. 

  



Supplementary Note 3: System reconfigurability to adapt to varying channel bandwidths 

 

Supplementary Figure 4. The recognition accuracy of modulation format under different 

optical channel bandwidths varies with the level of randomness in the RC topology RnadF. 

Achieving high-accuracy MFI is challenging due to bandwidth limitations and variable optical 

communication channels. Our RC system remains effective with retraining when the bandwidth 

varies from 100MHz to 400MHz. In particular, when the optical communication system's channel 

bandwidth is between 100 and 200MHz, the RC system can achieve modulation format recognition 

accuracy exceeding 98%. Despite the overall trend of decreasing recognition accuracy with 

increasing bandwidth, the flexibility in the RC system's topology allows for robust performance 

even in challenging conditions. Specifically, when the system bandwidth reaches 400MHz, the 

recognition accuracy can still reach 93% when the RC topology randomness (R) is at its maximum 

of 1. 

  



Supplementary Note 4: Reconfigurable RC computing architecture is demonstrated in a 

benchmark task of nonlinear channel equalization  

This benchmark task of nonlinear channel equalization was initially introduced in Ref 2 and first 

used in the realm of RC in Ref 3. The objective is to retrieve an input symbol sequence 𝑑(𝑛) from 

the signal captured at the output 𝑢(𝑛), of a standardized nonlinear multipath RF channel, which is 

defined as follows: 

𝑞(𝑛) = 0.08𝑑(𝑛 + 2) − 0.12𝑑(𝑛 + 1) + 𝑑(𝑛) ± 0.18𝑑(𝑛 − 1) 

−0.1𝑑(𝑛 − 2) + 0.091𝑑(𝑛 − 3) − 0.05𝑑(𝑛 − 4) 

+0.04𝑑(𝑛 − 5) + 0.03𝑑(𝑛 − 6) + 0.01𝑑(𝑛 − 7) (6) 

 

 𝑢(𝑛) = 𝑞(𝑛) + 0.036𝑞2(𝑛) − 0.011𝑞3(𝑛) + 𝑣(𝑛)  (7) 

The symbols 𝑑(𝑛) is randomly selected from a set of four values {3,−3, 1,−1}. In this context, 

𝑣(𝑛) represents Gaussian noise with a mean of zero, calibrated to achieve Signal-to-Noise Ratios 

(SNRs) spanning from 12 to 32 dB. The assessment of performance is conducted based on the 

symbol error rate (SER), quantifying the proportion of incorrectly classified symbols. 

 

Supplementary Figure 5. SER vs SNR of reconfigurable RC of different topology. Results for 

nonlinear channel equalization task under reconfigurable topology. The horizontal axis is the SNR 

of the channel. The vertical axis is the SER, that is the fraction of input symbols that are 

misclassified.  

As illustrated in Supplementary Figure 5, its evident that for SNRs ranging from 12 to 32 dB, 

reconfigurable topologies achieved lower SER in equalizing channel nonlinearity, outperforming 

the fixed baseline FixedF architectures. These results highlight the advantages of the reconfigurable 

method and confirm the high plasticity and adaptability of constructing high-performance RC 

systems for diverse applications. 
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Methods 
Modulation 

formats number Feature Extraction Accuracy 

DSP4 4 PAPRa  96% 

MLP3-ANN5 6 AAHsb 99% 

OEO-RC6 11 None 89% 

Laser-P-RC7 3 AAHs 95% 

MLP3-ANN8 10 PCAc 98% 

CTA-RC9 6 CTAFd 90% 

CIKD-NN10 8 CIKDe 87% 

OEO/ISPP-RC11 16 AAHs / None 99.5 / 97.6% 

Reconfigurable -RC 6 AAHs 99.8% 

aPeak-to-average-power ratio. bAsynchronous amplitude histograms. cPrincipal component 

analysis. dCoordinate transformation and folding algorithm. ecommunication-informed 

knowledge distillation 

Supplementary Table 1. Identification accuracies for different modulation formats using 

various systems. 

  



Supplementary Note 5: Hardware platform of the system 

 

Supplementary Figure 6. Hardware platform of the system. (a) Optical core fabricated on a 12-

inch SOI wafer using CMOS-compatible processes. (b) Photonic reservoir unit. (c) Integrated PACE 

system. (d) Pipeline of optoelectronic control for recurrent reservoir computing 

 

The photonic reservoir unit (PRU) is realized on a silicon photonic processor featuring a 64 × 64 

MZI mesh. The photonic chip and its electronic control circuits are co-packaged into the PACE 

module by Lightelligence Pte. Ltd¹². Fabricated on a 12-inch SOI wafer using CMOS-compatible 

processes (Figure. 6(a)), The MZI mesh supports both arbitrary unitary and real-valued matrix 

operations. To realize high-density signal interconnects, the PACE system employs a 2.5D 

advanced-packaging solution—using flip-chip bonding to integrate the PIC, EIC, and substrate—as 

shown in Figure 6(b). Input data are optically modulated and coupled via fiber arrays, (Figure. 5(c)), 

and output signals are detected by high-speed photodetectors. At a modulation rate of 1 GHz, the 

processor achieves a matrix–vector multiplication rate of 8.19 TOPS. Figure. 5(d) shows the 

pipeline of optoelectronic control for recurrent reservoir computing. 
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