
Argument Value
batch-size 32
mask 0.2
tokens-per-sample 512
total-num-update 500000
warmup-updates 1500
task denoising
arch bart base
optimizer adam
lr-scheduler polynomial decay
lr 1e-05
dropout 0.1
criterion cross entropy
max-tokens 3200
weight-decay 0.01
attention-dropout 0.2
relu-dropout 0.1
share-decoder-
input-output-embed
share-all-embeddings
clip-norm 1.0
attention-dropout 0.2
mask-length span-poisson
replace-length 1
rotate 0.0
mask-random 0.1
permute-sentences 1
insert 0
poisson-lambda 3.5

GPU 1xNVIDIA RTX A5000
Training time 5 days

Table S1 Fairseq pretraining parameters for
BART models.

Argument Value
batch-size 32
tokens-per-sample 512
total-num-update 500000
warmup-updates 1500
task masked lm
arch roberta base
optimizer adam
lr-scheduler polynomial decay
lr 1e-05
dropout 0.1
criterion masked lm
max-tokens 3200
weight-decay 0.01
attention-dropout 0.2
relu-dropout 0.1
clip-norm 1.0
attention-dropout 0.2

GPU 1xNVIDIA RTX A5000
Training time 4 days

Table S2 Fairseq pretraining parameters for
RoBERTa models.

Supplementary Information S1 Training details

The BART and and RoBERTa pretraining was conducted in accordance with the
fairseq [1] parameters specified in Table S1 and Table S2 respectively. Further pre-
training information can be found in our public Weights and Biases workspace
https://wandb.ai/ibmm-lemmin/pre-train/overview.

Fine-tuning was conducted with the AdamW[2] optimiser, utilising Adam-betas
(0.9, 0.999), Adam-eps 1e-08, weight decay 0.01, dropout 0.2 and clip norm 0.1. In
order to identify the optimal learning rates, a range of [1e-05, 5e-05, 5e-06] was tested
with one seed each time. In the end, five seeds were used with the best learning
rate to assess the performance and gather more data points for the z-score. Further
information can be found on Weights and Biases: pretrain, tox21, lipo, hiv, delaney,
clintox, clearance, bbbp, bace regression, bace classification.

S1

https://wandb.ai/ibmm-lemmin/pre-train/overview
https://wandb.ai/ibmm-lemmin/pre-train
https://wandb.ai/ibmm-lemmin/Finetune_tox21
https://wandb.ai/ibmm-lemmin/Finetune_lipo
https://wandb.ai/ibmm-lemmin/Finetune_hiv
https://wandb.ai/ibmm-lemmin/Finetune_delaney
https://wandb.ai/ibmm-lemmin/Finetune_clintox
https://wandb.ai/ibmm-lemmin/Finetune_clearance
https://wandb.ai/ibmm-lemmin/Finetune_bbbp
https://wandb.ai/ibmm-lemmin/Finetune_bace_regression
https://wandb.ai/ibmm-lemmin/Finetune_bace_classification
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Better choice Worse choice p-value
SMILES SELFIES 0.004
Atomwise SentencePiece 0.020
BART RoBERTa 0.416
Explicit Implicit 0.123

Table S5 One-sided Wilcoxon signed-rank test
[7] using matching mean z-scores of all seven
downstream tasks and all 16 configurations
each, only differing in the indicated parameter
of interest. This means for each test, we had
two matching cohorts of 56 measurements. The
first column indicates the better performing
choice compared to the second column, while
the third indicates the p-value of the hypothesis
that the worse choice performs better than the
better choice. Comparatively, 1-(p-value) is the
p-value for the hypothesis that the better choice
outperforms the worse choice. Regression scores
have been multiplied by -1 to have the same
ranking direction.

Supplementary Information S2 Simpler classifier
details

To train the weak classifiers we used the implementations from scikit-learn [8]. For k-
nearest-neighbours classifier we searched the hyperparameters for n neighbours [1, 5,
11] and weights [uniform, distance] and for the SVC and LinearSVC we used a C in
[0.1, 1, 10], additionally we used LinearSVC with max iter=1000. The splitting into
train and test set was done randomly.
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Fig. S1 PCA embeddings of various molecules using SELFIES or SMILES, RoBERTa or BART,
atomwise tokeniser and implicit isomer representation

3, 015022 (2022).

[7] Wilcoxon, F. in Individual comparisons by ranking methods 196–202 (Springer,
1992).

[8] Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011).

[9] Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and
bond type perception in molecular mechanical calculations. Journal of Molecular
Graphics and Modelling 25, 247–260 (2006).

S4



UMAPPCA

U
nt
ra
in
ed

Fig. S2 PCA and UMAP embeddings of various molecules using an untrained SMILES model
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Fig. S3 PCA of nitrogen atom type embeddings of SMILES or SELFIES-based models BART
and RoBERTA with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been
determined by antechamber[9] and correspond to the following hybridizations: n: sp2 in amide, n3:
sp3 N with 3 substitutions, na: sp2 N with 3 substitutions, nh: amine N connected to the aromatic
rings. Amount of samples in brackets.
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Fig. S4 PCA of oxygen atom type embeddings of SMILES or SELFIES-based models BART and
RoBERTA with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been deter-
mined by antechamber[9] and correspond to the following hybridizations: o: sp2 O in C=O and COO-,
oh: sp3 O in hydroxyl group, os: sp3 O in ether and ester. Amount of samples in brackets.
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Fig. S5 PCA of non-aromatic carbon atom type embeddings of SMILES or SELFIES-based models
BART and RoBERTA with atomwise tokeniser and implicit chirality. The GAFF2 atom types have
been determined by antechamber[9] and correspond to the following hybridizations: c: sp2 in C=O,
C=S, c2: sp2 in aliphatic carbon, c3: sp3. Amount of samples in brackets.
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Fig. S6 PCA of embeddings of carbon, nitrogen, and oxygen atom types from untrained SMILES-
BART with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been determined
by antechamber[9] and correspond to the following hybridizations: c: sp2 in C=O, C=S, c2: sp2

in aliphatic carbon, c3: sp3, n: sp2 in amide, n3: sp3 N with 3 substitutions, na: sp2 N with 3
substitutions, nh: amine N connected to the aromatic rings, o: sp2 O in C=O and COO-, oh: sp3 O
in hydroxyl group, os: sp3 O in ether and ester. Amount of samples in brackets.

Fig. S7 PCA of carbon atom type embeddings of kekulized SMILES that contain only uppercase
carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the
untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond
to the following hybridizations: c: sp2 in C=O, C=S, c2: sp2 in aliphatic carbon, c3: sp3, ca: sp2 in
aromatic carbon. Amount of samples in brackets (Note: Since mapping to SELFIES was not done
here, more atom types could be analysed and so numbers of atom types differ to previous plots.)
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Fig. S8 PCA of nitrogen atom type embeddings of kekulized SMILES that contain only uppercase
carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the
untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond
to the following hybridizations: n: sp2 in amide, n1: sp1 N, n3: sp3 N with 3 substitutions, na: sp2

N with 3 substitutions, nh: amine N connected to the aromatic rings. Amount of samples in brackets
(Note: Since mapping to SELFIES was not done here, more atom types could be analysed and so
numbers of atom types differ to previous plots.)

Fig. S9 PCA of oxygen atom type embeddings of kekulized SMILES that contain only uppercase
carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the
untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond
to the following hybridizations: o: sp2 O in C=O and COO-, oh: sp3 O in hydroxyl group, os: sp3 O
in ether and ester.. Amount of samples in brackets (Note: Since mapping to SELFIES was not done
here, more atom types could be analysed and so numbers of atom types differ to previous plots.)
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