

Argument	Value
batch-size	32
mask	0.2
tokens-per-sample	512
total-num-update	500000
warmup-updates	1500
task	denoising
arch	bart_base
optimizer	adam
lr-scheduler	polynomial_decay
lr	1e-05
dropout	0.1
criterion	cross_entropy
max-tokens	3200
weight-decay	0.01
attention-dropout	0.2
relu-dropout	0.1
share-decoder-input-output-embed	
share-all-embeddings	
clip-norm	1.0
attention-dropout	0.2
mask-length	span-poisson
replace-length	1
rotate	0.0
mask-random	0.1
permute-sentences	1
insert	0
poisson-lambda	3.5
GPU	1xNVIDIA RTX A5000
Training time	5 days

Table S1 Fairseq pretraining parameters for BART models.

Argument	Value
batch-size	32
tokens-per-sample	512
total-num-update	500000
warmup-updates	1500
task	masked_lm
arch	roberta_base
optimizer	adam
lr-scheduler	polynomial_decay
lr	1e-05
dropout	0.1
criterion	masked_lm
max-tokens	3200
weight-decay	0.01
attention-dropout	0.2
relu-dropout	0.1
clip-norm	1.0
attention-dropout	0.2
GPU	1xNVIDIA RTX A5000
Training time	4 days

Table S2 Fairseq pretraining parameters for RoBERTa models.

Supplementary Information S1 Training details

The BART and RoBERTa pretraining was conducted in accordance with the fairseq [1] parameters specified in [Table S1](#) and [Table S2](#) respectively. Further pre-training information can be found in our public Weights and Biases workspace <https://wandb.ai/ibmm-lemmin/pre-train/overview>.

Fine-tuning was conducted with the AdamW[2] optimiser, utilising Adam-betas (0.9, 0.999), Adam-eps 1e-08, weight decay 0.01, dropout 0.2 and clip norm 0.1. In order to identify the optimal learning rates, a range of [1e-05, 5e-05, 5e-06] was tested with one seed each time. In the end, five seeds were used with the best learning rate to assess the performance and gather more data points for the z-score. Further information can be found on Weights and Biases: [pretrain](#), [tox21](#), [lipo](#), [hiv](#), [delaney](#), [clintox](#), [clearance](#), [bbb3](#), [bace regression](#), [bace classification](#).

Representation	Tokenizer	Chirality	Language model	BACE ↑	BBBP ↑	Clintox ↑	HIV ↑	Tox21 ↑
SELFIES	Atom	Explicit	BART	0.769±0.011	0.701±0.032	0.730±0.099	0.753±0.022	0.671±0.028
		RoBERTa	BART	0.804±0.019	0.701±0.010	0.880±0.031	0.766±0.014	0.639±0.044
		Implicit	BART	0.784±0.016	0.685±0.018	0.608±0.031	0.754±0.010	0.695±0.016
		RoBERTa	BART	0.763±0.088	0.705±0.017	0.876±0.008	0.730±0.019	0.638±0.043
		Explicit	RoBERTa	0.793±0.018	0.687±0.010	0.637±0.053	0.724±0.010	0.719±0.013
		RoBERTa	RoBERTa	0.806±0.021	0.702±0.010	0.758±0.045	0.733±0.014	0.703±0.018
SMILES	Atom	Implicit	BART	0.684±0.021	0.704±0.018	0.611±0.032	0.740±0.006	0.673±0.018
		Explicit	BART	0.824±0.026	0.695±0.028	0.689±0.009	0.716±0.023	0.672±0.007
		Implicit	BART	0.701±0.056	0.746±0.012	0.743±0.043	0.763±0.013	0.659±0.038
	SentencePiece	Explicit	RoBERTa	0.798±0.016	0.692±0.020	0.844±0.038	0.753±0.016	0.640±0.018
		Implicit	RoBERTa	0.736±0.042	0.726±0.112	0.730±0.112	0.757±0.013	0.687±0.016
		RoBERTa	BART	0.758±0.028	0.727±0.021	0.726±0.103	0.754±0.004	0.674±0.012
ChemBERTa-2 [3] [4]	Atom	Explicit	RoBERTa	0.778±0.028	0.685±0.009	0.611±0.038	0.778±0.011	0.698±0.035
		Implicit	BART	0.778±0.009	0.729±0.009	0.644±0.018	0.771±0.010	0.667±0.057
		RoBERTa	RoBERTa	0.717±0.098	0.714±0.005	0.593±0.071	0.759±0.023	0.696±0.017
	SentencePiece	Explicit	BART	0.612±0.046	0.697±0.013	0.666±0.046	0.750±0.007	0.698±0.010
		Implicit	RoBERTa	0.799	0.742	0.601		0.834

Table S3 Downstream classification ROC AUC score mean and standard deviation scores of five seeds on MoleculeNet datasets [4] across different molecular representations, tokenizers, chirality representations and language models

Representation	Tokenizer	Chirality	Language model	BACE ↓	Clarity ↓	Delaney ↓	Lipo ↓
SELFIES	Atom	Explicit	BART	0.878±0.144	1.159±0.033	0.578±0.017	0.701±0.019
		RoBERTa	BART	1.159±0.144	1.241±0.102	0.480±0.030	0.731±0.022
		Implicit	RoBERTa	0.853±0.145	1.182±0.023	0.608±0.036	0.675±0.016
		RoBERTa	BART	1.061±0.130	1.200±0.019	0.454±0.017	0.633±0.018
	SentencePiece	Explicit	BART	1.161±0.101	1.175±0.026	0.507±0.026	0.671±0.012
		Implicit	BART	1.039±0.170	1.243±0.039	0.529±0.022	0.734±0.007
		RoBERTa	BART	0.892±0.052	1.242±0.053	0.513±0.025	0.751±0.040
SMILES	Atom	Explicit	RoBERTa	0.842±0.072	1.145±0.026	0.520±0.053	0.672±0.012
		Implicit	BART	1.085±0.159	1.209±0.080	0.458±0.020	0.673±0.007
		RoBERTa	BART	0.902±0.184	1.182±0.015	0.457±0.021	0.677±0.021
		RoBERTa	BART	0.995±0.127	1.171±0.030	0.468±0.022	0.693±0.016
	SentencePiece	Explicit	RoBERTa	0.888±0.193	1.172±0.032	0.550±0.029	0.689±0.011
		Implicit	BART	0.995±0.092	1.229±0.041	0.518±0.007	0.722±0.015
		RoBERTa	BART	0.978±0.164	1.184±0.043	0.556±0.047	0.698±0.012
MolBERT [5] ChemFormer [6]	Atom	Explicit	RoBERTa	1.020±0.099	1.179±0.076	0.508±0.019	0.712±0.022
		RoBERTa	RoBERTa			0.948	0.531

Table S4 Downstream regression RMSE score mean and standard deviation from five seeds on MoleculeNet datasets [4] across different molecular representations, tokenizers, chirality representations and language models

Better choice	Worse choice	p-value
SMILES	SELFIES	0.004
Atomwise	SentencePiece	0.020
BART	RoBERTa	0.416
Explicit	Implicit	0.123

Table S5 One-sided Wilcoxon signed-rank test [7] using matching mean z-scores of all seven downstream tasks and all 16 configurations each, only differing in the indicated parameter of interest. This means for each test, we had two matching cohorts of 56 measurements. The first column indicates the better performing choice compared to the second column, while the third indicates the p-value of the hypothesis that the worse choice performs better than the better choice. Comparatively, 1-(p-value) is the p-value for the hypothesis that the better choice outperforms the worse choice. Regression scores have been multiplied by -1 to have the same ranking direction.

Supplementary Information S2 Simpler classifier details

To train the weak classifiers we used the implementations from scikit-learn [8]. For k-nearest-neighbours classifier we searched the hyperparameters for n_neighbours [1, 5, 11] and weights [uniform, distance] and for the SVC and LinearSVC we used a C in [0.1, 1, 10], additionally we used LinearSVC with max_iter=1000. The splitting into train and test set was done randomly.

References

- [1] Ott, M. *et al.* fairseq: A fast, extensible toolkit for sequence modeling. *arXiv preprint arXiv:1904.01038* (2019).
- [2] Loshchilov, I. & Hutter, F. Fixing weight decay regularization in adam. *arXiv preprint arXiv:1711.05101* **5**, 5 (2017).
- [3] Ahmad, W., Simon, E., Chithrananda, S., Grand, G. & Ramsundar, B. Chembert-2: Towards chemical foundation models. *arXiv preprint arXiv:2209.01712* (2022).
- [4] Wu, Z. *et al.* Moleculenet: A benchmark for molecular machine learning. *CoRR abs/1703.00564* (2017).
- [5] Fabian, B. *et al.* Molecular representation learning with language models and domain-relevant auxiliary tasks. *arXiv preprint arXiv:2011.13230* (2020).
- [6] Irwin, R., Dimitriadis, S., He, J. & Bjerrum, E. J. Chemformer: a pre-trained transformer for computational chemistry. *Machine Learning: Science and Technology*

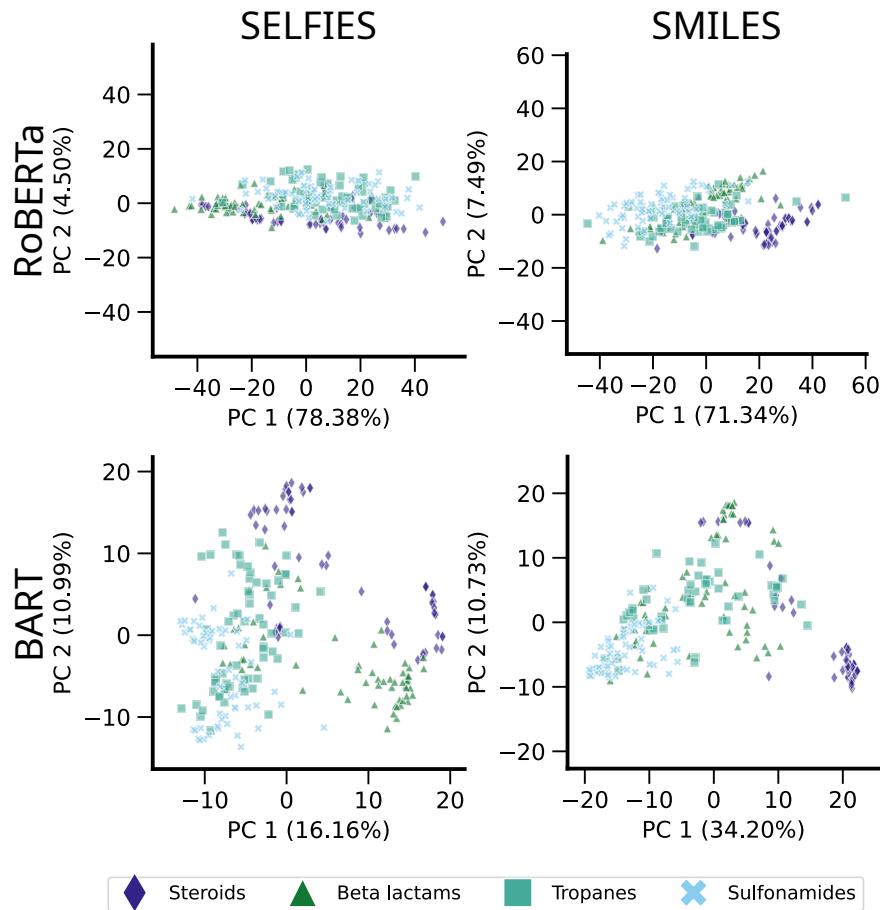


Fig. S1 PCA embeddings of various molecules using SELFIES or SMILES, RoBERTa or BART, atomwise tokeniser and implicit isomer representation

3, 015022 (2022).

[7] Wilcoxon, F. in *Individual comparisons by ranking methods* 196–202 (Springer, 1992).

[8] Pedregosa, F. *et al.* Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research* **12**, 2825–2830 (2011).

[9] Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. *Journal of Molecular Graphics and Modelling* **25**, 247–260 (2006).

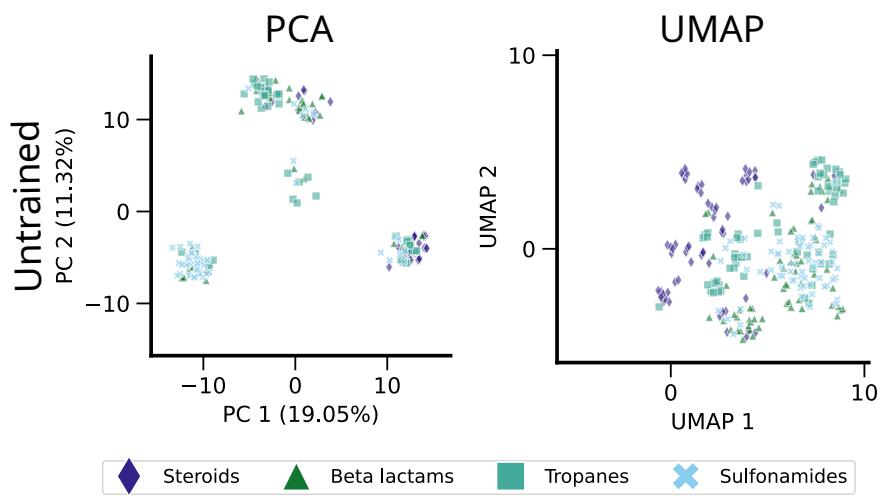


Fig. S2 PCA and UMAP embeddings of various molecules using an untrained SMILES model

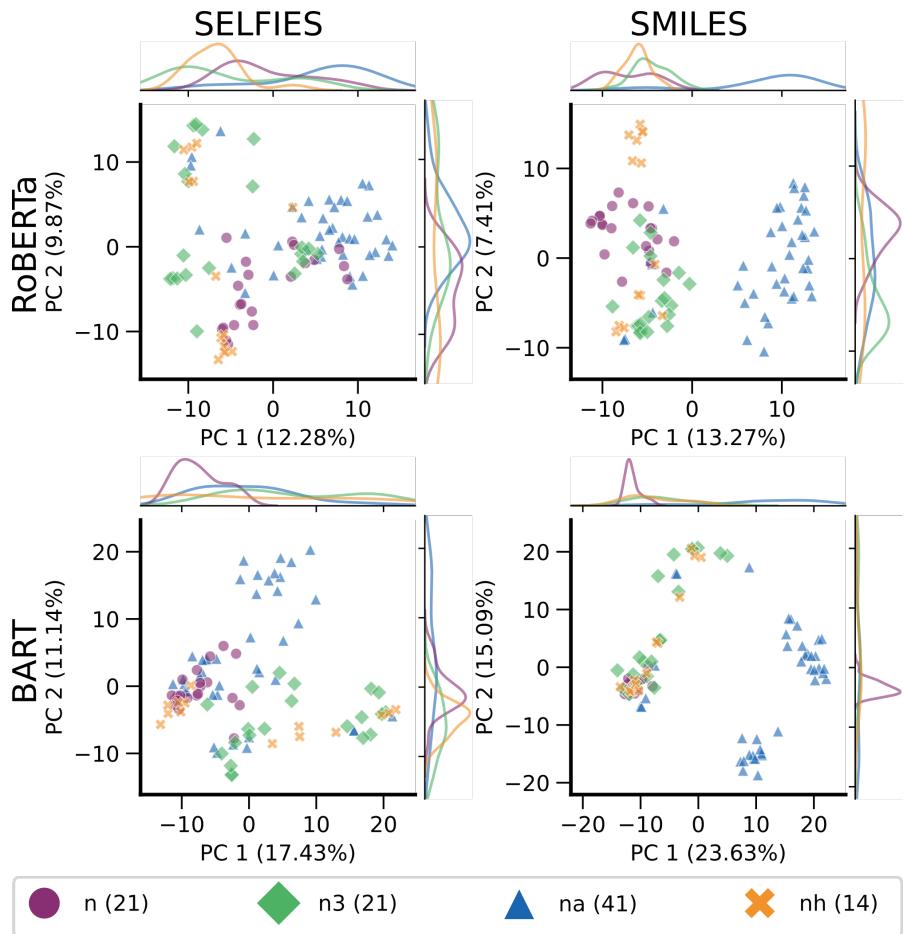


Fig. S3 PCA of nitrogen atom type embeddings of SMILES or SELFIES-based models BART and RoBERTA with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been determined by antechamber[9] and correspond to the following hybridizations: n: sp^2 in amide, n3: sp^3 N with 3 substitutions, na: sp^2 N with 3 substitutions, nh: amine N connected to the aromatic rings. Amount of samples in brackets.

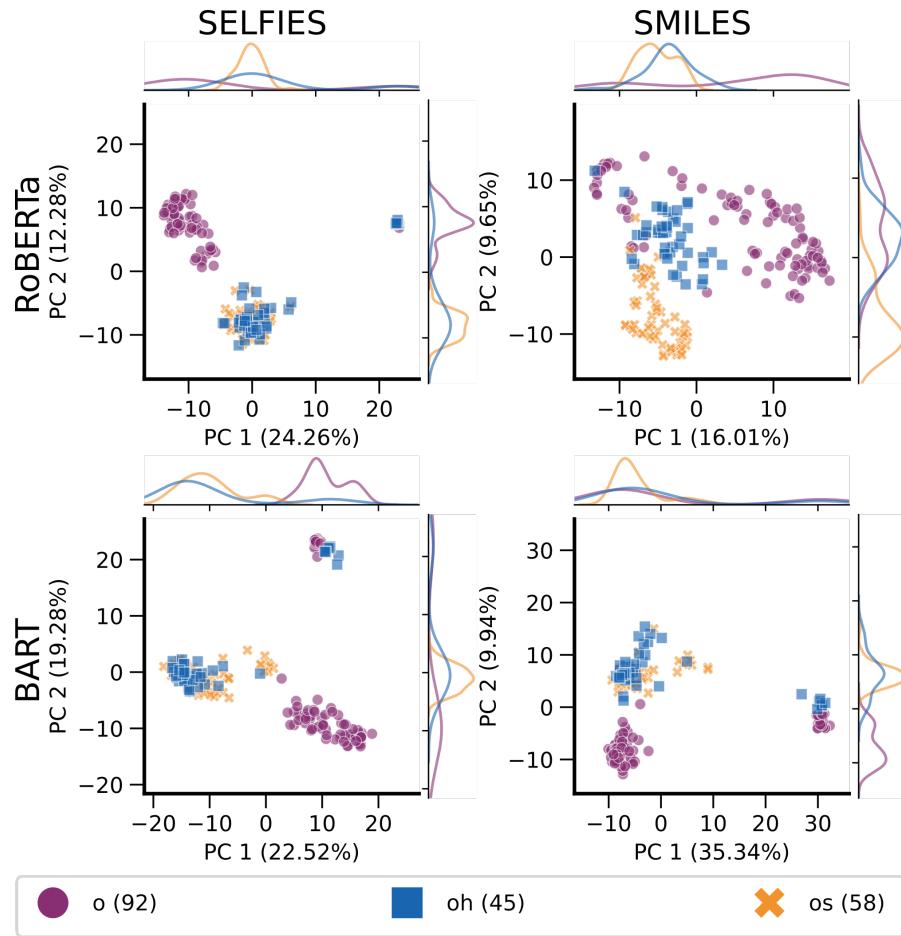


Fig. S4 PCA of oxygen atom type embeddings of SMILES or SELFIES-based models BART and RoBERTa with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been determined by antechamber[9] and correspond to the following hybridizations: o: sp^2 O in C=O and COO-, oh: sp^3 O in hydroxyl group, os: sp^3 O in ether and ester. Amount of samples in brackets.

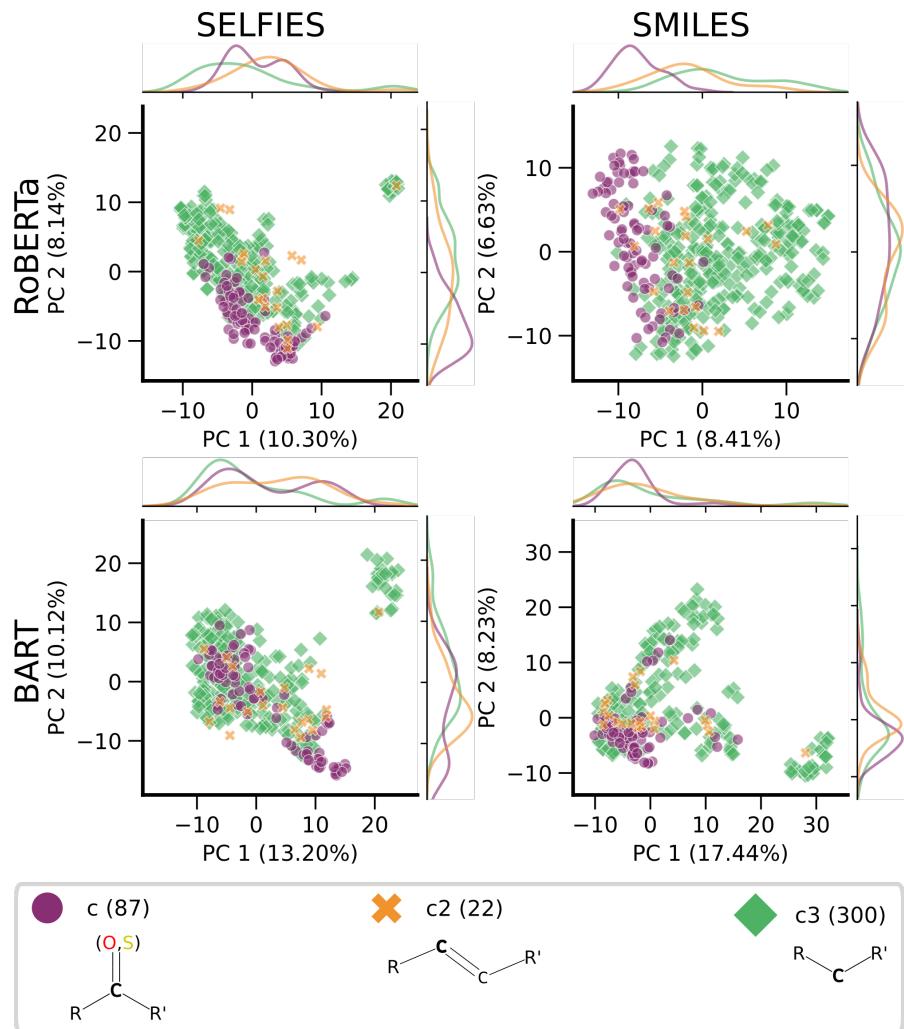


Fig. S5 PCA of non-aromatic carbon atom type embeddings of SMILES or SELFIES-based models BART and RoBERTa with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been determined by antechamber[9] and correspond to the following hybridizations: c: sp^2 in $\text{C}=\text{O}$, $\text{C}=\text{S}$, c2: sp^2 in aliphatic carbon, c3: sp^3 . Amount of samples in brackets.

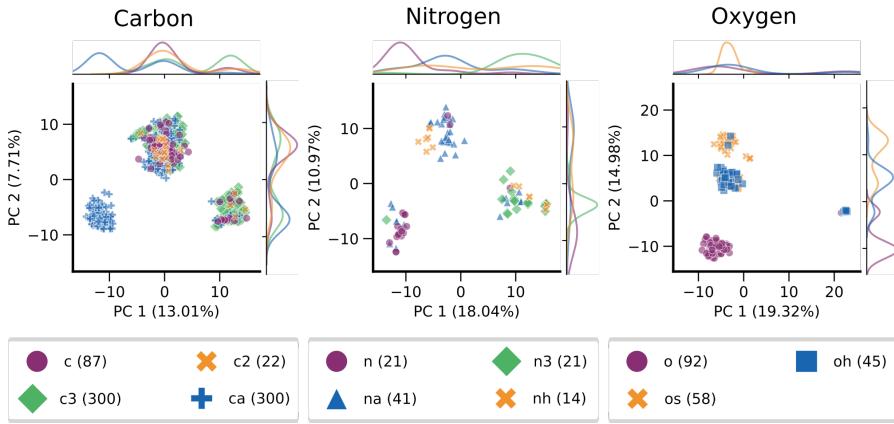


Fig. S6 PCA of embeddings of carbon, nitrogen, and oxygen atom types from untrained SMILES-BART with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been determined by antechamber[9] and correspond to the following hybridizations: c: sp^2 in $C=O$, $C=S$, c2: sp^2 in aliphatic carbon, c3: sp^3 , n: sp^2 in amide, n3: sp^3 N with 3 substitutions, na: sp^2 N with 3 substitutions, nh: amine N connected to the aromatic rings, o: sp^2 O in $C=O$ and COO^- , oh: sp^3 O in hydroxyl group, os: sp^3 O in ether and ester. Amount of samples in brackets.

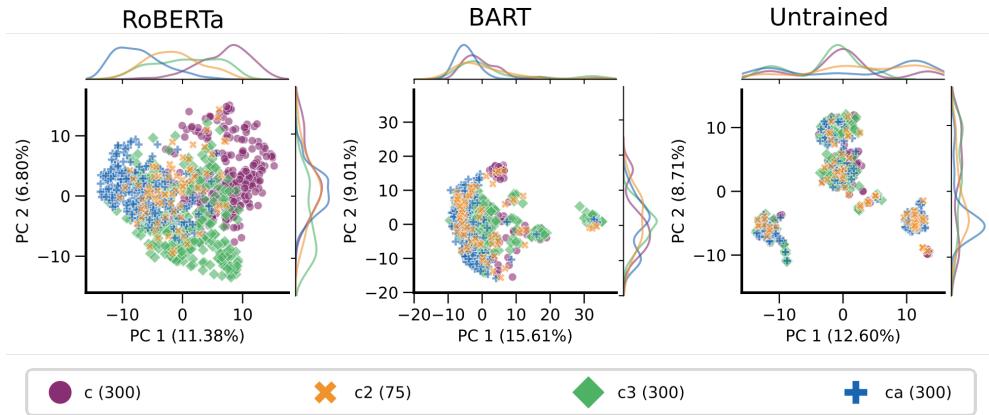


Fig. S7 PCA of carbon atom type embeddings of kekulized SMILES that contain only uppercase carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond to the following hybridizations: c: sp^2 in $C=O$, $C=S$, c2: sp^2 in aliphatic carbon, c3: sp^3 , ca: sp^2 in aromatic carbon. Amount of samples in brackets (Note: Since mapping to SELFIES was not done here, more atom types could be analysed and so numbers of atom types differ to previous plots.)

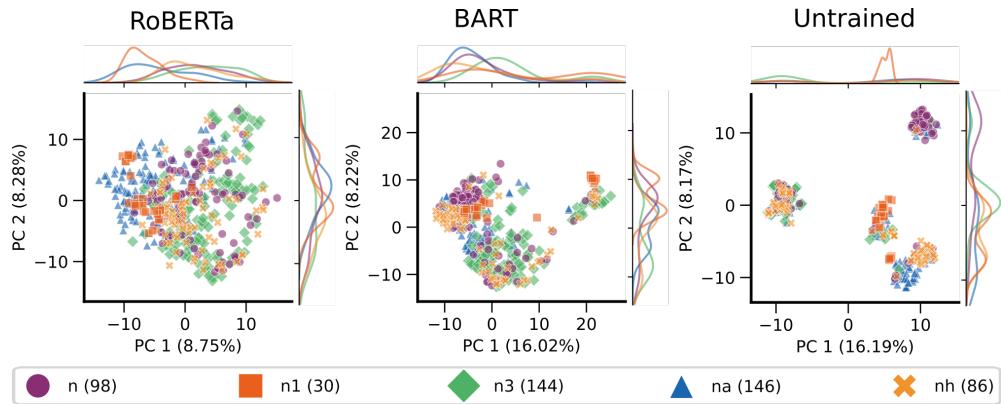


Fig. S8 PCA of nitrogen atom type embeddings of kekulized SMILES that contain only uppercase carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond to the following hybridizations: n: sp^2 in amide, n1: sp^1 N, n3: sp^3 N with 3 substitutions, na: sp^2 N with 3 substitutions, nh: amine N connected to the aromatic rings. Amount of samples in brackets (Note: Since mapping to SELFIES was not done here, more atom types could be analysed and so numbers of atom types differ to previous plots.)

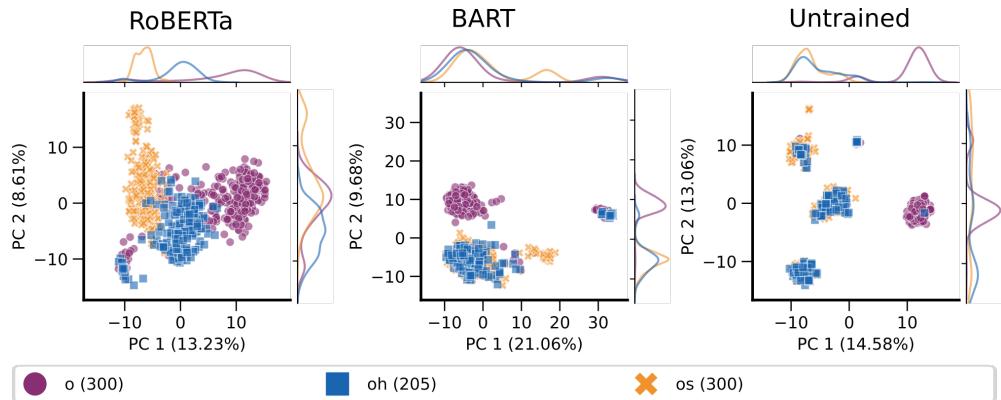


Fig. S9 PCA of oxygen atom type embeddings of kekulized SMILES that contain only uppercase carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond to the following hybridizations: o: sp^2 O in C=O and COO-, oh: sp^3 O in hydroxyl group, os: sp^3 O in ether and ester.. Amount of samples in brackets (Note: Since mapping to SELFIES was not done here, more atom types could be analysed and so numbers of atom types differ to previous plots.)