Argument Value
batch-size 32

mask 0.2
tokens-per-sample 512
total-num-update 500000
warmup-updates 1500

task denoising
arch bart_base
optimizer adam
Ir-scheduler polynomial_decay
Ir le-05
dropout 0.1

criterion cross_entropy
max-tokens 3200
weight-decay 0.01
attention-dropout 0.2
relu-dropout 0.1
share-decoder-

input-output-embed
share-all-embeddings

clip-norm 1.0
attention-dropout 0.2
mask-length span-poisson
replace-length 1

rotate 0.0
mask-random 0.1
permute-sentences 1

insert 0
poisson-lambda 3.5

GPU 1xNVIDIA RTX A5000
Training time 5 days

Table S1 Fairseq pretraining parameters for

BART models.

Argument Value
batch-size 32
tokens-per-sample | 512
total-num-update | 500000
warmup-updates 1500

task

masked_lm

arch roberta_base
optimizer adam
Ir-scheduler polynomial_decay
Ir le-05
dropout 0.1

criterion masked_lm
max-tokens 3200
weight-decay 0.01
attention-dropout | 0.2
relu-dropout 0.1
clip-norm 1.0
attention-dropout | 0.2

GPU

1xNVIDIA RTX A5000

Training time

4 days

Table S2 Fairseq pretraining parameters for

RoBERTa models.

Supplementary Information S1 Training details

The BART and and RoBERTa pretraining was conducted in accordance with the
fairseq [1] parameters specified in Table S1 and Table S2 respectively. Further pre-
training information can be found in our public Weights and Biases workspace
https://wandb.ai/ibmm-lemmin/pre-train/overview.

Fine-tuning was conducted with the AdamW/2] optimiser, utilising Adam-betas
(0.9, 0.999), Adam-eps 1e-08, weight decay 0.01, dropout 0.2 and clip norm 0.1. In
order to identify the optimal learning rates, a range of [1e-05, 5e-05, 5e-06] was tested
with one seed each time. In the end, five seeds were used with the best learning
rate to assess the performance and gather more data points for the z-score. Further
information can be found on Weights and Biases: pretrain, tox21, lipo, hiv, delaney,
clintox, clearance, bbbp, bace regression, bace classification.

S1



https://wandb.ai/ibmm-lemmin/pre-train/overview
https://wandb.ai/ibmm-lemmin/pre-train
https://wandb.ai/ibmm-lemmin/Finetune_tox21
https://wandb.ai/ibmm-lemmin/Finetune_lipo
https://wandb.ai/ibmm-lemmin/Finetune_hiv
https://wandb.ai/ibmm-lemmin/Finetune_delaney
https://wandb.ai/ibmm-lemmin/Finetune_clintox
https://wandb.ai/ibmm-lemmin/Finetune_clearance
https://wandb.ai/ibmm-lemmin/Finetune_bbbp
https://wandb.ai/ibmm-lemmin/Finetune_bace_regression
https://wandb.ai/ibmm-lemmin/Finetune_bace_classification
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Better choice  Worse choice ‘ p-value

SMILES SELFIES 0.004
Atomwise SentencePiece 0.020
BART RoBERTa 0.416
Explicit Implicit 0.123

Table S5 One-sided Wilcoxon signed-rank test
[7] using matching mean z-scores of all seven
downstream tasks and all 16 configurations
each, only differing in the indicated parameter
of interest. This means for each test, we had
two matching cohorts of 56 measurements. The
first column indicates the better performing
choice compared to the second column, while
the third indicates the p-value of the hypothesis
that the worse choice performs better than the
better choice. Comparatively, 1-(p-value) is the
p-value for the hypothesis that the better choice
outperforms the worse choice. Regression scores
have been multiplied by -1 to have the same
ranking direction.

Supplementary Information S2 Simpler classifier

details

To train the weak classifiers we used the implementations from scikit-learn [8]. For k-
nearest-neighbours classifier we searched the hyperparameters for n_neighbours [1, 5,
11] and weights [uniform, distance] and for the SVC and LinearSVC we used a C in
[0.1, 1, 10], additionally we used LinearSVC with max_iter=1000. The splitting into
train and test set was done randomly.
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determined by antechamber[9] and correspond to the following hybridizations: n: sp? in amide, n3:
sp3 N with 3 substitutions, na: sp?> N with 3 substitutions, nh: amine N connected to the aromatic
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Fig. S4 PCA of oxygen atom type embeddings of SMILES or SELFIES-based models BART and
RoBERTA with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been deter-
mined by antechamber[9] and correspond to the following hybridizations: o: sp? O in C=0 and COO-,
oh: sp3 O in hydroxyl group, os: sp® O in ether and ester. Amount of samples in brackets.
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Fig. S6 PCA of embeddings of carbon, nitrogen, and oxygen atom types from untrained SMILES-
BART with atomwise tokeniser and implicit chirality. The GAFF2 atom types have been determined
by antechamber[9] and correspond to the following hybridizations: c: sp? in C=0, C=S, c2: sp?
in aliphatic carbon, ¢3: sp3, n: sp? in amide, n3: sp® N with 3 substitutions, na: sp? N with 3
substitutions, nh: amine N connected to the aromatic rings, o: sp? O in C=0 and COO-, oh: sp> O
in hydroxyl group, os: sp3 O in ether and ester. Amount of samples in brackets.
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Fig. S7 PCA of carbon atom type embeddings of kekulized SMILES that contain only uppercase
carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the
untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond
to the following hybridizations: c: sp? in C=0, C=S, c2: sp? in aliphatic carbon, c¢3: sp3, ca: sp? in
aromatic carbon. Amount of samples in brackets (Note: Since mapping to SELFIES was not done
here, more atom types could be analysed and so numbers of atom types differ to previous plots.)
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Fig. S8 PCA of nitrogen atom type embeddings of kekulized SMILES that contain only uppercase
carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the
untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond
to the following hybridizations: n: sp? in amide, nl: sp! N, n3: sp® N with 3 substitutions, na: sp?
N with 3 substitutions, nh: amine N connected to the aromatic rings. Amount of samples in brackets
(Note: Since mapping to SELFIES was not done here, more atom types could be analysed and so
numbers of atom types differ to previous plots.)
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Fig. S9 PCA of oxygen atom type embeddings of kekulized SMILES that contain only uppercase
carbons from models BART and RoBERTA with atomwise tokeniser and implicit chirality and the
untrained BART. The GAFF2 atom types have been determined by antechamber[9] and correspond
to the following hybridizations: o: sp? O in C=0 and COO-, oh: sp3 O in hydroxyl group, os: sp® O
in ether and ester.. Amount of samples in brackets (Note: Since mapping to SELFIES was not done
here, more atom types could be analysed and so numbers of atom types differ to previous plots.)
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