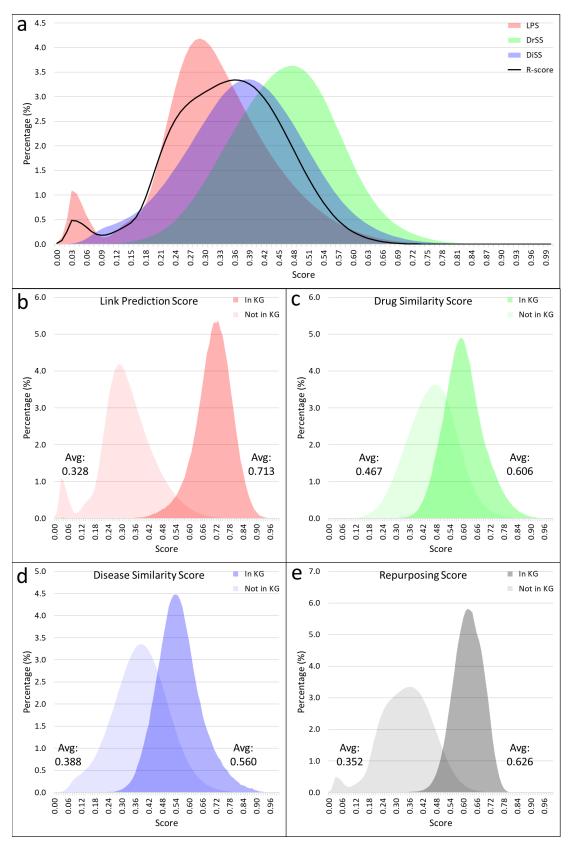
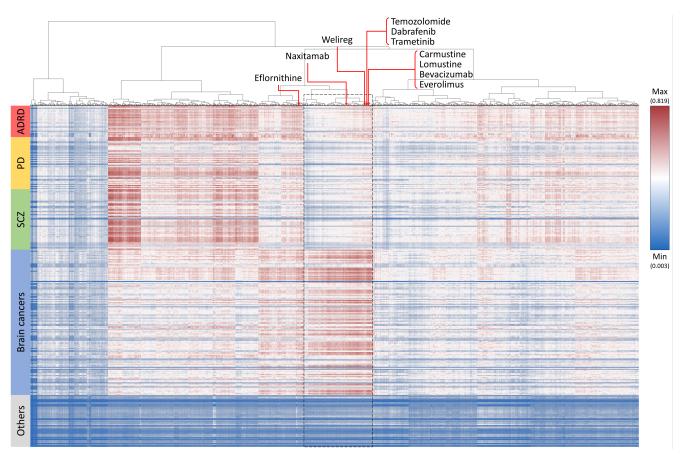
DrugReX: an explainable drug repurposing system powered by large language models and literature-based knowledge graph

Liang-Chin Huang¹, Hunki Paek¹, Kyeryoung Lee¹, Ediz Calay¹, Deepak Pillai¹, Nneka Ofoegbu¹, Bin Lin¹, Hua Xu², and Xiaoyan Wang^{1, 3, *}


Supplementary Figures and Tables

¹IMO Health, Rosemont, IL, 60018, USA


²Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, 06510, USA

³Department of Health Policy and Management, Tulane University, New Orleans, LA, 70118, USA

^{*}xw108@caa.columbia.edu

Figure S1. Distributions of different scores in the scoring system. LPS: Link Prediction Score; DrSS: Drug Similarity Score; DiSS: Disease Similarity Score; R-score: Repurposing Score; KG: knowledge graph. The average score for each group is labeled.

Figure S2. Clustering analysis for FDA-approved brain cancer drugs. Brain cancer drugs are indicated by red arrows. PD: Parkinson's disease; SCZ: schizophrenia.

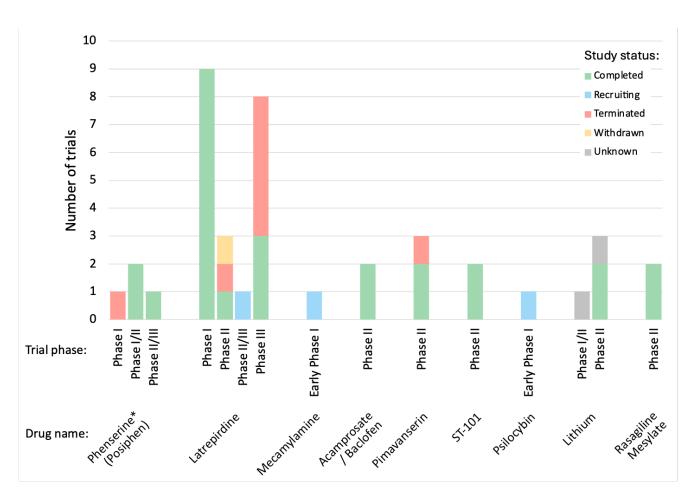


Figure S3. Candidate ADRD drugs with clinical trials for treating ADRD.

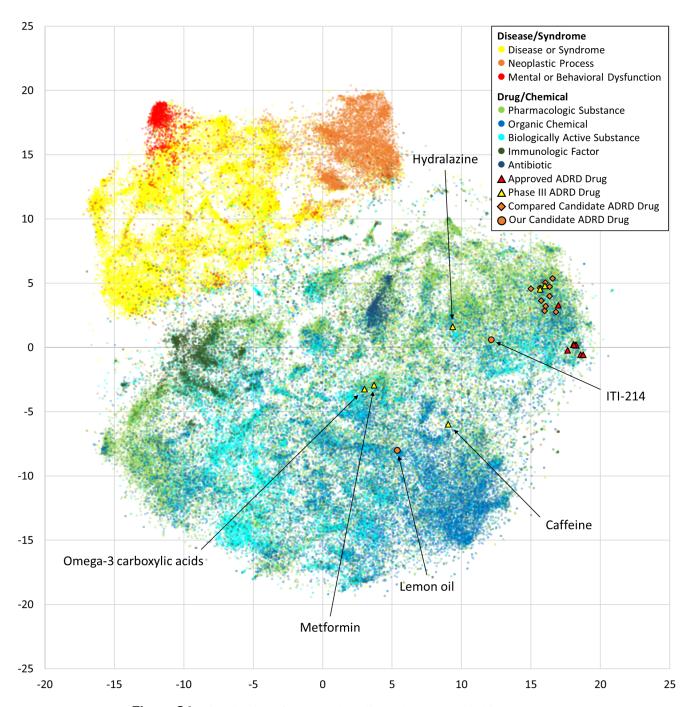


Figure S4. Visualization of compared candidate drugs embedded in a 2D space.

Iteration	BERT _{cased}	BERT _{uncased}	BioBERT	BioClinicalBERT	BlueBERT	PubMedBERT
1	0.6667	0.6651	0.7625	0.7410	0.7316	0.7919
2	0.6566	0.6451	0.7372	0.7355	0.7308	0.7697
3	0.6724	0.6690	0.7467	0.7425	0.7337	0.7805
4	0.6391	0.6635	0.7302	0.7476	0.7504	0.7788
5	0.6612	0.6651	0.7384	0.7267	0.7352	0.7886
6	0.6599	0.6620	0.7851	0.7428	0.7379	0.8082
7	0.6590	0.6675	0.7925	0.7446	0.7061	0.7912
8	0.6737	0.6468	0.7606	0.7524	0.6881	0.7820
9	0.6635	0.6675	0.7540	0.7414	0.7234	0.7610
10	0.6643	0.6667	0.7910	0.7206	0.7197	0.7880

Table S1. Performance $(F_1 \text{ score})$ of relation classification using BERT-based models. The best performing model is highlighted in bold.

Entity type	Semantic type defined by UMLS	Count
Drug/Chemical	Pharmacologic Substance	48,461
	Organic Chemical	26,086
	Biologically Active Substance	13,254
	Immunologic Factor	4,171
	Antibiotic	1,774
	Subtotal	93,746
Gene/Protein	Gene or Genome	41,800
	Enzyme	8,702
	Amino Acid, Peptide, or Protein	7,640
	Nucleic Acid, Nucleoside, or Nucleotide	1,528
	Subtotal	59,670
Disease/Syndrome	Disease or Syndrome	25,972
	Neoplastic Process	7,898
	Mental or Behavioral Dysfunction	1,746
	Subtotal	35,616
Pathway/Function	Molecular Function	7,369
	Cell Function	3,559
	Genetic Function	1,140
	Subtotal	12,068
Others	Finding	21,276
	Therapeutic or Preventive Procedure	11,115
	Body Part, Organ, or Organ Component	4,998
	Laboratory Procedure	457
	Others	43,125
	Subtotal	80,971
Total		282,071

Table S2. Number of entities in the LitKG.

Relation type	# Relations	# Sentences	Example sentence
ASSOCIATED_WITH	6,297,142	19,261,066	Amyloid beta $(A\beta)$ peptides are characterized as the major factors
			associated with neuron death in Alzheimer's disease ¹
CAUSES	2,789,328	9,768,918	β -amyloidosis and oxidative stress have been implicated as root
			causes of Alzheimer's disease ²
COEXISTS_WITH	4,034,508	11,110,829	Because cerebral amyloid angiopathy-related hemorrhage often co-
			exists with AD, we examined the IL-1A polymorphism in cerebral
			amyloid angiopathy-related hemorrhage ³
COMPLICATES	92,645	152,195	Alzheimer's disease complicated by a terminal <u>salmonella</u>
			<u>infection</u> ⁴
INHIBITS	2,964,981	6,220,215	Berberine (BBR) can improve antioxidative capacity and inhibit
			Abeta protein aggregation and tau protein hyperphosphorylation in
			AD, and stem cell therapy is also increasingly recognized as a
			therapy for AD ⁵
INTERACTS_WITH	2,970,495	7,237,927	These in vitro interactions between tau protein and <u>sulfated</u>
			glycosaminoglycans reproduced the known characteristics of paired
			helical filament-tau from Alzheimer's disease brain ⁶
MANIFESTATION_OF	66,108	120,821	In its earliest clinical manifestation, AD often presents as
			Mild Cognitive Impairment (MCI), a term used to describe older
			adults with cognitive decline that is more severe than expected for
			healthy aging but does not meet standard criteria for dementia ⁷
PRODUCES	701,231	2,026,850	Biochemical characterization of the gamma-secretase activity that
			produces beta-amyloid peptides ⁸
STIMULATES	2,812,479	6,848,726	In conclusion, <u>aluminum</u> appears to induce isolated tau protein to
			aggregate in a phosphate-independent way, without the formation
			of fibrils ⁹
TREATS	1,854,718	8,733,721	In conclusion, the well-known antidiabetic drug, metformin, could
			be a promising drug for <u>AD</u> treatment ¹⁰
Total (unique)	24,583,635	66,324,693	

Table S3. Number of relations and supporting sentences in the LitKG. Subjects and objects are highlighted by underlining; relations are highlighted in bold.

Algorithm	MR	MRR	HITS@1	HITS@3	HITS@10
ComplEx	1.7391	0.8325	0.7280	0.9306	0.9872
DistMult	1.7738	0.8232	0.7144	0.9243	0.9870
RotatE	3.3377	0.5705	0.3793	0.7018	0.9533
TransE	2.0370	0.7710	0.6396	0.8868	0.9817
TransE_11	1.6969	0.8327	0.7295	0.9276	0.9896
TransE_12	2.0974	0.7676	0.6356	0.8838	0.9786

Table S4. Performance of knowledge graph embedding models. MR: mean rank; MRR: mean reciprocal rank. TransE_l1: TransE regularized by L1 normalization; TransE_l2: TransE regularized by L2 normalization. The best algorithm and performances are highlighted in bold.

Task	Hypothesis
Generating a hypothesis based	"Based on your knowledge and the following evidence, generate a hypothesis of how
on supporting sentences	{DRUG} can treat Alzheimer's disease in a paragraph and provide citations in the format
("LitKG-GPT4")	[number, number,].
	1. {SENTENCE 1}
	2. {SENTENCE 2}
	"···
Generating a hypothesis based	"Based on your knowledge and the following evidence, generate a hypothesis of how
on supporting sentences and	{DRUG} can treat Alzheimer's disease in a paragraph and provide citations in the format
unrelated sentences	[number, number,].
("LitKG'-GPT4")	1. {SENTENCE 1}
	2. {UNREL_SENT 2}
	,,
Generating a hypothesis based	"Based on your knowledge and the following evidence, generate a hypothesis of how
on relation types and unrelated	{DRUG} can treat Alzheimer's disease in a paragraph and provide citations in the format
relations	[number, number,].
("KG-GPT4")	1. {SUBJECT 1} {RELATION 1} {OBJECT 1}
	2. {UNREL_SUBJECT 2} {RELATION 2} {UNREL_OBJECT 2}
Generating a hypothesis without	"Based on your knowledge, generate a hypothesis of how {DRUG} can treat Alzheimer's
further information	disease in a paragraph."
("GPT4")	
Generating a hypothesis by	"Based on your knowledge, generate a hypothesis of how {DRUG} can treat Alzheimer's
Consensus without further	disease in a paragraph."
information	
("Consensus")	

Table S5. The prompt templates for explaining the potential of new ADRD treatments. Replace {DRUG}, {SENTENCE n}, {UNREL_SENT 1}, {SUBJECT n}, {UNREL_SUBJECT n}, {RELATION n}, {OBJECT n}, and {UNREL_OBJECT n} with the candidate drug's name, supporting sentences, unrelated sentences, subject name, unrelated subject name, relation type, object name, and unrelated object name respectively.

Drug name	FDA-approved	Closest	Correlation	R-score	P-value	First CT	Adj PV ⁰
	indication	ADRD drug				for ADRD	
Levetiracetam	Seizures	Memantine	0.9928	0.7153	0.0002	09/12/01	0.0004
Clomipramine	Schizophrenia	Brexpiprazole	0.9932	0.6824	0.0007	NA	NA
Duloxetine	Depression	Brexpiprazole	0.9893	0.6691	0.0012	03/12/01	0.0017
Fluoxetine	Depression	Brexpiprazole	0.9953	0.6976	0.0004	NA	NA
Maprotiline	Depression	Brexpiprazole	0.9924	0.6565	0.0019	NA	NA
Armodafinil	Schizophrenia	Brexpiprazole	0.9944	0.6338	0.0040	NA	NA
Sertraline	Depression	Brexpiprazole	0.9921	0.6808	0.0008	NA	NA
Lisdexamfetamine	ADHD	Brexpiprazole	0.9922	0.6463	0.0027	NA	NA
Atomoxetine	ADHD	Brexpiprazole	0.9784	0.7051	0.0003	03/10/01	0.0033
Dextroamphetamine	ADHD	Brexpiprazole	0.9957	0.6965	0.0004	03/10/01	0.0002
Brexpiprazole	ADRD	Brexpiprazole	1.0000	0.6827	0.0007	13/07/11	NA
Caffeine	Apnea	Donepezil	0.9860	0.6535	0.0021	06/06/01	0.0072
Escitalopram	Depression	Brexpiprazole	0.9948	0.7067	0.0003	95/09/01	NA
Guanfacine	ADHD	Brexpiprazole	0.9917	0.7124	0.0002	19/01/04	0.0011
Hydralazine	Hypertension	Donepezil	0.9226	0.6134	0.0074	21/08/02	0.0010
Metformin	Hyperglycemia	Donepezil	0.9076	0.6196	0.0062	08/06/01	0.0057
OM3-CA	HTG	Galantamine	0.9457	0.5639	0.0260	NA	NA

Table S6. Compared candidate drugs' R-scores for ADRD. Candidate drugs proposed by a previous study are highlighted in bold. *: date format: YY/MM/DD. Correlation: the Pearson correlation coefficient determined by comparing the drug and its closest ADRD drug, as per the R-score profile. ADHD: attention-deficit/hyperactivity disorder; OM3-CA: omega-3-carboxylic acids; HTG: hypertriglyceridemia.

ADMINISTERED_TO TREATS AFFECTS ASSOCIATED_WITH AUGMENTS STIMULATES DISRUPTS INHIBITS PREVENTS INHIBITS METHOD_OF ISA USES ISA LOCATION_OF PART_OF PREDISPOSES CAUSES	Original relation	Normalized relation
AUGMENTS STIMULATES DISRUPTS INHIBITS PREVENTS INHIBITS METHOD_OF ISA USES ISA LOCATION_OF PART_OF	ADMINISTERED_TO	TREATS
DISRUPTS INHIBITS PREVENTS INHIBITS METHOD_OF ISA USES ISA LOCATION_OF PART_OF	AFFECTS	ASSOCIATED_WITH
PREVENTS INHIBITS METHOD_OF ISA USES ISA LOCATION_OF PART_OF	AUGMENTS	STIMULATES
METHOD_OF ISA USES ISA LOCATION_OF PART_OF	DISRUPTS	INHIBITS
USES ISA LOCATION_OF PART_OF	PREVENTS	INHIBITS
LOCATION_OF PART_OF	METHOD_OF	ISA
	USES	ISA
PREDISPOSES CAUSES	LOCATION_OF	PART_OF
	PREDISPOSES	CAUSES

Table S7. Relation normalization.

References

- 1. Tung, N. T., Derreumaux, P., Vu, V. V., Nam, P. C. & Ngo, S. T. C-terminal plays as the possible nucleation of the self-aggregation of the s-shape a β 11–42 tetramer in solution: Intensive md study. *ACS omega* **4**, 11066–11073 (2019).
- **2.** Prabhakar, R. Computational insights into the development of novel therapeutic strategies for alzheimer's disease. *Futur. medicinal chemistry* **1**, 119–135 (2009).
- **3.** McCarron, M. *et al.* Association between interleukin-1a polymorphism and cerebral amyloid angiopathy–related hemorrhage. *Stroke* **34**, e193–e195 (2003).
- **4.** Himmelhoch, E., Latham, O. & McDONALD, C. Alzheimer's disease complicated by a terminal salmonella infection. *Med. J. Aust.* **1**, 701–703 (1947).
- **5.** Wen, C. *et al.* The secretion from bone marrow mesenchymal stem cells pretreated with berberine rescues neurons with oxidative damage through activation of the keap1-nrf2-ho-1 signaling pathway. *Neurotox. Res.* **38**, 59–73 (2020).
- **6.** Hasegawa, M., Crowther, R. A., Jakes, R. & Goedert, M. Alzheimer-like changes in microtubule-associated protein tau induced by sulfated glycosaminoglycans: inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. *J. biological chemistry* **272**, 33118–33124 (1997).
- **7.** Pirogovsky, E. *et al.* Temporal sequence learning in healthy aging and amnestic mild cognitive impairment. *Exp. aging research* **39**, 371–381 (2013).
- 8. Zhang, L. *et al.* Biochemical characterization of the γ -secretase activity that produces β -amyloid peptides. *Biochem.* 40, 5049–5055 (2001).
- **9.** Scott, C. W., Fieles, A., Sygowski, L. A. & Caputo, C. B. Aggregation of tau protein by aluminum. *Brain research* **628**, 77–84 (1993).
- **10.** Lu, X.-Y. *et al.* Metformin ameliorates aβ pathology by insulin-degrading enzyme in a transgenic mouse model of alzheimer's disease. *Oxidative Medicine Cell. Longev.* **2020**, 2315106 (2020).