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Descriptor Based Models

Table S1: Molecular descriptors with definitions

Descriptor Description

Basic Molecular Properties

Molecular Weight Exact mass of the molecule (in daltons)

TPSA Topological Polar Surface Area (in Å²)

CrippenClogP Wildman-Crippen octanol-water partition coefficient

Fraction SP3 Ratio of sp³-hybridized carbon atoms to total carbons

Bond and Ring Characteristics

Continued on next page
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Table S1 – continued from previous page

Descriptor Description

Number of Rotatable Bonds Count of non-terminal single bonds excluding amides

Number of Rings Total count of all ring systems

Number of Aromatic Rings Count of rings with aromatic character

Number of Aliphatic Rings Count of non-aromatic rings

Number of Saturated Rings Count of fully saturated rings

Number of Bridgehead Atoms Atoms shared between rings with ≥ 2 bonds

Heteroatom and Functional Groups

Number of Heteroatoms Total non-carbon, non-hydrogen atoms

#O atoms Total oxygen atoms

#N atoms Total nitrogen atoms

#F atoms Total fluorine atoms

#Cl atoms Total chlorine atoms

NumAmideBonds Count of CONH groups

fr bicyclic Number of bicyclic rings

fr ketone Number of ketones

fr para hydroxylation Number of para-hydroxylation sites

fr sulfone Number of sulfone groups

Hydrogen Bonding

Number of H-Bond Donors Count of NH or OH groups

lipinskiHBD Lipinski rule-compliant H-bond donors

Stereochemistry

Number of Atom Stereo Centers Total stereocenters (specified + unspecified)

Continued on next page
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Table S1 – continued from previous page

Descriptor Description

NumUnspecifiedAtomStereoCentersStereocenters without defined configuration

Other Indices

hallKierAlpha Hall-Kier alpha value (Rev. Comp. Chem. 2, 367–422,

1991)

kappa1–3 Hall-Kier shape indices κ1–κ3

MaxEStateIndex Maximum EState index

MinEStateIndex Minimum EState index

MinAbsEStateIndex Minimum absolute EState index

qed Quantitative estimate of drug-likeness

MaxAbsPartialCharge Maximum absolute Gasteiger atomic charge

FpDensityMorgan1 Morgan fingerprint density, radius 1

BalabanJ Chemical distance-based topological index

Chi4v Valence molecular connectivity index

Chi4n Variant of Chi4v using nVal

Kappa3 Third-order shape/connectivity index

SlogP VSAN, N = 4, 5, 8, 11 MOE-type descriptors using LogP and surface area con-

tributions

Model Description: Graph Convolutional Network - Variational

Autoencoder (GCN-VAE)

Model Architecture:

The GCN-VAE model handles molecular graphs(dgl1) from SMILES strings through two

key components: the Encoder and the Decoder.
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Figure S1: By varying the threshold value of correlation criteria we found optimal number of
features to form feature vector. A XGBoost model was used to evaluate the efficiency of the
representations. 10-fold cross validation was employed for reliable statistics. The standard
error in measurement is provided.

Figure S2: Relative importance of the features in terms of Gini score. TPSA has the most
contribution towards the predictability of the model, followed by number of hydrogen bond
donors.
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Figure S3: Distribution plots of key features contributing to the feature vector for analyzing
transferability issues. (a)–(c) and (e)–(f) show the distributions of important features, while
(g) presents the distribution of the target property, free energy of solvation (∆Gsolv) for each
dataset considered. (d) displays a lower-dimensional projection of high-dimensional feature
vectors, generated using UMAP and plotted along two UMAP embedding axes to visualize
the data spread and clustering patterns.

The Encoder utilizes multiple Relational Graph Convolutional Layers (R-GCN)2 followed

by dense layers. The R-GCN captures atom and bond relationships, assigning distinct weight

matrices for different bond types. A global average pooling layer aggregates node features

into a single vector, which is then passed through dense layers to produce the latent space

parameters—mean (z mean) and log variance (log var).

The Decoder reconstructs the adjacency matrix and node features from the latent vector.

Dense layers process the latent representation, and two output layers generate the adjacency

matrix and node features. Softmax activation ensures valid probability distributions for

these outputs.

Loss Function:

The total loss comprises multiple components: adjacency and feature reconstruction losses

(measured using cross-entropy), KL divergence loss (to enforce a standard normal distribu-

tion in the latent space), and binary cross-entropy loss for molecular property prediction.

An optional gradient penalty may be included for regularization and training stability.
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Figure S4: Popular ML models often overfit to training data, leading to reduced performance
on evaluation datasets. Here, the XGBoost model is trained on each dataset (rows) and
tested on the other two datasets (columns) to assess its generalization ability.

Hyperparameters:

The model is defined by several hyperparameters, including the maximum number of atoms

(NUM ATOMS), bond types (BOND DIM), atom feature dimensions (ATOM DIM), graph

convolution output sizes (gconv units), dense layer dimensions (dense units), latent space

dimension (latent dim), dropout rate (dropout rate), training epochs (epochs), and optimizer

learning rate (learning rate).
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Figure S5: By varying the bit size of the fingerprints we found optimal size of fingerprints.
A XGBoost model was used to evaluate the efficiency of the FPs. 10-fold cross validation
was employed for reliable statistics. The standard error in measurement is provided in terms
of error bar.

Training Loop

The training process begins with a forward pass to generate the latent vector, adjacency

matrix, and node features. Loss components are computed and combined, followed by a

backward pass to calculate gradients. Model parameters are updated through an optimiza-

tion step. Validation is conducted regularly to assess generalization on unseen data.
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Figure S6: Molecular entries(represented in terms of descriptor) in the 2D space of PCA,
UMAP and tSNE.

Figure S7: Molecular entries(represented in terms of atom-pair fingerprints) in the 2D space
of PCA, UMAP and tSNE.

Figure S8: Molecular entries(represented in terms of RDKit fingerprints) in the 2D space of
PCA, UMAP and tSNE.

Dimensionality reduction of feature space
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Figure S9: Molecular entries(represented in terms of Morgan fingerprints) in the 2D space
of PCA, UMAP and tSNE.

Figure S10: Molecular entries(represented in terms of extended connectivity finger-
prints(ECFPs)) in the 2D space of PCA, UMAP and tSNE.

Figure S11: Molecular entries(represented in terms of MACCS keys) in the 2D space of PCA,
UMAP and tSNE.
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Figure S12: Molecular entries(represented in terms of PubChem keys) in the 2D space of
PCA, UMAP and tSNE(color codes follow the legend of last subplot).

Figure S13: Molecular entries in the 2D latent space of trained GCN-VAE(merged dataset).
Molecules are colored by the value of their free energy of solvation.
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Figure S14: Dataset dependency of CIGIN model. Each column represents a dataset, while
each row corresponds to a model trained on the same dataset. In the top panel, the CIGIN
model is trained on the MNSol dataset and tested on the other two datasets. The middle
panel shows the model trained on FreeSolv, and in the lower panel, the model is trained on
CombiSolv before being tested across datasets.

1703.06103.
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Figure S15: Loss function vs epoch for GCN-VAE showing steady convergence.

Table S2: Trained MLP regressor(MLPR), XGBoost regressor(XGBR) and Random forest
regressor(RFR) on FreeSolv dataset.

Fingerprint MLPR RFR XGBR

R² MSE R² MSE R² MSE

AP 0.751 2.93 0.633 3.41 0.719 3.19

RDK 0.741 2.70 0.743 3.01 0.762 2.62

Morgan 0.771 2.73 0.541 4.43 0.786 2.56

ECFP 0.573 4.21 0.344 5.86 0.666 3.33

MACCS 0.920 1.20 0.868 1.63 0.910 1.14

PubChem 0.910 1.22 0.857 1.82 0.910 1.14
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Table S3: Trained MLP regressor(MLPR), XGBoost regressor(XGBR) and Random forest
regressor(RFR) on CombiSolv dataset.

Fingerprint MLP RFR XGB

R2 MSE R2 MSE R2 MSE

AP 0.854 2.77 0.763 4.36 0.847 3.19

RDK 0.822 3.36 0.824 3.25 0.837 3.71

Morgan 0.847 3.04 0.707 5.45 0.778 4.29

ECFP 0.766 4.14 0.648 6.28 0.765 4.69

MACCS 0.921 1.78 0.893 2.22 0.914 1.83

PubChem 0.911 1.87 0.884 2.28 0.914 1.83

Table S4: The atom (node) features used for molecular graph representation

Atom Feature Description

Atom Type Element identity (H, C, N, O, F, etc.) represented
using one-hot encoding

Implicit Valence Presence of implicit valence electrons (Binary)
Radical Electrons Presence of radical electrons (Binary)
Chirality Chirality configuration: R, S, or None (one-hot)
Number of Hydrogens Number of neighboring hydrogen atoms (one-hot)
Hybridization Hybridization state: sp, sp2, sp3, sp3d (one-hot)
Acidic Atom is acidic in nature (Binary)
Basic Atom is basic in nature (Binary)
Aromatic Atom is part of an aromatic group (Binary)
Donor Donates electrons (Binary)
Acceptor Accepts electrons (Binary)

Table S5: The bond (edge) features used for molecular representation

Bond Feature Description

Bond Type Bond order: single, double, triple, or aromatic
(one-hot)

Bond is in Conjuga-
tion

Indicates if the bond is part of a conjugated system
(Binary)

Bond is in Ring Indicates if the bond is part of a ring structure
(Binary)

Bond Chirality Stereochemistry of bond: E or Z (one-hot)
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