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Descriptor Based Models

Table S1: Molecular descriptors with definitions

Descriptor Description

Basic Molecular Properties

Molecular Weight Exact mass of the molecule (in daltons)

TPSA Topological Polar Surface Area (in A2)

CrippenClogP Wildman-Crippen octanol-water partition coefficient
Fraction SP3 Ratio of sp3-hybridized carbon atoms to total carbons

Bond and Ring Characteristics

Continued on next page
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Table S1 — continued from previous page

Descriptor

Description

Number of Rotatable Bonds
Number of Rings

Number of Aromatic Rings
Number of Aliphatic Rings
Number of Saturated Rings
Number of Bridgehead Atoms

Count of non-terminal single bonds excluding amides

Total count of all ring systems

Count of rings with aromatic character
Count of non-aromatic rings

Count of fully saturated rings

Atoms shared between rings with > 2 bonds

Heteroatom and Functional Groups

Number of Heteroatoms
#0_atoms

#N _atoms

#F_atoms

#Cl_atoms
NumAmideBonds
fr_bicyclic

fr_ketone
fr_para_hydroxylation

fr_sulfone

Total non-carbon, non-hydrogen atoms
Total oxygen atoms

Total nitrogen atoms

Total fluorine atoms

Total chlorine atoms

Count of CONH groups

Number of bicyclic rings

Number of ketones

Number of para-hydroxylation sites

Number of sulfone groups

Hydrogen Bonding
Number of H-Bond Donors
lipinskiHBD

Count of NH or OH groups

Lipinski rule-compliant H-bond donors

Stereochemistry

Number of Atom Stereo Centers

Total stereocenters (specified 4+ unspecified)

Continued on next page
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Table S1 — continued from previous page

Descriptor Description

NumUnspecified AtomStereoCentersStereocenters without defined configuration

Other Indices

hallKierAlpha Hall-Kier alpha value (Rev. Comp. Chem. 2, 367422,
1991)

kappal-3 Hall-Kier shape indices k1—k3

MaxEStatelndex Maximum EState index

MinEStatelndex Minimum EState index

MinAbsEStatelndex Minimum absolute EState index

qed Quantitative estimate of drug-likeness

MaxAbsPartial Charge Maximum absolute Gasteiger atomic charge

FpDensityMorganl Morgan fingerprint density, radius 1

BalabanJ Chemical distance-based topological index

Chidv Valence molecular connectivity index

Chi4n Variant of Chidv using nVal

Kappad Third-order shape/connectivity index

SlogP_VSAN, N =4, 5, 8, 11 MOE-type descriptors using LogP and surface area con-
tributions

Model Description: Graph Convolutional Network - Variational
Autoencoder (GCN-VAE)

Model Architecture:

The GCN-VAE model handles molecular graphs(dgl!) from SMILES strings through two

key components: the Encoder and the Decoder.
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Figure S1: By varying the threshold value of correlation criteria we found optimal number of
features to form feature vector. A XGBoost model was used to evaluate the efficiency of the
representations. 10-fold cross validation was employed for reliable statistics. The standard
error in measurement is provided.
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Figure S2: Relative importance of the features in terms of Gini score. TPSA has the most
contribution towards the predictability of the model, followed by number of hydrogen bond
donors.
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Figure S3: Distribution plots of key features contributing to the feature vector for analyzing
transferability issues. (a)—(c) and (e)—(f) show the distributions of important features, while
(g) presents the distribution of the target property, free energy of solvation (AG,y,) for each
dataset considered. (d) displays a lower-dimensional projection of high-dimensional feature
vectors, generated using UMAP and plotted along two UMAP embedding axes to visualize
the data spread and clustering patterns.

The Encoder utilizes multiple Relational Graph Convolutional Layers (R-GCN)? followed
by dense layers. The R-GCN captures atom and bond relationships, assigning distinct weight
matrices for different bond types. A global average pooling layer aggregates node features
into a single vector, which is then passed through dense layers to produce the latent space
parameters—mean (z_mean) and log variance (log_var).

The Decoder reconstructs the adjacency matrix and node features from the latent vector.
Dense layers process the latent representation, and two output layers generate the adjacency
matrix and node features. Softmax activation ensures valid probability distributions for

these outputs.

Loss Function:

The total loss comprises multiple components: adjacency and feature reconstruction losses
(measured using cross-entropy), KL divergence loss (to enforce a standard normal distribu-
tion in the latent space), and binary cross-entropy loss for molecular property prediction.

An optional gradient penalty may be included for regularization and training stability.
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Figure S4: Popular ML models often overfit to training data, leading to reduced performance
on evaluation datasets. Here, the XGBoost model is trained on each dataset (rows) and
tested on the other two datasets (columns) to assess its generalization ability.

Hyperparameters:

The model is defined by several hyperparameters, including the maximum number of atoms
(NUM_ATOMS), bond types (BOND_DIM), atom feature dimensions (ATOM_DIM), graph
convolution output sizes (gconv_units), dense layer dimensions (dense _units), latent space
dimension (latent_dim), dropout rate (dropout_rate), training epochs (epochs), and optimizer

learning rate (learning rate).
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Figure Sh: By varying the bit size of the fingerprints we found optimal size of fingerprints.
A XGBoost model was used to evaluate the efficiency of the FPs. 10-fold cross validation
was employed for reliable statistics. The standard error in measurement is provided in terms

Finger print size

of error bar.

Training Loop

The training process begins with a forward pass to generate the latent vector, adjacency
matrix, and node features. Loss components are computed and combined, followed by a

backward pass to calculate gradients. Model parameters are updated through an optimiza-

Finger print size

tion step. Validation is conducted regularly to assess generalization on unseen data.
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Figure S6: Molecular entries(represented in terms of descriptor) in the 2D space of PCA,

UMAP and tSNE.
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Figure S7: Molecular entries(represented in terms of atom-pair fingerprints) in the 2D space
of PCA, UMAP and tSNE.
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Figure S8: Molecular entries(represented in terms of RDKit fingerprints) in the 2D space of
PCA, UMAP and tSNE.

Dimensionality reduction of feature space
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Figure S9: Molecular entries(represented in terms of Morgan fingerprints) in the 2D space
of PCA, UMAP and tSNE.
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prints(ECFPs)) in the 2D space of PCA, UMAP and tSNE.
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Figure S11: Molecular entries(represented in terms of MACCS keys) in the 2D space of PCA,

UMAP

and tSNE.
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Figure S12: Molecular entries(represented in terms of PubChem keys) in the 2D space of
PCA, UMAP and tSNE(color codes follow the legend of last subplot).
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Figure S13: Molecular entries in the 2D latent space of trained GCN-VAE(merged dataset).
Molecules are colored by the value of their free energy of solvation.
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Figure S14: Dataset dependency of CIGIN model. Each column represents a dataset, while
each row corresponds to a model trained on the same dataset. In the top panel, the CIGIN
model is trained on the MNSol dataset and tested on the other two datasets. The middle
panel shows the model trained on FreeSolv, and in the lower panel, the model is trained on
CombiSolv before being tested across datasets.
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Figure S15: Loss function vs epoch for GCN-VAE showing steady convergence.

Table S2: Trained MLP regressor(MLPR), XGBoost regressor(XGBR) and Random forest
regressor(RFR) on FreeSolv dataset.

Fingerprint MLPR RFR XGBR
R?2 MSE R?2 MSE R2 MSE
AP 0.751 293 0.633 341 0.719 3.19
RDK 0.741 270 0.743 3.01 0.762 2.62
Morgan 0.771 273 0541 443 0.786  2.56
ECFP 0.573 421 0344 586 0.666 3.33
MACCS 0.920 120 0.868 1.63 0910 1.14
PubChem 0.910 1.22 0.87 182 0910 1.14
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Table S3: Trained MLP regressor(MLPR), XGBoost regressor(XGBR) and Random forest
regressor(RFR) on CombiSolv dataset.

Fingerprint MLP RFR XGB

R? MSE R? MSE R? MSE
AP 0.854 277 0.763 436  0.847  3.19
RDK 0822 3.36 0.824 325 0.837 3.71
Morgan 0.847 3.04 0.707 545 0.778  4.29
ECFP 0.766 4.14 0.648 6.28 0.765  4.69
MACCS 0.921 1.78 0.893 222 0914 1.83
PubChem 0911 1.87 0884 228 0914 1.83

Table S4: The atom (node) features used for molecular graph representation

Atom Feature Description

Atom Type Element identity (H, C, N, O, F, etc.) represented
using one-hot encoding

Implicit Valence Presence of implicit valence electrons (Binary)

Radical Electrons Presence of radical electrons (Binary)

Chirality Chirality configuration: R, S, or None (one-hot)

Number of Hydrogens Number of neighboring hydrogen atoms (one-hot)

Hybridization Hybridization state: sp, sp?, sp?, sp>d (one-hot)

Acidic Atom is acidic in nature (Binary)

Basic Atom is basic in nature (Binary)

Aromatic Atom is part of an aromatic group (Binary)

Donor Donates electrons (Binary)

Acceptor Accepts electrons (Binary)

Table S5: The bond (edge) features used for molecular representation

Bond Feature Description

Bond Type Bond order: single, double, triple, or aromatic
(one-hot)

Bond is in Conjuga- Indicates if the bond is part of a conjugated system

tion (Binary)

Bond is in Ring Indicates if the bond is part of a ring structure
(Binary)

Bond Chirality Stereochemistry of bond: E or Z (one-hot)
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