
Supplementary Materials of Quantum-Classical Hybrid Quantized

Neural Network

Wenxin Li1∗, Chuan Wang2†, Hongdong Zhu1, Qi Gao1, Yin Ma1, Hai Wei1, Kai Wen1‡

1Beijing QBoson Quantum Technology Co., Ltd., Beijing 100015, China
2School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China

May 22, 2025

1 Additional Related Work

In addition to the aforementioned work, there are also some other works related to quantum computing
and neural networks. [1] introduces a novel training approach employing Adiabatic Quantum Computing
(AQC), leveraging adiabatic evolution principles to address optimization problems. This universal AQC
method proposed in [1] is designed for implementation on gate quantum computers. A hybrid approach
is proposed in [2], which combines quantum and classical methods for accelerated training of BNN. The
quantum portion utilizes the HHL algorithm to solve linear systems of equations for linear regression in a
single layer BNN. In [3], the primary contribution lies in demonstrating the transfer of a trained artificial
neural network to a quantum computing setting. The authors design a quadratic binary model for quantum
annealing, aligning it with the behavior of a classical neural network by combining deep-learned parameters
and layer structures.

2 Error Bound of Piecewise Linear Approximation in FNN

Proof: Define layer-wise activations:

h0 = x, hl = σ(Wlhl−1 + bl), ĥ0 = x, ĥl = σ̂(Wlĥl−1 + bl), l = 1, . . . , L− 1. (1)

The output error is:

∥f(x)− f̂(x)∥2 = ∥WL(hL−1 − ĥL−1)∥2 ≤ ∥hL−1 − ĥL−1∥2, (2)

since ∥WL∥2 ≤ 1. Let δl = ∥hl − ĥl∥2. We bound δl recursively.
For layer l, consider:

hl − ĥl = σ(Wlhl−1 + bl)− σ̂(Wlĥl−1 + bl). (3)

Decompose as:

hl − ĥl =
[
σ(Wlhl−1 + bl)− σ(Wlĥl−1 + bl)

]
+
[
σ(Wlĥl−1 + bl)− σ̂(Wlĥl−1 + bl)

]
. (4)

The first term, using Lσ ≤ 1, is:

∥σ(Wlhl−1 + bl)− σ(Wlĥl−1 + bl)∥2 ≤ Lσ∥Wlhl−1 −Wlĥl−1∥2 ≤ ∥Wl∥2δl−1 ≤ δl−1. (5)

∗Email: liwx@boseq.com
†Corresponding Author. Email: wangchuan@bnu.edu.cn
‡Corresponding Author. Email: wenk@boseq.com

1

The second term, by the approximation error, satisfies:

∥σ(Wlĥl−1 + bl)− σ̂(Wlĥl−1 + bl)∥2 =

√√√√ ml∑
i=1

|σ(zi)− σ̂(zi)|2 ≤
√
mlϵσ ≤

√
mϵσ, (6)

where z = Wlĥl−1 + bl. Thus:

δl ≤ δl−1 +
√
mϵσ. (7)

Solving the recursion, we can obtain that δl ≤ l
√
mϵσ. For the output:

∥f(x)− f̂(x)∥2 ≤ δL−1 ≤ (L− 1)
√
mϵσ ≤ L

√
mϵσ. (8)

To determine n, assume σ has ∥σ′′∥∞ ≤ M . Construct σ̂ over [−R,R] with n equal segments, each of width
h = 2R

n . The interpolation error is:

|σ(z)− σ̂(z)| ≤ 1

8
h2∥σ′′∥∞ =

1

8

(
2R

n

)2

M =
R2M

2n2
. (9)

Set R2M
2n2 ≤ ϵ, we have

n ≥
√

R2M

2ϵ
, n = O

(
1√
ϵ

)
. (10)

□

3 Spline Quantumization Protocol

Quantum computing faces the formidable challenge of not only optimizing QUBO models but also addressing
highly nonlinear optimization problems as optimization targets. The significance of this issue lies in its
ubiquity across diverse scientific and industrial domains, where real-world problems often exhibit intricate,
arbitrary relationships among variables. This fact underscores the urgency for quantum algorithms capable
of navigating and optimizing complex, highly nonlinear landscapes.

Formally we consider the following problem:

min
x∈{0,1}n

f(h(x)), (11)

where f(·) is a function of arbitrary form. This formal definition of the optimization problem unlockes the
further potential of quantum computing in solving real-world optimization problems. A powerful approach
to approximate highly nonlinear functions is to use spline interpolation. Splines are piecewise linear functions
that provide a smooth and flexible fit to data points. Spline interpolation can transform the optimization
landscape into a more tractable form, making it amenable to quantum optimization algorithms. The spline
fitting process involves the following steps:

• Knot Selection. Choose a set of knots {Mi}ni=1 which are the points in the domain of f(·) where
the piecewise polynomial segments will join. These knots should be chosen to adequately capture the
variability of f(·) over the entire domain, as the placement of knots can significantly affect the accuracy
of the spline approximation.

• Spline Construction. Define linear functions Si(x) for each segment between consecutive knots.

• Spline Approximation. Replace the original function f(·) with the spline function S(·). The spline
function can be expressed as:

S(h(x)) =

n∑
i=1

Si(h(x)) · βi, (12)

where βi ∈ {0, 1} denotes whether h(x) is in the i-th iterval.

2

3.1 Piecewise Constant Segment

An effective method for simplifying highly nonlinear functions is piecewise constant fitting. This approach
approximates the function f(·) using constant segments, which can reduce the complexity of the optimization
problem and facilitate the translation into a QUBO model.

min

n∑
i=0

βi · S(Mi) (13)

s.t

n∑
i=1

βi ·Mi−1 ≤ h(x) ≤
n∑

i=1

βi ·Mi (14)

n∑
i=1

βi = 1, βi ∈ {0, 1} (15)

Dealing with the inequality constraint. We have now derived a QUBO model capable of approximately
solving optimization problems with arbitrary objective functions in (3). However, it is important to note
that in representing βi, we introduced two inequality constraints. Here, we introduce the following two
approaches:

• Adding a penalty term (
∑n

i=1 βiMi−1 + s− h(x))2, where s ∈ [0,∆M], assuming all the intervals are
of length ∆M .

• For s ∈ [− 1
2 ,

1
2], adding a penalty term

n−1∑
i=1

βi ·
(2h(x)− (Mi−1 +Mi)

2(Mi −Mi−1)
+ s
)2

+
(
1−

n−1∑
i=1

βi

)(2h(x)− (Mn−1 +Mn)

2(Mn −Mn−1)
+ s
)2

. (16)

It is important to note that the higher order terms cancel out when the expression is expanded.

We have the following theorem that elucidates the correctness of the second approach.

Theorem 1 Let β∗ be the optimal solution vector for the following optimization problem,

min
β

{ n∑
i=1

βi ·
(2h(x)− (Mi−1 +Mi)

2(Mi −Mi−1)

)2∣∣∣ n∑
i=1

βi = 1
}
. (17)

Then β∗
i = 1 only at index i = ix, where Mix−1 ≤ h(x) ≤ Mix , while all other β∗

i are equal to 0.

Proof: To establish this conclusion, it suffices to observe the following: For i = ix, |2h(x)−(Mix−1+Mix)| ≤
Mix −Mix−1 and hence (

2h(x)−(Mix−1+Mix)
2(Mix−Mix−1)

)2 ≤ 1
4 . And for i ̸= ix, we have (2h(x)−(Mi−1+Mi)

2(Mi−Mi−1)
)2 > 1

4 . □
Theorem 1 establishes that the penalty term in the new model effectively guides the values of βi to

accurately represent the interval in which h(x) resides. In fact, this new penalty term represents the squared
weighted sum of distances from h(x) to the midpoints of each interval. Consequently, the minimization of
this penalty term incentivizes βi to take values that precisely indicate the correct interval for h(x).

Building upon the versatility of spline approximation in simplifying complex optimization landscapes, we
use the following sign function as an example to illustrates the efficiency of our approach.

Example 1 (Sign function) sign(x) (1 if x ≥ 0 else −1) can be represented as

sign(x) = min
β∈{0,1}

{(
2β − 1

)
+ λ ·

[
β ·
(2x−M

2M
+ s
)2

+ (1− β) · (2x+M

2M
+ s)2

]}
, (18)

where M = sup |x| and s ∈ [− 1
2 ,

1
2] is a slack variable.

Compared with the model in [4], we do not need to introduce the intermediate variable. Additionally,
when representing the sign activation function, we do not need to introduce auxiliary variables for order
reduction, as done in [4]. These optimizations can save O(WDN logW) bits for us, where W,D,N denote
the network width, network depth and dataset size respectively. Indeed we are able to reduce the coefficients
of the highest-order terms in the model’s qubit count by 50%.

3

3.2 Piecewise Linear Segment

Piecewise linear fitting approximates the function f(·) using linear segments. This method can effectively
capture the behavior of moderately nonlinear functions while maintaining a manageable level of complexity
in the optimization problem. According to [5], by using binary variables, minimizing a piecewise linear
functions S(·) can be represented in linear form:

min
αi

n∑
i=0

αi · S(Mi) (19)

s.t

n∑
i=0

αi = 1

α0 ≤ β1, αn ≤ βn

αi ≤ βi+1 + βi (1 ≤ i ≤ n− 1)
n∑

i=1

βi = 1, βi ∈ {0, 1} (20)

where αi ∈ [0, 1] and slope of the piecewise linear function changes at Mi(1 ≤ i ≤ n).
Note that in this formulation, when Mk−1 ≤ x ≤ Mk for some k, then there exists some number

αk−1 ∈ [0, 1] such that

x = αk−1Mk−1 + (1− αk)Mk. (21)

Since S(·) is linear in [Mk−1,Mk], thus

S(x) = αk−1S(Mk−1) + (1− αk)S(Mk) (22)

We remark that in the context of QUBO modeling, the introduction of quadratic terms in the objective
function allows for simplification by eliminating the need to explicitly represent the variable αi using binary
encoding. This optimization is particularly advantageous as it significantly reduces the required number of
bits. In addition, the linear form presented earlier in the formulation introduces a notable drawback: the
absence of the decision variables as independent entities. Instead, the decisions are indirectly represented
through the coefficient αi, signifying its position within a specified range. Consequently, an additional
relationship between the decision variables and αi needs to be established.

To address these considerations, an alternative formulation is proposed below. This formulation not only
leverages the inclusion of quadratic terms but also rectifies the issue of x indirect representation:

min

n+1∑
i=1

(
βi−1 ·

h(x)−Mi−1

Mi −Mi−1
+ βi ·

Mi − h(x)

Mi −Mi−1

)
· f(Mi−1) (23)

s.t

n∑
i=1

βi ·Mi−1 ≤ h(x) ≤
n∑

i=1

βi ·Mi (24)

n∑
i=1

βi = 1, βi ∈ {0, 1} (25)

For notational convenience, we set β0 = βn+1 = 0. In the aforementioned objective function, we leverage
the property that if h(x) resides within the interval [Mi−1,Mi], we approximate the values of f(·) within
this interval using line segments connecting points (Mi−1, f(Mi−1)) and (Mi, f(Mi)) in the two-dimensional
coordinates. The value of the objective function at the location of h(x) along this linear segment is de-
termined by the corresponding linear interpolation. Mathematically, the linear function representing the
approximation of f(·) within the interval [Mi−1,Mi] is expressed as:

4

S(h(x)) = f(Mi−1) +
f(Mi)− f(Mi−1)

Mi −Mi−1
· (h(x)−Mi−1)

=
Mi − h(x)

Mi −Mi−1
· f(Mi−1) +

h(x)−Mi−1

Mi −Mi−1
· f(Mi) (26)

We introduce the weighting factor βi before the term in (26) to indicate whether h(x) lies within the i-
th interval [Mi−1,Mi]. The overall objective function aggregates these weighted values over all intervals,
summarizing the importance of each interval’s contribution to the optimization model.

4 Proof of Convergence of QCGD with Random Quantum Oracle

Proof: Similar as [6], the algorithm utilizes an augmented Lagrangian function, defined as

Qα(V, z) = Tr(CV) + z⊤(LV − v) +
α

2
∥LV − v∥2 for V ∈ ∆p, (27)

where V represents the primal variable, z is the dual variable, α is the penalty parameter, C is the cost
matrix, L denotes the matrix for linear constraints, and v is the vector of constraint values.

The QCGD algorithm begins by initializing α, V and z, and then iterates through primal and dual
updates. In the primal step, the algorithm computes the gradient of the augmented Lagrangian with respect
to V and finds a direction that minimizes the linearized loss. This step involves solving a standard QUBO
problem to determine the update direction. The primal variable V is then updated by taking a step towards
this direction. In the dual step, the gradient of the augmented Lagrangian with respect to z is computed, and
z is updated using gradient ascent. Over iterations, the penalty parameter α is increased as αi = α0

√
δi+ 1

to ensure that V converges to a feasible solution that satisfies the constraints.
We can obtain the following inequalities:

• The smoothness of Qαt
:

Qαt(Vt+1, zt) ≤ Qαt(Vt, zt) + γt · δ · Tr(Q(t)
QUBO(V⋆ −Vt)) +O

(
αtγ

2
t +

ξtγt√
t

)
. (28)

• Definition of Q
(t)
QUBO:

γt · δ · Tr(Q(t)
QUBO(V⋆ −Vt)) ≤ γt · δ · Tr(CV⋆)− γt · δ · Qαt

(Vt, zt)− γt · δ ·
αt

2
∥LVt − v∥2. (29)

Combining (28) and (29), we have

Qαt
(Vt+1, zt)− Tr(CV⋆)

≤(1− γt · δ)
(
Qαt(Vt, zt)− Tr(CV⋆)

)
− γt · δ ·

αt

2
∥LVt − v∥2 +O

(
αtγ

2
t +

ξtγt√
t

)
(30)

Note that

Qαt(Vt, zt) = Qαt−1(Vt, zt) +
αt − αt−1

2
∥LVt − v∥2 (31)

Hence

Qαt
(Vt+1, zt)− Tr(CV⋆)

≤(1− γt · δ)
(
Qαt−1

(Vt, zt)− Tr(CV⋆)
)
+ ((1− γt · δ)(αt − αt−1)/2− γt · δ ·

αt

2
)∥LVt − v∥2 +O

(
αtγ

2
t +

ξtγt√
t

)
(32)

5

By choosing γi =
2

δ·(i+1) and αi = α0

√
δi+ 1, we claim that

(1− γt · δ)(αt − αt−1)−
γtαt

2
· δ ≤ 0. (33)

To verify this, first observe that

1− γtδ =
t− 1

t+ 1
, αt − αt−1 = α0

δ
√
δt+ 1 +

√
δ(t− 1) + 1

. (34)

The LHS becomes:

α0

t+ 1

(
(t− 1)δ

√
δt+ 1 +

√
δ(t− 1) + 1

−
√
δt+ 1

)
(35)

=
α0

t+ 1

(
−δ − 1−

√
(δt+ 1)(δ(t− 1) + 1)

√
δt+ 1 +

√
δ(t− 1) + 1

)
≤ 0 (36)

Similar as [6], we can obtain the following bound:

Qαt(Vt+1, zt+1)− Tr(CV⋆) ≤ (1− γt · δ)
(
Qαt−1(Vt, zt)− Tr(CV⋆)

)
+O

(
αtγ

2
t +

ξtγt√
t

)
. (37)

Define the error et = Qαt−1(Vt, zt)− Tr(CV⋆). The recursion becomes:

et+1 ≤ (1− γtδ)et +O

(
αtγ

2
t +

ξtγt√
t

)
. (38)

Note that the terms:

• 1− γtδ = 1− 2
t+1 = t−1

t+1 .

• αtγ
2
t = α0

√
δt+ 1 · 4

δ2(t+1)2 ∼ 4α0

δ3/2
t−3/2.

• εγt√
t
= ε · 2

δ(t+1) ·
1√
t
∼ 2ε

δ t
−3/2.

• Total perturbation: O
((

4α0

δ3/2
+ 2ε

δ

)
t−3/2

)
.

Iterate the inequality:

et+1 ≤
t∏

s=1

(1− γsδ)e1 +

t∑
s=1

[
t∏

k=s+1

(1− γkδ)

]
O

(
αsγ

2
s +

ξsγs√
s

)
(39)

=O

(
4α0

δ3/2

t1/2

)
+O

(2

δt2
·

t∑
s=1

ξss
1/2

︸ ︷︷ ︸
S(t)

)
. (40)

For the additive error term,

E[S(t)] ≤
t∑

s=1

εs1/2 = O(εt3/2). (41)

According to Chebyshev’s inequality,

P(S(t) ≥ E[S(t)] + εt3/2) ≤ Var[S(t)]

ε2t3
≤ maxVar[ξs]

ε2t
. (42)

6

Therefore

E[et] = O
(4α0

δ3/2
+ 2ε

δ

t1/2

)
(43)

and

P
[
et = O

(4α0

δ3/2
+ 2ε

δ

t1/2

)]
≥ 1− maxVar[ξs]

ε2t
. (44)

Consequently,

P[lim
t→∞

et = 0] = 1.

Similar to the proof in [6],

Qαt(VT+1, zT+1) ≥ Tr(CVT+1)−
D2

2αt
, (45)

we then have

Objective-gapT = Tr(CVT+1)− Tr(CV⋆) = O
((1 + ε)

δ3/2
√
T

)
(46)

For the infeasibility bound, the proof is similar as [6], we can derive the following bound:

InfeasibilityT = ∥LVT+1 − v∥ = O
((1 + ε)

δ3/2
√
T

)
. (47)

□

5 Analysis of Total Error Due to Truncation

The energy function of the Ising model is given by:

E[σ|Jij , hi] = −
∑
i<j

Jijσiσj −
∑
i

hiσi. (48)

The objective function of QUBO model is

f(x|qij) =
∑
i̸=j

qijxixj +
∑
i

qixi. (49)

Let σ∗ be the optimal configurations under origin Ising coefficients Jijs and his, x
∗ be the corresponding

optimal solution to the QUBO model with origin QUBO coefficients qijs and qis. We use σ∗′ to denote the
optimal configurations under truncated Ising coefficients, and let x∗′ be the corresponding solution in QUBO
model. Then we have the following conclusion

Lemma 1 If the Ising coefficients are truncated to d bits, the error due to truncation is in the order of

∆Hamiltonian = |E[σ|Jij , hi]− E[σ∗′|Jij , hi]| = O(2−d · n2), (50)

∆QUBO Value = |f(x|qij)− f(x∗′|qij)| = O(2−d · n2). (51)

Proof: The change in the Ising coefficients due to truncations is

|Jij − J ′
ij |, |hi − h′

i| = O(2−d), (52)

consequently for any σ

|E[σ|Jij , hi]− E[σ|J ′
ij , h

′
i]| = O(2−d · n2). (53)

7

Note that

E[σ∗′|Jij , hi] ≤E[σ∗′|J ′
ij , h

′
i] +O(2−d · n2)

≤E[σ∗|J ′
ij , h

′
i] +O(2−d · n2), (54)

and

E[σ∗′|Jij , hi] ≥E[σ∗|Jij , hi]

≥E[σ∗|J ′
ij , h

′
i]−O(2−d · n2), (55)

we can obtain (50) by combining (54) and (55).
To convert the Ising model to the QUBO model, we replace the spin variables σi with binary variables

xi, by using the following equation:

σi = 2xi − 1 (56)

Substitute this into the Ising model energy function:

E = −
∑
i<j

Jij(2xi − 1)(2xj − 1)−
∑
i

hi(2xi − 1) (57)

= −
∑
i<j

Jij [4xixj − 2xi − 2xj + 1]−
∑
i

hi [2xi − 1] (58)

= −
∑
i<j

4Jijxixj +
∑
i

(2
∑
j ̸=i

Jij − 2hi)xi −
∑
i<j

Jij +
∑
i

hi. (59)

Hence E[σ|Jij , hi] = f(x|qij) + (
∑

i hi −
∑

i<j Jij) and

∆QUBO Value = ∆Hamiltonian +O(2−d · n2) = O(2−d · n2). (60)

When d = Ω(log n), the additive error is in the order of O(1√
t
) for all t ≤ T , and thus the convergence follows

from Proposition 1. □

6 Additional Details of Experimental Results

The training set consists of 12000 images (6000 coat and 6, 000 sandal images), and the test set consists of
2000 images (1000 coat and 1000 sandal images). Each image is divided into 3 columns vertically, resulting
in two 28 × 9 grid and one 28 × 10 grid. We then calculate the number of zero pixels in each column and
use two threshold values to determine the values in a length-3 vector for each image. This vector represents
the image as −1, 0, or 1, based on the comparison with the thresholds.

A neural network with a hidden layer of depth 1, width 2, and the Sigmoid activation function σ(x) =
1

1+e−x is used for classification. We approximate the sigmoid activation function with a piecewise constant
function. The breakpoints in this experiment is {−8,−4, 0, 4, 8} and the value of the piecewise linear function
in each interval is equal to the function value of sigmoid function at the midpoint of that interval.

7 Principles of STE and BinaryConnect

Straight-Through Estimator (STE) [7, 8]

The Straight-Through Estimator (STE) enables gradient-based training for non-differentiable operations,
such as quantization, in neural networks. During the forward pass, a weight xi is quantized as:

x̂i = s · clamp
(⌊xi

s

⌋
, n, p

)
, (61)

8

where s is a scaling factor, clamp(·) ensures the quantized value lies within integer bounds n = qmin/s and
p = qmax/s, and the rounding operation ⌊·⌋ is non-differentiable. STE approximates the gradient of the
rounding operation as 1:

∂[ω]

∂ω
= 1. (62)

This allows the gradient to “pass through” the non-differentiable operation, enabling backpropagation for
quantized neural networks.

BinaryConnect [9]

BinaryConnect trains neural networks with binary weights, to reduce computational and memory costs. It
maintains real-valued weights w during training, which are binarized during the forward and backward passes
using the sign function:

wb = sign(w), (63)

where wb ∈ {−1,+1}. In the forward pass, binary weights wb are used to compute activations. In the
backward pass, the gradient of the loss C with respect to the binary weights, ∂C

∂wb
, is computed and used to

update the real-valued weights. This allows BinaryConnect to accumulate gradient updates in the real-valued
weights while operating with binary weights.

Figure 1: Schematic of the coherent Ising machine (CIM) structure, utilizing optical parametric oscillators
and phase-sensitive amplification to solve optimization problems.

Coherent Ising Machine

As shown in Figure 1, we implement the CIM, an optical system engineered to address combinatorial opti-
mization problems through optical parametric oscillators (OPOs). A continuous wave (CW) laser at 1560
nm initiates the process, feeding into a pump pulse preparation stage. Here, intensity modulators (IM1,
IM2, IM3), erbium-doped fiber amplifiers (EDFA1, EDFA2), and filters shape and amplify the light into
pump pulses. These pulses enter a second harmonic generation (SHG) unit, producing a frequency-doubled
signal, which is then directed into a periodically poled lithium niobate (PPLN) crystal. The PPLN facilitates
phase-sensitive amplification, forming a degenerate OPO that generates coherent signal and idler photons.

9

These photons are measured via balanced homodyne detection (BHD), with an FPGA module providing
feedback to steer the system toward optimal solutions by mapping the problem onto the Ising model’s energy
landscape.

CIM operates by simulating the Ising Hamiltonian, defined as

H = −
∑
i,j

Jijσiσj −
∑
i

hiσi, (64)

where σi ∈ {1,−1} represents spins, Jij denotes coupling strengths, and hi accounts for external fields. In
the PPLN crystal, pump pulses drive parametric amplification, creating optical pulses that encode the spins
as two possible phase states. The BHD measures the pulses’ phase and amplitude, determining the system’s
energy state. The FPGA uses this data to adjust parameters like pump intensity, effectively minimizing the
Hamiltonian through feedback. A chopper and intensity modulators ensure stable pulse circulation in the
loop, while the feedback introduces coupling between pulses, mimicking the Jijσiσj interaction terms.

The system’s dynamics allow it to explore the Ising energy landscape efficiently. The optical pulses
evolve in parallel, with their interactions governed by the feedback loop, driving the system toward the
ground state of the Hamiltonian, which corresponds to the optimization problem’s solution. The amplifiers
and filters maintain pulse quality, while the PPLN’s nonlinear efficiency ensures robust signal generation. The
BHD’s noise suppression enhances measurement precision, enabling the CIM to handle complex problems
by leveraging the coherence and parallelism of optical signals.

References

[1] Abel, S., Criado, J. C. & Spannowsky, M. Training neural networks with universal adiabatic quantum
computing. arXiv:2308.13028 (2023).

[2] Alarcon, S. L., Merkel, C., Hoffnagle, M., Ly, S. & Pozas-Kerstjens, A. Accelerating the training of
single layer binary neural networks using the hhl quantum algorithm. In 2022 IEEE 40th International
Conference on Computer Design (ICCD), 427–433 (20).

[3] Higham, C. F. & Bedford, A. Quantum deep learning by sampling neural nets with a quantum annealer.
Scientific Reports 13, 3939 (2023).

[4] Song, X. et al. Training multi-layer neural networks on ising machine. arXiv:2311.03408 (2023).

[5] Winston, W. L. Operations research: applications and algorithms (Cengage Learning, 2022).

[6] Yurtsever, A., Birdal, T. & Golyanik, V. Q-fw: A hybrid classical-quantum frank-wolfe for quadratic
binary optimization. In European Conference on Computer Vision (ECCV), 352–369 (2022).

[7] Bengio, Y., Léonard, N. & Courville, A. Estimating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432 .

[8] Nagel, M. et al. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295 .

[9] Courbariaux, M., Bengio, Y. & David, J.-P. Binaryconnect: Training deep neural networks with binary
weights during propagations. Advances in neural information processing systems (2015).

10

	Additional Related Work
	Error Bound of Piecewise Linear Approximation in FNN
	Spline Quantumization Protocol
	Piecewise Constant Segment
	Piecewise Linear Segment

	Proof of Convergence of QCGD with Random Quantum Oracle
	Analysis of Total Error Due to Truncation
	Additional Details of Experimental Results
	Principles of STE and BinaryConnect

