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Pleiotropic Effects of Statins
Although it is not fully understood how statins impact morbidity and mortality following injury, it may be via the pleiotropic effects.  Statins achieve cholesterol lowering effects via reversible inhibition of HMG-CoA reductase, which catalyses the rate-limiting conversion of HMG-CoA to mevalonic acid [1–3].  The suppression of mevalonic acid synthesis then reduces downstream synthesis of the isoprenoids farnesyl pyrophosphate [FPP] and geranylgeranyl pyrophosphate (GGPP) [4]⁠.  These isoprenoids are used in the synthesis of G-proteins, Ras, and Ras-like proteins, integral to signalling pathways.  As they occur via various mechanisms, it is difficult to determine the onset time for pleiotropic effects.  Although some effects manifest shortly after administration [5], it is likely that others require up to two weeks of statin therapy to manifest [6]⁠.  A limited graphical overview of pleiotropic effects is found in Figure 1.  
Fig 1  The Pleiotropic Effect of Statins
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The following sections discuss the pleiotropic effects of statins as a possible mechanism affecting outcomes following trauma.
[bookmark: __RefHeading___Toc105887_3614554538]Anti-inflammatory Effects of Statins
C-reactive protein (CRP) is a non-specific marker of inflammation frequently used to monitor therapy in the intensive care unit (ICU) [7,8)].  However, CRP is more than a marker of inflammation; it both stimulates the production of, and is stimulated by, interleukin-6 (lL6), amplifying the inflammatory cascade [9–11)].  Additionally, CRP promotes plasminogen activator-1 expression leading to complement activation, an increase in the expression of intracellular adhesion molecules and a decrease in endothelial nitric oxide synthase (eNOS) [12,13)].  This either initiates or amplifies the inflammatory cascade, promoting vascular dysfunction (discussed in the next section).  Although the mechanism remains unclear, statins appear to significantly reduce CRP levels independent of their cholesterol-lowering effect [14)].  Other cytokines involved in inflammation important to statins are interleukin 8 (IL-8), tumour necrosis factor alpha (TNF-α), and nuclear factor kappa B (NF-κB), the levels of which correlate to the severity of systemic inflammatory response syndrome (SIRS) [15,16)]. 
[bookmark: MendeleyTempCursorBookmark2]Neutrophil adhesion, migration and survival after migration are dependent upon multiple cytokines and adhesion molecules, like intracellular adhesion molecule-1 (ICAM-1), protein kinase B pathway PI-3K, IL-6, IL-8, TNF-α, CD11b and CD18 [17)].  Statins are associated with a decrease in TNF-α, IL-6, IL-8 and CD11b in a cholesterol-independent fashion, possibly modulating neutrophil adhesion, migration and survival [15,18)].  NF-κB synthesis, promoted by TNF-α [19)], also induces these pro-inflammatory cytokines and upregulation of adhesion molecules as a result of oxidative stress and toll-like receptor-4 (TLR-4) signalling [20–22)].  Ajmieh and colleagues [23]⁠ showed atorvastatin inhibited TLR-4 expression, blocking the activation of NF-κB and its downstream effects.  Statins seem also to inhibit neutrophil adhesion via suppression of lymphocyte function-associated antigen-1 (LFA-1), ICAM-1 and CD11b [18,24,25)].  Via a mechanism at least partially dependent upon the inhibition of the Rho-kinase pathway, statins also reduce neutrophil migration within two weeks of statin initiation [25,26)].  Many of these cytokines also contribute to the formation of proteolytic enzymes, microvascular thrombi and reactive oxygen species [27,28)], which are partly countered by the statin-induced eNOS upregulation [23]⁠.  The eNOS upregulation additionally impairs apoptosis [29]⁠. 
Within the trauma setting, an increase in inflammatory cytokines may already be demonstrable at the time of admission [30,31].  Continued elevated cytokine levels at 24hrs, 48hrs and 72hrs are associated with adverse outcomes, including adverse cardiac events [32]⁠.
[bookmark: MendeleyTempCursorBookmark3]Through various mechanisms, statins appear to reduce the activation and amplification of the inflammatory cascade via the suppression of pro-inflammatory cytokines.  Subsequent neutrophil adhesion and migration is also inhibited.  This modulation of innate inflammation may reduce secondary injury after trauma. 
[bookmark: __RefHeading___Toc105889_3614554538]Endovascular Effects of Statins
The primary mechanism by which statins affect the endovascular system appears to be eNOS upregulation [23,29]⁠.  One way this occurs is through induction of eNOS via the protein kinase B pathways PKA and PI-3K/AKT [33)].  Activation of AKT may additionally confer increased endothelial cell survival and promote angiogenesis via vascular endothelial growth factor (VEGF) [33)].  Further, statins likely have the ability to directly stimulate cell surface scavenger receptor-B1, a g-protein coupled receptor leading to eNOS synthesis [34)] independently of HMG-CoA reductase inhibition. Regardless of the mechanism, the enhanced eNOS production leads to vasodilation and decreased platelet aggregation [35,36)], promoting vascular patency and improving perfusion.  Statins may also promote increased endothelial production of tissue plasminogen activator (tPA) [37,38]⁠, perhaps minimising microvascular disruption.  Statins may also actively inhibit vasoconstriction by suppressing the effects of the vasoconstrictor endothelin-1 and its synthesis by blocking transcription via the Rho-kinase pathway [5,25]⁠.  Platelet activity is likely mediated via reduced synthesis of thromboxane-a2, a reduction in a2-adrenergic receptor density and a decrease in platelet cytosolic calcium [39–41]⁠.  Statins appear to promote vascular patency and perfusion via vasodilation, inhibition of vasoconstriction and decreased platelet activation.
[bookmark: __RefHeading___Toc105891_3614554538]Effects of Statins in Infection and Multi-organ Dysfunction
In one trial examining the use of statins as an adjunctive therapy in sepsis, serum IL-6 was found to be significantly lower at admission in patients previously undergoing statin treatment [42]⁠.  A strong correlation was found between IL-6 levels and ICU, 28-day, 90-day mortality, and the sequential organ failure assessment (SOFA) score.  Although serum IL-6 levels were similar in all patients during ICU treatment, those with pre-morbid statin therapy demonstrated improved 28-day mortality.  De novo statin therapy initiated after admission was associated with a significant reduction of ICU length of stay.  A second prospective observational study found a 16% risk reduction for severe sepsis in patients with pre-morbid statin therapy [43] and a reduction in relative risk of ICU admission. 
A retrospective analysis of patients with multi-organ dysfunction syndrome (MODs) demonstrated a clear benefit of pre-morbid statin therapy in patients admitted to the ICU at 28 days [44)].  The mortality benefit remained significant at hospital discharge. 
Although unproven, the mechanisms by which statins potentially improve outcomes in sepsis and MODs are likely related to those outlined above.
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