
Supplementary data 
Methylphenidate Reshapes Cortical Hierarchy: Linking Functional Gradients to Striatal Dopaminergic Function and Performance
Dardo Tomasi1, Peter Manza1,2, Şükrü Barış Demiral1, Weizheng Yan1, Kylee B. Miller1, Faith Veenker1, Joshua Zhao1, Christina Lildharrie1, Michele-Vera Yonga1, Sarah Abey1, Michaelene VanDine1, Gene-Jack Wang1, Nora D. Volkow1
1National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
2Kahlert Institute for Addiction Medicine, University of Maryland, Baltimore, Maryland, USA.



[image: ] 
Figure S1: Templates for the low-dimensional gradients. Group-level templates for the primary and secondary gradients were computed from the average parcellated connectome. 
 

[image: ]Figure S2: Effect of MP on the secondary gradient of brain functional organization. (a, b) Surface renderings display the strength of the secondary gradient overlaid on lateral and medial views of the left and right hemispheres, along with six axial slices covering subcortical regions, for the placebo (PL; a) and methylphenidate (MP; b) conditions in 38 healthy adults. The parcellation atlas included 438 cortical and subcortical regions. (c) Statistical difference maps (t-scores) illustrate regions with significant changes in gradient strength between PL and MP, estimated using a linear mixed-effects (LME) model with age, sex, race, body mass index, and intelligence as covariates. The statistical maps are displayed using a false discovery rate (FDR) threshold of p < 0.05. (d) Scatter plots showing strong linear associations between PL and MP conditions for each gradient and between the strength of the primary gradient and the statistical significance in primary gradient changes induced by MP across 438 brain regions (compared to the lack of a similar association for the secondary gradient; bottom). 
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Figure S3: Correlations between non-displaceable binding potentials corresponding to D1R availability (left matrix) and D2R availability (middle and right matrices) across striatal regions (averaged in left, right, and bilateral putamen, put, caudate, cau, and nucleus accumbens, nacc).  The bottom matrix shows the correlations between D1R and D2R availability across striatal regions. PL: placebo; MP: methylphenidate.  38 healthy adults. 
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Figure S4: (a) Scatter plot showing the linear relationship between BPnd values for raclopride binding estimated using the Simplified Reference Tissue Model (SRTM) and Logan graphical analysis across placebo (PL) and methylphenidate (MP) conditions. Each point represents an individual. (b) Box plots showing the distribution of BPnd values for raclopride binding for PL and MP.
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Figure S5: Scatter plots showing linear associations between DA increases and D2 receptor availability in the striatum for placebo (a) and methylphenidate (b) conditions.
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Figure S6: Partial least squares (PLS) regression predicting D1 receptor availability in the putamen (top) and caudate (bottom) from the primary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL.
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Figure S7: Partial least squares (PLS) regression predicting D1 receptor availability in the nucleus accumbens (top) and D2 receptor availability in the putamen (bottom) from the primary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL.
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Figure S8: Partial least squares (PLS) regression predicting D2 receptor availability in the nucleus accumbens (top) and the caudate  (bottom) from the primary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL.
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Figure S9: Partial least squares (PLS) regression predicting DA increases in the putamen (top) and nucleus accumbens (bottom) from the primary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL.
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Figure S10: Partial least squares (PLS) regression predicting DA increases in the caudate from the primary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL.
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Figure S11: Dopamine receptor availability and PLS-based predictions in nucleus accumbens. (a) Paired plot showing the non-displaceable binding potential (BPnd) of [11C]raclopride in nucleus accumbens for methylphenidate (MP) and placebo (PL) sessions across 38 healthy adults. (b) Partial least squares (PLS) regression predicting D1 receptor availability in the nucleus accumbens from the secondary gradient across 438 brain parcels with 2 components. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL. (c) Loading patterns for components 1 and 2 of the PLS model predicting D1 receptor availability from the secondary gradient corresponding to MP and PL sessions. Surface renderings depict lateral and medial views, and axial slices highlight subcortical structures associated with the PLS components.
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Figure S12: Dopamine receptor availability and PLS-based predictions in caudate. (a) Paired plot showing the non-displaceable binding potential (BPnd) of [11C]raclopride in caudate for methylphenidate (MP) and placebo (PL) sessions across 38 healthy adults. (b) Partial least squares (PLS) regression predicting DA increases in caudate from the secondary gradient across 438 brain parcels with 2 components. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL. (c) Loading patterns for components 1 and 2 of the PLS model predicting DA increases from the secondary gradient corresponding to MP and PL sessions. Surface renderings depict lateral and medial views, and axial slices highlight subcortical structures associated with the PLS components.
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Figure S13: Partial least squares (PLS) regression predicting D1R (top) and D2R (bottom) in caudate from the secondary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL.
[image: ]Figure S14: Partial least squares (PLS) regression predicting D2R in putamen (top) and nucleus accumbens (bottom)  from the secondary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL.
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Figure S15: Partial least squares (PLS) regression predicting DA increases in putamen (top) and nucleus accumbens (bottom)  from the secondary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL.
	[image: ]Figure S16: Partial least squares (PLS) regression predicting DA increases in caudate from the secondary gradient across 438 brain parcels. The top row includes: (i) explained variance by PLS components, (ii) fitted values from leave-one-out cross-validation (LOO-CV) versus measured values for the PL session, (iii) predicted D1 receptor availability in MP using the PLS model trained on PL, and (iv) the relationship between the measured metric and PLS factors for components 1 and 2. The bottom row shows the same metrics but with the model trained on MP and tested on PL
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Figure S17: Association between principal gradient shifts and NET density. (a) Cortical surface maps showing the statistical differences (t-score) in the principal functional connectivity gradient between methylphenidate (MP) and placebo (PL), displayed on lateral (top) and medial views of the left hemisphere. (b) Regional norepinephrine transporter (NET) density map derived from PET data, displayed on corresponding cortical views. The null distribution of spatial correlation coefficients was generated via spin test (10,000 permutations). The observed empirical correlation between principal gradient shifts and NET density across 438 parcels is indicated by a red horizontal arrow. A significant correlation was found (spin-test p = 0.0008), indicating that regions with higher NET density had stronger MP-induced shifts in the principal gradient.
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Figure S18. Stimulant-related gradient compression in ABCD boys and girls. Violin plots illustrate significantly higher gradient values in bilateral anterior primary somatomotor cortex (area 3a) for children treated with stimulant medications (methylphenidate or amphetamines; 105 girls, 274 boys) compared to unmedicated peers (2,260 girls, 2,319 boys), independently for boys and girls, after correcting for inattention, sex, age, head motion, scanner type, and research site; P-values are from two-sided two-sample t-test.
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