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1. Additional materials and methods

Glycan acceptor substrates and nucleotide sugars

The acceptor substrates GIcNAc-tBoc (1) and Lactosyl-tBoc (6) (Scheme S1) were kindly provided by
Prof. Ing. Vladimir Kfen, PhD., DSc., FRSC, and Doc. RNDr. Pavla Bojarova, PhD, from the Laboratory of
Biotransformation at the Institute of Microbiology of the Czech Academy of Sciences in Prague
(Sauerzapfe et al. 2009; Slamova et al. 2023).

For activity assays of SpyC-GTA/R176G using the H-antigen type V-tBoc (also referred to as 2’-
fucosyllactose-tBoc, 2’-FL-tBoc, 7, Fig. 1B) as acceptor substrate and for glycan syntheses starting with
Lacto-N-triose Il (LNT II-tBoc, 8), provided precursor substrates were enzymatically converted to the
respective acceptor substrate: 2'-FL-tBoc (7) was synthesized using Lactosyl-tBoc (5 mM) (Sauerzapfe
et al. 2009; Slamova et al. 2023) and GDP-Fuc (6.5 mM), in-house synthesis as explained below
(Frohnmeyer et al. 2022). The reaction mixture contained 100 mM Tris-HCI (pH 6.0), 25 mM KCI, 5 mM
MnCl,, 5 mM MgCl,, 3 U FastAP, and 200 pg/mL FutC (non-SpyCatcher Hise-LPP-tagged version). After
24 hours of incubation at 30 °C, the reaction was terminated at 95 °C for 5 min. The reaction products
were purified using a Sep-Pak C18 cartridge (Waters, Milford, MA, USA) according to the
manufacturer's protocol. In short, the column was equilibrated with 50 % methanol in water, and the
reaction mixture, dissolved in water, was loaded onto the column. The flow-through was discarded,
and unbound hydrophilic components were washed away with water. The bound, synthesized
oligosaccharides were eluted with 50 % acetonitrile. The eluate was concentrated using a vacuum
rotary evaporator and subsequently lyophilized. Further purification and removal of precursors were
performed by size-exclusion chromatography using a BioGel P2 column (BioRad, Hercules, CA, USA).
Here, the lyophilized oligosaccharides were diluted in water and applied to the BioGel P2 column
(column height 100 cm, column diameter 2.6 cm, bed volume 530 mL). Purification was carried out in
water at 0.125 mL-min’, gathering fractions of 2 mL. HPLC analysis (as described below) was performed
for each fraction, and the fractions containing the target compound were collected, pooled, and again
lyophilized.

The acceptor substrate LNT II-tBoc (8, Fig. 1B) was produced in a two-step repetitive batch synthesis
with a reaction volume of 10 mL for each batch. The initial batch contained 100 mM glycine, pH 10, 5
mM MnCl,, 6.5 mM UDP-GIcNAc, 5 mM Lactosyl-tBoc (6), 20 U FastAP, and 0.3 mg-mL™ SpyC-LgtA. The
reaction was carried out in a VivaSpin centrifugal concentrator (30 kDa MWCO) at 30 °C and a
horizontal rotation of 100 rpm. The reaction was stopped after 4 hours by centrifugation (8525 x g, 4
°C) to a residual volume of 1.5 mL. The second batch was started by the addition of fresh substrate
solution (100 mM glycine, pH 10, 5 mM MnCl;, and 6.5 mM UDP-GIcNAc). For maximum product
formation, 20 U FastAP and 3 mg SpyC-LgtA were added during the second batch. After 4 hours,
batches 1 and 2 were pooled, and 3.5 mM UDP-GIcNAc was added. After another 16 hours of
incubation, the synthesis was stopped again by centrifugation (4 °C and 8525 x g). For volume
reduction, the filtrate was lyophilized, resuspended in MQ-Water, and centrifuged for pelletizing
insoluble particles (8525 x g, 4 °C, 10 min). The supernatant was applied to a BioGel P2 column, and
LNT Il was purified by size-exclusion chromatography as stated above. Fractions containing the target
compound were again collected, pooled, and lyophilized for storage at -20 °C.

In general, the nucleotide sugars were purchased from suppliers (UDP-Gal and UDP-GIcNAc: Biosynth,
formerly Carbosynth, Staad, Switzerland; UDP-GalNAc: Biolog Life Science Institute, Bremen,
Germany). GDP-Fuc was acquired through in-house synthesis based on the process described by
Frohnmeyer et al. (2022), modified for a one-pot synthesis (Frohnmeyer et al. 2022). In short, the
bifunctional enzyme L-fucokinase/GDP-fucose pyrophosphorylase (FKP) from Bacteroides fragilis (Yi et



al. 2009) was heterologously expressed in E. coli BL21 (DE3) and purified via IMAC. The elution fraction
was concentrated using Vivaspin centrifugal concentrators (30 kDa MWCO, 45 min, 4 °C, 8525 x g) and
buffer-exchanged into 50 mM Tris-HCI, 100 mM NaCl (pH 7.5). For the enzymatic synthesis of GDP-Fuc,
a reaction mixture was prepared containing 100 mM HEPES (pH 8.0), 20 mM MnCl,, 10 mM ATP, 10
mM GTP, 10 mM L-fucose, 1 U-mL* pyrophosphatase (PPase from Saccharomyces cerevisiae, Roche,
Basel, Switzerland), and the purified FKP. The reaction was incubated at 4 °C for 72 h. Following
incubation, the enzymes and precipitated pyrophosphate were removed by centrifugation, stopping
the reaction (Vivaspin 30 kDa, 45 min, 4 °C, 5000 rpm). The filtrate containing GDP-Fuc was adjusted
to pH 8.0 using NaOH. Residual nucleotides were degraded by the addition of 20 U FastAP and
incubated for 2 h at 4 °C, followed by the addition of MgCl, to a final concentration of 100 mM. For
purification of GDP-Fuc, the reaction mixture was supplemented with pre-chilled isopropanol (-80 °C)
to a final concentration of 40 %, incubated at -80 °C for 30 min, and centrifuged (30 min, 4 °C, 5000
rom). The supernatant, containing GDP-Fuc, was collected and further precipitated by adding
isopropanol (-80 °C) to a final concentration of 90 %, followed by incubation at -80 °C for 30 min. GDP-
Fuc was recovered by centrifugation (45 min, 4 °C, 7200-8525 x g), and the resulting pellet was
lyophilized overnight. The dried GDP-Fuc was dissolved in 3 mL MQ water. The concentration of GDP-
Fuc was determined using multiplexed capillary electrophoresis (MP-CE).

Glycan Analysis
HPLC (High-performance liquid chromatography)

HPLC samples were analyzed on an UltiMate 3000 system via Chromeleon 7.2.10 evaluation software
(Thermo Fisher, Waltham, Massachusetts, USA). Samples were diluted 1:5 in MQ-H,0, and glycans
were separated on a Silica-C18 column (MultoKrom 100-5 C18, 250 x 4 mm, CS Chromatographie,
Langerwehe, Germany) in a 15 % acetonitrile polar mobile phase for 30 min (monosaccharide-tBoc
acceptor substrates) or 20 min, respectively (disaccharide-tBoc or longer acceptor substrates) at a flow
rate of 1 mL-min’’. tBoc-linked sugars were detected via UV measurement at a wavelength of 254 nm.
The relative peak area of the educt and product peaks at given time points was used for the calculation
of the enzyme activity. Here, volumetric activity (U-mL?) was derived from the linear regression slope
of the first 10 % product formation. The specific enzyme activity (U-mg?) was then calculated with
consideration of the protein concentration. One unit (U) is defined as the product amount in pmole
that is formed by the enzyme in one minute.

CE-LIF (Capillary electrophoresis with LED-induced fluorescence detection)

Glycans based on plain lactose were labeled with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) (Hennig
et al. 2015) at the reducing end. For this, a 2 uL sample was mixed with 2 pL 2-Picoline borane complex
solution (0.2 M picoline borane in DMSOQ) and 2 pL 20 mM APTS in 3.5 M citric acid. 1 mM maltose was
used as an internal standard. The labeling mixture was incubated at 37 °C for at least 16 hours and
subsequently stopped by the addition of 94 uL 80 % (v/v) acetonitrile. APTS-labeled glycans were
analyzed on a 7100 CE system by Agilent Technologies, Santa Clara, California, USA, using the software
OpenlLAB CDS Chemstation Edition 01.07 and a PVA-fused silica capillary (64.5 cm total length, 56 cm
effective length, 50 um diameter). Detection of APTS was done with a Zetalif LIF 5A-05 Detector (Adelis
— former Picometrics, Grables, France) at 450 nm. Samples were diluted accordingly, injected at
30 mbar for 10 sec, and separated for 20 min at -20 kV with a CE-LIF running buffer consisting of 40
mM e-aminocaproic acid and 0.02 % (w/v) hydroxypropyl methylcellulose at a pH of 4.5. Again, the
relative peak area of the educt and product peaks at given time points was used for the calculation of
the enzyme activity and product formation.



MP-CE (Multiplexed capillary electrophoresis)

GDP-Fuc concentration was determined using a cePRO 9600™ System MP-CE system (Advanced
Analytical Technologies, Ames, lowa, USA) (Wahl et al. 2016). This system allows for parallel analysis
of 96 samples, employing an array of 96 fused silica capillaries (80 cm total length, 55 cm effective
length, 50 um diameter). The GDP-Fuc was diluted accordingly, injected at -48 mbar for 10 sec, and
separated for 20 min at 8 kV with a CE running buffer consisting of 50 mM ammonium acetate at a pH
of 9.2, containing 2 mM EDTA. Additionally, 1 mM para-aminobenzoic acid (PABA) and 1 mM para-
amino phthalic acid (PAPA) were used as internal standards. Analytes were monitored at 254 nm and
evaluated using the software pK,-Analyzer (Advanced Analytical Technologies, Ames, lowa, USA). As
done for the CE-LIF analysis, product concentration was calculated using the peak areas.

HPLC-MS (HPLC-Mass spectrometry)

For further product verification, HPLC coupled to electrospray ionization mass spectrometry (HPLC-
ESI-MS) was done using a Dionex HPLC (P680 Pump, ASI100 Automated Sample Injector, UVD170U UV
detector) and a Thermo Finnigan Surveyor MSQ via Chromeleon 6.80 evaluation software (Thermo
Fisher, Waltham, Massachusetts, USA). Reaction components and glycans were separated on a Silica-
C18 column (MultoKrom 100-5 C18, 250 x 4 mm, CS Chromatographie, Langerwehe, Germany) in a
15 % acetonitrile polar mobile phase for 120 min at a flow rate of 0.2 mL-mint. MS product detection,
based on the mass/charge ratio (m/z), was done in negative mode with 4 kV needle voltage at 400 °C
and 100 V cone voltage (Fischoder et al. 2019).

Characterization of SpyCatcher glycosyltransferases

SpyC-B4GalT, SpyC-LgtA, SpyC-FutC, and SpyC-GTA/R176G were characterized for their optimal buffer
system, pH, and co-factor concentration. Moreover, donor- and acceptor-substrate kinetics were
measured. For buffer system and pH characterizations, activity assays were conducted as stated above
in the buffers MES-NaOH (pH 5.5, 6, 6.5), MOPS-NaOH (pH 6.5, 7, 7.5), HEPES-NaOH (pH 7, 7.5, 8), TRIS-
HCI (pH 8, 8.5, 9), and glycine-NaOH (pH 9, 9.5, 10). The optimal co-factor concentration for manganese
or magnesium ions (MgCl, or MnCl,) was determined in a concentration range of 0 to a maximum of
20 mM. Additionally, reactions in the presence of 2 mM EDTA were carried out. Enzyme kinetics were
measured at 30 °C reaction temperature. Activity assays for donor substrate kinetics (SpyC-B4GalT:
UDP-Gal; SpyC-LgtA: UDP-GIcNAc; SpyC-FutC: GDP-Fuc; SpyC-GTA/R176G: UDP-GalNAc) were carried
out with a constant acceptor-substrate concentration of 5 mM and varying donor concentrations (0.5,
1,25,5,6.5,8, 10, 15, 20, and 25 mM). For acceptor-substrate kinetics (SpyC-B4GalT: GlcNAc-tBoc (1);
SpyC-LgtA: Lactosyl-tBoc (6); SpyC-FutC: LacNAc-tBoc (2); SpyC-GTA/R176G: 2'FL-tBoc (7)), the donor
concentration was kept at 5 mM, whereas the acceptor concentration was varied (0.5, 1, 2.5, 5, 6.5, 8,
10, 15, 20, and 25 mM). The residual reaction components were chosen in similarity to the activity
assays described above (Table S3). The kinetic parameters maximal reaction velocity (vma) and
Michaelis-Menten constant (Ku) were calculated with Microsoft Excel 2019 (Version 1808) using the
Solver add-in for non-linear regression with a least-square-fit for the Michaelis-Menten equation. The
inhibition constant Ki was calculated in a similar manner using the Haldane equation for single-
substrate inhibition (Sonnad and Goudar 2004). The additional parameters turnover number (Kkcat),
catalytic activity kearKm™, and optimal substrate concentration ([S]opt) Were calculated accordingly.

Long-term stability of immobilized SpyC-GTs

The evaluation of long-term stability was done over a one-month time course, during which the SpyT-
agarose immobilized SpyC-GTs and non-immobilized SpyC-GTs were stored in their respective storage
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buffer at 4 °C (Table S2). One day, one week, and one month after coupling, a 40 uL sample of the
SpyC-GTs (10 uL for SpyC-GTA/R176G) was taken and applied for activity assay as stated above (see
Table S2; acceptor substrates: SpyC-B4GalT: GIcNAc-tBoc, SpyC-LgtA: Lactosyl-tBoc, SpyC-WhbgO: LNT
[I-tBoc, SpyC-FutC: Lactosyl-tBoc, SpyC-GTA/R176G: 2’-FL-tBoc). The residual resin and non-
immobilized SpyC-GTs were kept in storage conditions. For comparison of immobilized and non-
immobilized SpyC-GTs, the specific activity was calculated as stated.

Reusability of immobilized SpyC-GTs

For the assessment of enzyme reusability, the product yields of immobilized SpyC-GTs were measured
for a total of 6 reactions on 3 consecutive days. Therefore, SpyC-GT-agaroses (enzyme amounts of
immobilized GTs: SpyC-B4GalT: 54 ug; SpyC-LgtA: 52 ug; SpyC-WbgO: 62 ug; SpyC-FutC: 66 ug; SpyC-
GTA/R176G: 75 ug) were filled into a PureCube 1-step mini-column (CubeBiotech, Monheim, Germany)
and 50 pL of the respective reaction mix (see Table S2; acceptor substrates: SpyC-B4GalT: GIcNAc-tBoc,
SpyC-LgtA: Lactosyl-tBoc, SpyC-WbgO: LNT II-tBoc. SpyC-FutC: Lactosyl-tBoc, SpyC-GTA/R176G: 2’-FL-
tBoc) was added, yielding a total reaction volume of 100 uL. The column resembles a single reaction
chamber and allows batch and repetitive batch operations on a laboratory scale. After an incubation
of 2 hours, the reaction was stopped by centrifugation for 60-120 seconds at 600 x g. While the SpyC-
GT-agarose is retained by the PVDF membrane (0.1-0.2 um pore size) of the column, products and
residual educts are filtered and subsequently processed for HPLC analysis. To start the second reaction
cycle, 50 uL of the fresh reaction mixture was added to the SpyC-GT-agarose and again incubated for
2 hours. After the second centrifugation, 200 uL storage buffer was added to the SpyC-GT-agarose,
and the whole column was stored at 4 °C overnight. Two reaction cycles of 2 hours each were repeated
on the second and third day, again with storage overnight between days two and three. HPLC analysis
was done for all six filtrates, and a comparison of the product yields was conducted.



2. Schemes

3

oH,OH

&Wx%vx%v

OH,OH 4 ©OHOH

3

=\

’ OH
HO
OH
5 oHOH
1]
6/6 OH OH OH 0 OHOH OH
HO
0 O, 0
0 o o R
HO OHB‘%/ Ria NH HO !
0
oH o o=§ NH
0
H \
7/7 (" oH 8/8 oA o
0 OH OH OH on HO
HO 0 O R, o o OH
HO HO o o [#]
9 OH HO HO Ria
o NH OH -
oH 0=\
HO
OH
9/9" oron oH CHOH OH OFoH OH OH OH ow 12/12
0 0
0 HOﬁ,o&wﬁgﬂ” A S S
HO o oh HO on HO Ho 12
OH MNH NH OH OH
0 0
10/ 10' o OH OH och OH OH OH OHOH on 13/13'
0 0 o
Hok(:.": ”%fﬁex iﬁw{.\a&/ Rz wo &%p\,go';g;g\,o O N~ 2
b NH OH o \ on oH
0=(
?g’,m OH 0=(
HO HO
OH OH
11/11
H
OH,OH OH OH OH OH,0 14 /14
o 9Hon o 0”0” OH OH OH OH
o o HO
0 o o] o] o s} R
NH NH (o] 1.2
% HO
o:< o=< NH OH OH
0
p&iw @.Oi
HO HO
OH OH
5
P N o
. H/\/ \rr A( R, =0H
0

Scheme S1 Chemical structures of the synthesized/targeted glycans in this work. All glycans were synthesized with a tBoc-
linker (R1) for HPLC analysis: 1: N-acetylglucosamine-tBoc (GIcNAc-tBoc, 1); 2: N-acetyllactosamine (LacNAc) type I-tBoc; 3:
LacNAc type II-tBoc; 4: H-antigen type II-tBoc; 5: Blood group A antigen (BGA) type II-tBoc; 6: Lactosyl-tBoc; 7: H-Antigen type
V-tBoc; 8: Lacto-N-triose II-tBoc (LNT Il-tBoc); 9: Lacto-N-tetraose-tBoc (LNT-tBoc); 10: Lacto-N-fucopentaose I-tBoc (LNFP I-
tBoc); 11: Blood group A antigen hexaose type I-tBoc (BGA hexaose I-tBoc); 12: Lacto-N-neotetraose-tBoc (LNnT-tBoc); 13:
Lacto-N-neofucopentaose I-tBoc (LNnFP |-tBoc); 14: Blood group A antigen hexaose type II-tBoc (BGA hexaose II-tBoc);
Moreover, glycans were synthesized without an analysis tag (Rz) and later on labeled with APTS for CE-LIF analysis: 6 :lactose;
7‘: H-Antigen type V; 8': Lacto-N-triose Il (LNT II); 9’: Lacto-N-tetraose (LNT); 10’: Lacto-N-fucopentaose | (LNFP I); 11’: Blood
group A antigen hexaose type | (BGA hexaose |); 12’: Lacto-N-neotetraose (LNnT); 13’: Lacto-N-neofucopentaose | (LNnFP [);

14’: Blood group A antigen hexaose type Il (BGA hexaose Il)
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Scheme S2 General construct of the SpyCatcher glycosyltransferases. SpyC-GTs are embedded in the first multiple cloning
site (MCS) of a pETDuet-1 vector. From 5 to 3‘, the segments are structured as follows: Hisg-tag, SpyCatcher from
Streptococcus pyogenes, solubility tag (namely the Escherichia coli K12 maltose binding protein (MBP) or the Staphylococcus
hyicus lipase propeptide (LPP)), and the respective glycosyltransferase. Restriction sites were chosen for their unique
appearance in the whole vector, facilitating a specific and convenient interchange of different solubility tags and
glycosyltransferases



3. Tables

Table S1 Listing of the glycosyltransferases used in this work, and production and purification conditions. For all SpyC-GTs,
the pET-Duetl plasmid was used as an expression vector. All enzymes were expressed in Escherichia coli strains

Origin N-terminal Expression

Enzyme name Enzyme type organism solubility tag strain IMAC Buffer
. . 20 mM Na;HPO,,
spcpicar Lol e Upepenenide  SUIETT s 10 s00my
P -y P Imidazole, pH 7.4
B1,3-N- Neisseria - 50 mM TRIS-HCI,
SpyC-LgtA acetylglucos- meningiti r'(;/laeli?;: k:_g}:jziz) (DRICE);()EttE iS 500 mM Nacl, 30, 500 mM
aminyltransferase dis P ) Pty Imidazole, pH 7.5
20 mM Na;HPO,,
1,3-galactosyl- E. coli Lipase pro-peptide 500 mM Nacl, 30, 500 mM
SpyC-WbgO transferase 055:H7 (S. hyicus) BL21 (DE3) Imidazole, pH 7.4 (0.2 %
Triton-X-100 for elution)
. . . 50 mM TRIS-HCI,
SpyC-FutC fcos Ic:rlz;f]_sferase Heer/’cof’o"rft L'pas(z F’;Oi'c'zzg’t'de BL21 (DE3) 500 mM NaCl, 20, 500 mM
y Py -y Imidazole, pH 7.5
SpyC- al,3-N- Lipase pro-peptide 50 mM TRIS-HCI,
GTA/R176G acetylgalactos- H. sapiens (5. hyicus) BL21 (DE3) 500 mM Nacl, 20, 500 mM

aminyltransferase Imidazole, pH 7.5

Table S2 Listing of the glycosyltransferases used in this work, and composition of storage buffers and reaction mixtures for
glycosyltransferase activity assays. All Enzymes were obtained as described in Table S1, and activity assays were conducted

in the described buffers

Enzyme name Enzyme type Storage buffer Substrates Reaction buffer
100 mM Glycine pH 10, 5 mM
SpyC-B4GalT B:;:r-]gs?;:tszszl- 100 mM glycine, pH 10 G:i:i;f:;’oc MnCl,, 6.5 mM UDP-Gal, 5 mM
GlcNAc-tBoc, 3 U FastAP
B1,3-N- UDP-GIcNACc, 100 mM Glycine pH 10, 5 mM
SpyC-LgtA acetylglucosamin 100 mM glycine, pH 10 Lactosyl-tBoc / MnCl,, 6.5 mM UDP-GIcNAc, 5 mM
yl-transferase lactose Lactosyl-tBoc / lactose, 3 U FastAP
50 mM NaH,PO,,
B1,3-galactosyl- 500 mM NaCl, 5 mM UDP-Gal, 100 mM HEPES, 25 mM KCl, 5 mM
SpyC-WbgO transferase Dithiothreitol (DTT), pH GlcNAc-tBoc MgCl, 6.5 mM UDP-Gal, 5 mM
75 ! GlcNAc-tBoc, 3 U FastAP
GDP-Fuc, 100 mM TRIS-HCI pH 6, 25 mM KCl,
SpyC-FutC al,2-fucosyl- 50 mM TRIS-HCI, 100 Lactosyl-tBoc / 5 mM MnCl; and MgCl;, 6.5 mM
transferase mM NacCl, pH 7.5 LacNAc-tBoc / GDP-Fuc, 5 mM Lactosyl-tBoc /
lactose lactose, 3 U FastAP
ol 3-N- 100 mM MOPS pH 7, 20 mM MgCl,,
SpyC- ! . 50 mM TRIS-HCI, 100 UDP-GalNAc, 2’- 6.5 mM UDP-GalNAc, 5 mM 2’-FL-
GTA/R176G ~ 2cetylgalactosami mM NaCl, pH 7.5 FL-tBoc/2'-FL  tBoc/ 2'-FL, 3 U FastAP, 1 mg-mLt

nyl-transferase

BSA




Table S3 Listing of the reaction components, donor, and acceptor substrates for the kinetic characterization of SpyC-GTs. Donor substrate kinetics were carried out with a constant acceptor-substrate
concentration of 5 mM and varying donor concentrations (0.5, 1, 2.5, 5, 6.5, 8, 10, 15, 20, and 25 mM). Acceptor-substrate kinetics were carried out with a constant donor concentration of 5 mM
and a varying acceptor concentration (0.5, 1, 2.5, 5, 6.5, 8, 10, 15, 20, and 25 mM)

Enzyme name Acceptor Donor Reaction buffer
SpyC-B4GalT GIcNAc-tBoc UDP-Gal 100 mM glycine-NaOH pH 10, 5 mM MnCly, 5 U FastAP
SpyC-LgtA Lactosyl-tBoc UDP-GIcNAc 100 mM glycine-NaOH pH 10, 5 mM MnCl,, 3 U FastAP
SpyC-FutC LacNAc-tBoc GDP-Fuc 100 mM TRIS-HCI pH 6, 25 mM KCI, 5 mM MnCl,, 5 mM MgCl,, 1 U FastAP
SpyC-GTA/R176G 2’-FL-tBoc UDP-GalNAc 100 MM MOPS-NaOH pH 7, 20 mM MgCl,, 1 U FastAP, 1 mg-mL1BSA

Table S4 Enzymatic activity of lyophilized and non-lyophilized SpyC-GTs.
enzymes

Purified SpyC-GTs were lyophilized, and a comparative activity assay was done for the lyophilized and the non-lyophilized
Enzyme Acceptor substrate No?ﬁ:?:glll]z ed I.[y r: Shr:ilgz?]d ACtWE:/Z]erId
SpyC-B4GalT GlcNAc-tBoc 732.54 677.5 92.5
SpyC-LgtA Lactosyl-tBoc 899.15 843.34 93.8
SpyC-WhgO LNT IlI-tBoc 346.88 374.17 107.8
SpyC-FutC Lactosyl-tBoc 2.2 10.88 494.6
SpyC-GTA/R176G 2’-FL-tBoc 3559.76 3192.66 89.7




Table S5 Buffer system and pH screening for SpyC-GTs. Specific activity [mU-mg?] in the dependency of buffer component and pH value is shown

Enzyme Buffer pH
5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
MES-NaOH 272+15 2976 +7.19  44.75+2.16 - - - - - - -
spyc.  MOPSNaOH ; - 35.23+0.5 41.84+141  96.28+0.97 ; - ; - ;
Bacarr  HEPES-NaOH - ; - 73.77+932  88.02+2647 133.73+17.28 ; - ; -
TRIS-HCI - ; - - ; 98.83+1.61  114.63+1.86  126.25+4.07 ; -
Glycine-NaOH - ; - - ; - ; 149.51+11.29 186.16+9.99  285.33 + 40.05
MES-NaOH 5.44+0231 106.03+0.92  291.66 +21.16 - - - - - - -
MOPS-NaOH ; - 267.91+234  283.28+2.34 416.16 +37.09 ; - ; - ;
SLpg‘;i' HEPES-NaOH ; - ; 326.66+12.53  329.63+23  397.09+1.16 - ; - ;
TRIS-HCI ; - ; ; - 425254075 279.53+12.53  309.91+7.03 - ;
Glycine-NaOH - ; - - ; - ; 411.19+14.88 39338465  791.11+9.25
MES-NaOH 15.73+8.93 17.25+3.42 24734225 - - - - - - -
spyc.  MOPS-NaOH - ; 27.04 2695+1.97  23.11+2.54 - ; - ; -
PYC HEPES-NaOH - ; - 2227+1.92 24794293 23.43+0.25 ; - ; -
TRIS-HCI ; - ; ; - 2092+038  1826+0.11 9.48+1.18 - ;
Glycine-NaOH ; - ; ; - ; - 18.67£0.53 16.41+0.67 11.7+0.81
MES-NaOH 12458 +856 298.37+99.16 818.8 + 229.79 - - - - - - -
SpyC-  MOPS-NaOH - ; 893.43+285.1  1466+669  327.31+129.5 - ; - ; -
GTA/R1  HEPES-NaOH - ; - 1105 + 252 1961+80.64 1613 +93.29 ; - ; -
76G TRIS-HCI - ; - - ; 2164 + 763 2439 + 707 3454 + 422 ; -
Glycine-NaOH - ; - - ; - ; 4537 + 155 4734 + 265 3932+ 419

Table S6 Comparison of optimal buffer system and pH value for SpyC-GTs and their non-SpyC counterparts. Results for non-SpyC-GTs were gathered in previous publications. Results for SpyC-GTs
were obtained for this work (see Table S5)

Enzyme Optimal buffer system and pH value
Non-SpyC-GT SpyC-GT
BAGalT HEPES-NaOH pH 7.6 (Sauerzapfe et al. 2008) Glycine-NaOH pH 10
LgtA TRIS-HCI pH 8 (Naruchi et al. 2006) Glycine-NaOH pH 10
HEPES-NaCl pH 5 (Stein et al. 2008
Futc TRIS-HCI pﬁ 7.5((Liu etal. 2022) ! MOPS-NaOH pH 6.5-7
GTA/R176G MOPS-NaOH pH 7 (Blackler et al. 2017) Glycine-NaOH pH 9.5
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Table S7 Co-factor screening for SpyC-GTs. Specific activity [mU-mg-1] in the dependency of co-factor concentration and in the presence of EDTA is shown

Enzyme  Co-factor Concentration [mM]
0 1 2 2.5 3.5 5 6.5 8 10 20
Bs4pg§|-'|' Mn2* 0 455+ 11.99 589.6 +£22.48 - 692.24 £ 54.94 751.8+£20.1 798.1+44.44 921.99£3.91 921.59+3.11 -
SpyC- Mn2* 161.38+ 1.6 596.64 £ 1.36 617.61 +£10.75 - 640.43 £13 730.82 £ 29.89 818.25+1.18 896.54+41.11 908.79 + 14.36 -
LgtA EDTA - - 0 - - - - - - -
EDTA - - 25.33+1.39 - - - - - - -
SpyC- Mn2* - - - 25.79+2.97 - 24.48 +0.43 - - 20.55+0.88 -
FutC MgZ* - - - 24.62£0.24 - 24.19+0.28 - - 24.38 £ 0.53 -
Mix - - - 23.53+0.46 - 21.68+0.18 - - 19.95+0.73 -
EDTA - - 14.41+0.31 - - - - - - -
GS'I'F,)AV/(;;I Mn2* - 3632+ 122 3143 £ 42 - 2286 + 356 1777 + 380 1576 £ 536 1107 £ 107 2247 £ 20 2188 £ 1198
76G Mg?* - 2188 + 1198 1877 £+ 616 - 1853 +276 1582 + 265 1698 + 313 1984 + 50 1848 +203 2096 + 209
Mix - - - - - - - - 2195+ 1134 -
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Table S8 Efficiency of SpyT-coupling to maleimide-activated agarose. Applied SpyT, measured excess SpyT, the balance, and final yield are shown for each batch of SpyT agarose. Due to a more
convenient processability, larger batches were divided into several approaches ranging from 1-2.5 mL. Excess SpyTag was measured via Bradford assay. All approaches were processed identically

Agarose Volume

Agarose Batch Approach [mL] Applied SpyTag [mg] Measured excess SpyTag [mg] Balance [mg] Yield [%]
Batch 1 Approach 1 1.1 2.5 0 2.5 100
Batch 2 Approach 1 1 5 0 5 100

Approach 1 1 5 0 5 100
Batch 3 Approach 3 1 5 0 5 100
Approach 3 1 5 0 5 100
Batch 4 Approach 1 1 5 0.08 492 98.4
Approach 2 1 5 0 5 100
Batch 5 Approach 1 1 5 0.02 4.98 99.6
Approach 1 2 10 0 10 100
Batch 6 Approach 2 2 10 0 10 100
Approach 3 2 10 0 10 100
Batch 7 Approach 1 2 10 0 10 100
Batch 8 Approach 1 2.5 125 0.1 12.4 99.2
Approach 2 2.5 125 0.4 12.46 99.7
Overall yield: 99.8+0.4

Table S9 Yields for the coupling of SpyC-GTs to the SpyTag-agarose. The best result for the coupling of each SpyC-GT is shown. Excess SpyC-GT was measured via Bradford assay. All coupling
procedures were handled identically

Enzyme Amount applied Amount coupled
[mg] [umol] [mg] [umol] Yield [%]
SpyC-B4GalT 1.54 0.021 1.1 0.015 71.4
SpyC-LgtA 1.98 0.021 1.32 0.014 66.7
SpyC-WbgO 1.49 0.022 1.22 0.018 81.8
SpyC-FutC 1.52 0.021 1.3 0.018 85.7
SpyC-
GTA/R176G 1.52 0.021 1.52 0.021 100

12



Table $S10 Comparison of the specific activity of soluble SpyC-GTs with SpyC-GTs immobilized on SpyT-agarose. Activity assays for both variants of each enzyme were performed identically

Activity of free SpyC-GT Activity of coupled SpyC-GT

Enzyme [mU-mg-1] [mU-mg-1] Activity yield [%]
SpyC-B4GalT 267.5 107.4 40.2
SpyC-LgtA 433.8 85.1 19.6
SpyC-WbgO 197.67 96.85 49.0
SpyC-FutC 15.1 3.2 21.3
SpyC-GTA/R176G 1312.1 473.9 36.1

Table S11 Long-term stability of SpyC-GT agaroses. Specific activity [mU-mg] and relative activity [%] are shown in the dependency of storage time over a time course of one month. For relative
activities, specific activities were normalized to the initial activity (100 %) on day one

Enzyme Activity Time
Day 1 One week One month
Specific [mU-mg1] 107.44 +0.95 141.01+1.24 148.75 +8.22
SpyC-B4GalT
pyC-B4Ga Relative [%] 100 1312409 138.5+5.5
Specific [mU-mg-] 92.95 + 8.68 105.22 +8.32 57.29+3.08
SpyC-LgtA
PYL-E Relative [%] 100 1132479 61.6+5.4
Specific [v] 96.85 + 16.65 102.72 +8.23 69.85+323
SpyC-WbgO
RYLTWRE Relative [%] 100 106.1+8.0 721447
Specific [mU-mg't 1.06 +0.03 072+0.14 0.6+0.11
SpyC-FutC pecific Fm mg1]
Relative [%] 100 68.5+19.2 56.9+17.8
Specific [mU-mg-] 473.98 39.91 561.24 + 19.58 611.53+9.12
SpyC-GTA/R176G
PyC-GTA/ Relative [%] 100 118.443.5 129.0+1.5
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Table S12 Reusability of SpyC-GT agaroses. Absolute and relative product yields [%] are shown for 6 consecutive reactions over a time course of 3 days. For relative product yields, absolute product

yields were normalized to the highest product yield of all 6 reactions (see Figure S6)

Enzyme Product yield Reaction #
1 2 3 4 5 6
SpyC-4GalT Absolute [%] 83.73+1.07 82.26 +5.4 77.09 £5.81 76.64 £ 5.46 74.59 +2.87 73.93+3.14
-B4Ga

oy Relative [%] 100+ 1.3 98.2+6.5 92.1+6.9 91.5+6.5 89.1+3.4 88.3+3.8
SovC.LetA Absolute [%] 86.94+1.2 77.64 £2.97 56.23 +6.95 42.17£7.79 23.1+6.66 17.18+5.71

py-e Relative [%] 100+ 1.4 89.3+3.4 64.7 £ 8.0 48.5+9.0 26.6+7.7 19.8+6.6
SovCWbeO Absolute [%] 53.18 +0.12 65.17 £ 0.97 60.57 +1.49 70.05+1.5 62.04 +0.89 70.72 £1.29

oy g Relative [%] 75.2+0.2 92.2+1.4 85.7+2.1 99.1+2.1 87.7+1.3 100+ 1.8
SovC-FutC Absolute [%] 1.54 £0.12 1.12 +0.08 0.5+0.1 0.37 £0.07 0.17 £ 0.06 0.15+0.04

-Fu

oy Relative [%] 100+ 7.6 72.4+55 32.6+6.4 23.8+3.7 11.2+3.7 9.9+24
SpyC-GTA/RI76G Absolute [%] 98.13 +2.64 97.37+3.72 100 99.37 £0.89 100 98.53 +2.08

i Relative [%] 98.1+2.4 97.4+3.7 100 99.4+0.9 100 98.5+2.1
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4. Figures

7

£ 1 112

Fig. S1 SDS-PAGE of SpyC-B4GalT. The orange arrow indicates the band of the purified enzyme. Lane layout: M: Marker; 1:
Pellet; 2: Raw extract; 3: IMAC Flow; 4: IMAC Wash; 5: IMAC Eluate.

Fig. S2 Western blot of SpyC-B4GalT. The orange arrow indicates the band of the purified enzyme. Lane layout: M: Marker;
1: Pellet; 2: Raw extract; 3: IMAC Flow; 4: IMAC Wash; 5: IMAC Eluate.
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Fig. S3 SDS-PAGE of SpyC-LgtA. The orange arrow indicates the band of the purified enzyme. Lane layout: M: Marker; 1: Pellet;
2: Raw extract; 3: IMAC Flow; 4: IMAC Wash; 5: IMAC Eluate.

Fig. S4 Western blot of SpyC-LgtA. The orange arrow indicates the band of the purified enzyme. Lane layout: M: Marker; 1:
Pellet; 2: Raw extract; 3: IMAC Flow; 4: IMAC Wash; 5: IMAC Eluate.
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Fig. S5 SDS-PAGE of SpyC-WbgO. The orange arrow indicates the band of the purified enzyme. Lane layout: M: Marker; 1:
Pellet; 2: Raw extract; 3: IMAC Flow; 4: IMAC 1. Wash; 5: IMAC 2. Wash; 6: IMAC Eluate.

Fig. S6 Western blot of SpyC-WbgO. The orange arrow indicates the band of the purified enzyme. Lane layout: M: Marker; 1:
Pellet; 2: Raw extract; 3: IMAC Flow; 4: IMAC 1. Wash; 5: IMAC 2. Wash; 6: IMAC Eluate.



Fig. S7 SDS-PAGE of SpyC-FutC. The orange arrow indicates the band of the purified enzyme. M: Marker; 1: Raw extract; 2:
Centrifuged raw extract; 3: Pellet; 4: IMAC Flow; 5: IMAC Eluate; 6: Dialysed Eluate.

Fig. S8 Western blot of SpyC-FutC. The orange arrow indicates the band of the purified enzyme. M: Marker; 1: Raw extract;
2: Centrifuged raw extract; 3: Pellet; 4: IMAC Flow; 5: IMAC Eluate; 6: Dialysed Eluate.
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Fig. S9 SDS-PAGE of SpyC-GTA/R176G. The orange arrow indicates the band of the purified enzyme. M: Marker; 1: Raw
extract; 2: Centrifuged raw extract; 3: Pellet; 4: IMAC Flow; 5: IMAC Eluate; 6: Dialysed Eluate.

Fig. S10 SDS-PAGE of SpyC-GTA/R176G. The orange arrow indicates the band of the purified enzyme. M: Marker; 1: Raw
extract; 2: Centrifuged raw extract; 3: Pellet; 4: IMAC Flow; 5: IMAC Eluate; 6: Dialysed Eluate.
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Fig. S11 HPLC chromatograms of SpyC-B4GalT activity assay. The acceptor GIcNAc-tBoc is elongated to LacNAc type 2-tBoc by

the addition of galactose
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Fig. S12 HPLC chromatograms of SpyC-LgtA activity assay. The acceptor Lactosyl-tBoc is elongated to
addition of GIcNAc
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Fig. S16 Kinetic parameters for SpyC-B4GalT. A) Reactions were carried out at 30 °C in Glycine-NaOH pH 10, 5 mM MnCl,, 5
mM GlcNAc-tBoc (1, Fig. 1B), 5 U FastAP, and 0.4 pg/uL SpyC-B4GalT with varying UDP-Gal concentrations (0.5, 1, 2.5, 5, 6.5,
8, 10, 15, 20, 25 mM). Km: 9.79 MM, Vmax: 546.48 mU-mg?, Keat: 1.66 571, kea'Km2: 0.17 mM-1-s°1, B) Reactions were carried out
at 30 °C in Glycine-NaOH pH 10, 5 mM MnCl,, 5 mM UDP-Gal, 5 U FastAP, and 0.4 pg/uL SpyC-B4GalT with varying GIcNAc-
tBoc (1) concentrations (0.5, 1, 2.5, 5, 6.5, 8, 10, 15, 20, 25 mM). km: 2.34 mM, Vmax: 1925.51 mU-mg, ki: 2.34; [Slopt: 2.34,
Keat: 5.86 571, keat'Kmt: 2.5 mM st
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Fig. S17 Kinetic parameters for SpyC-LgtA. A) Reactions were carried out at 30 °C in Glycine-NaOH pH 10, 5 mM MnCl,, 5 mM
Lactosyl-tBoc (6, Fig. 1B), 3 U FastAP, and 0.2 pg/uL SpyC-LgtA with varying UDP-GIcNAc concentrations (0.5, 1, 2.5, 5, 6.5, 8,
10, 15, 20, 25 mM). Km: 0.89 MM, Vmax: 594.15 mU-mgL, Keat: 9.34 571, Kear'Km: 10.52 mM-1:s-1, B) Reactions were carried out
at 30 °Cin Glycine-NaOH pH 10, 5 mM MnCl,, 5 mM UDP-GIcNAc, 3 U FastAP, and 0.2 pg/uL SpyC-LgtA with varying Lactosyl-
tBoc (6) concentrations (0.5, 1, 2.5, 5, 6.5, 8, 10, 15, 20, 25 mM). km: 6.5 MM, Vmax: 1953.75 mU-mg?, ki: 6.5, [Slopt: 6.5,
Keat: 30.71 51, keat'Km2: 4.72 mM-1.s1
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Fig. S18 Kinetic parameters for SpyC-FutC. A) Reactions were carried out at 30 °C in TRIS-HCI pH 6, 25 mM KCI, 5 mM MnCl,,
5 mM MgCly, 5 mM LacNAc-tBoc (6, Fig. 1B), 1 U FastAP, and 0.5 pg/uL SpyC-FutC with varying GDP-Fuc concentrations (0.5,
1,2.5,5,6.5,8, 10, 15, 20, 25 mM). Km: 0.52 MM, Vmax: 17.2 mU-mg3, Keat: 0.06 571, kear'Kv: 0.12 mM-1-s-1, B) Reactions were
carried out at 30 °C in TRIS-HCI pH 6, 25 mM KCl, 5 mM MnCl,, 5 mM MgCl,, 5 mM GDP-Fuc, 1 U FastAP, and 0.5 pg/ulL SpyC-
FutC with varying LacNAc-tBoc (2) concentrations (0.5, 1, 2.5, 5, 6.5, 8, 10, 15, 20, 25 mM). Km: 15.66 mM, Vmax: 79.98 mU-mg-
1 Keat: 0.29 571, keat'Kv: 0.02 mM-L-s1
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Fig. S19 Kinetic parameters for SpyC-GTA/R176G. A) Reactions were carried out at 30 °C in MOPS-NaOH pH 7, 20 mM MgCl,,
5 mM 2’-FL-tBoc (7, Fig. 1B), 1 U FastAP, 1 mg/mL BSA, and 0.01 pg/uL SpyC-GTA/R176G with varying UDP-GalNAc
concentrations (0.5, 1, 2.5, 5, 6.5, 8, 10, 15, 20, 25 mM). Km: 2.26 mM, Vmax: 5462.72 mU-mg?, Keat: 62.36 571, keat'Kmt: 27.59
mM-1.s-1, B) Reactions were carried out at 30 °C in MOPS-NaOH pH 7, 20 mM MgCl,, 5 mM UDP-GalNAc, 1 U FastAP, 1 mg/mL
BSA, and 0.01 pg/uL SpyC-GTA/R176G with varying 2’-FL-tBoc (7) concentrations (0.5, 1, 2.5, 5, 6.5, 8, 10, 15, 20, 25 mM). Ky:
2.28 MM, Vmax: 8179.04 mU-mg, ki: 6.77, [Slopt: 3.93, Keat: 93.36 571, keat'Km™: 41.01 mM2 -2
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Fig. S20 Comparison of the storage stability of immobilized and free SpyC-GTs. Specific activity was measured over a time
course of 1 month with storage of enzymes at 4 °C. Results were normalized to 100 % on day 1. Values are in the following
comparison 1 week”, “comparison 1 month”. A) SpyC-B,
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denoted according to the scheme “SpyC-GT”, “comparison day 1
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Fig. S21 HPLC chromatograms of SpyC-B4GalT reusability. A comparison between the first reaction on day 1 and the sixth
reaction on day 3 is shown
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Fig. S22 HPLC chromatograms of SpyC-LgtA reusability. A comparison between the first reaction on day 1 and the sixth
reaction on day 3 is shown
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Fig. $23 HPLC chromatograms of SpyC-WbgO reusability. A comparison between the first reaction on day 1 and the sixth
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Fig. S24 HPLC chromatograms of SpyC-FutC reusability. A comparison between the first reaction on day 1 and the sixth
reaction on day 3 is shown
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immobilized SpyC-GTs. The fading colors of bars represent subsequent reaction cycles over three days, with two reactions
each day followed by storage overnight. LacNAc-tBoc (SpyC-B4GalT) [%]: 83.7, 82.3, 77.1, 76.6, 74.6, 73.9; LNT II-tBoc (SpyC-
LgtA) [%]: 86.9, 77.6, 56.2, 42.2, 23.1, 17.2; LNT-tBoc (SpyC-WbgO) [%]: 53.2, 65.2, 60.6, 70.1, 62, 70.7; 2’-FL-tBoc (SpyC-FutC)
[%]: 1.5, 1.1, 0.5, 0.4, 0.2, 0.2; Blood group A-tBoc (SpyC-GTA/R176G) [%]: 98.1, 97.4, 100, 99.4, 100, 98.5
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Lacto-N-tetraose one-pot synthesis
SpyC-WhbgO agarose & SpyC-LgtA agarose in varring ratios regarding specific activity
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" Lacto-N-pentaose B Lacto-N-hexaose W Lacto-N-heptaose
B Lacto-N-neotetraose one-pot synthesis

SpyC-B4GalT agarose & SpyC LgtA agarose in varring ratios regarding specific activity
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Fig. S27 Glycan yields for different enzyme ratios after 24 hours of reaction time. Glycan syntheses were carried out in one-
pot approaches with varying enzyme ratios regarding their specific enzymatic activity (1:5, 1:2, 1:1, 2:1, and 5:1) starting with
Lactosyl-tBoc (5 mM) as initial acceptor substrate. Whereas tetraoses were the main product of all syntheses, residual educts
and longer glycan structures were detected. A) Lacto-N-tetraose syntehses with SpyC-WbgO and SpyC-LgtA. Yields after 24
hours [%]. Ratio: 1:5: Glucose-tBoc (Glc): 2.6; Lactosyl-tBoc (Lac): < 1; Lacto-N-triose-tBoc (LNT Il): O; Lacto-N-tetraose-tBoc
(LNT): 96.3; Lacto-N-pentaose-tBoc (LNP): < 1; Lacto-N-hexaose-tBoc (LNH): < 1; Lacto-N-heptaose-tBoc (LNHep): < 1. Ratio:
1:2: Glc: 4; Lac: < 1; LNT 1l: 0; LNT: 95.1; LNP: < 1; LNH: < 1; LNHep: < 1. Ratio 1:1: Glc: 6.4; Lac: < 1; LNT II: 0; LNT: 93; LNP: <
1; LNH: < 1; LNHep: < 1. Ratio 2:1: Glc: 10.6; Lac: < 1; LNT II: 0; LNT: 88.6; LNP: < 1; LNH: < 1; LNHep: < 1. Ratio 5:1: Glc: 19;
Lac: < 1; LNT Il: < 1; LNT: 80; LNP: < 1; LNH: < 1; LNHep: < 1. B) Lacto-N-neotetraose syntehses with SpyC-p4GalT and SpyC-
LgtA. Yields after 24 hours [%]. Ratio 1:5: Lactosyl-tBoc (Lac): 3.7; Lacto-N-triose-tBoc (LNT Il): 19.7; Lacto-N-neotetraose-tBoc
(LNNT): 75.2; Lacto-N-neopentaose-tBoc (LNnP): < 1; Lacto-N-neohexaose-tBoc (LNnH): < 1. Ratio 1:2: Lac: 2.2; LNT II: 6.5;
LNNnT: 89.3; LNnP: < 1; LNnH: 1.5. Ratio 1:1: Lac: 2.2; LNT Il: 4; LNnT: 90.3; LNnP: < 1; LNnH: 2.5. Ratio 2:1: Lac: 2.5; LNT II: 1.6;
LNNnT: 93.1; LNnP: < 1; LNnH: 2.6. Ratio 5:1: Lac: 8; LNT Il: < 1; LNnT: 90; LNnP: O; LNnH: 1.8
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Fig. $28 HPLC chromatograms of the one-pot LNT synthesis with SpyT-agarose immobilized SpyC-WbgO and SpyC-LgtA. Peak
areas represent product yields. 3 min: 99.7 % Lactosyl-tBoc, 0.3 % LNT II-tBoc ; 120 min: 66.7 % Lactosyl-tBoc, 28.5 % LNT II-
tBoc, 4.8 % LNT-tBoc, 0.07 % LNP-tBoc; 1440 min: 3.5 % Lactosyl-tBoc, 21.8 % LNT lI-tBoc, 73.9 % LNT-tBoc, 0.9 % LNP-tBoc
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Fig. S29 HPLC chromatograms of the one-pot LNT synthesis with free SpyC-WbgO and SpyC-LgtA. Peak areas represent
product yields. 3 min: 99.0 % Lactosyl-tBoc, 1.0 % LNT II-tBoc ; 30 min: 0.2 % Glc-tBoc; 48.8 % Lactosyl-tBoc, 26.3 % LNT II-
tBoc, 24.3 % LNT-tBoc, 0.3 % LNP-tBoc; 1440 min: 2.6 % Glc-tBoc; 0.2 % Lactosyl-tBoc, 96.3 % LNT-tBoc, 0.8 % LNP-tBoc, 0.2 %

LNH-tBoc, 0.02 % LNHep-tBoc
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Fig. $30 HPLC chromatograms of the one-pot LNnT synthesis with SpyT-agarose immobilized SpyC-B4GalT and SpyC-LgtA.
Peak areas represent product yields. 3 min: 100 % Lactosyl-tBoc; 120 min: 84.9 % Lactosyl-tBoc, 5.4 % LNT Il-tBoc , 9.7 %
LNnT-tBoc; 1440 min: 43.1 % Lactosyl-tBoc, 9.5 % LNT II-tBoc, 46.6 % LNnT-tBoc, 0.8 % LNnP-tBoc
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Fig. S31 HPLC chromatograms of the one-pot LNNnT synthesis with free SpyC-B4GalT and SpyC-LgtA. Peak areas represent
product yields. 3 min: 97.8 % Lactosyl-tBoc, 2.1 % LNT II-tBoc, 0.2 % LNnT-tBoc; 60 min: 24.6 % Lactosyl-tBoc, 40.9 % LNT II-
tBoc, 34.3 % LNnT-tBoc, 0.2 % LNnP-tBoc; 1440 min: 2.5 % Lactosyl-tBoc, 1.6 % LNT II-tBoc , 93.1 % LNnT-tBoc, 0.2 % LNnP-
tBoc, 2.6 % LNnH-tBoc
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LNT Il synthesis — SpyC-LgtA-agarose
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Fig. $32 CE-LIF chromatograms of the LNT Il synthesis with SpyT-agarose immobilized SpyC-LgtA. Peak areas represent

product yields. 1 mM Maltose was used as internal standard. 5 min: 99.5 % Lactose, 0.5 % LNT II; 60 min: 71.9 % Lactose,
28.1 % LNT Il; 1440 min: 13.9 % Lactose, 86.1 % LNT Il
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Fig. $33 CE-LIF chromatograms of the LNT synthesis with SpyT-agarose immobilized SpyC-WbgO. Peak areas represent

product yields. 1 mM Maltose was used as internal standard. 5 min: 100 % LNT I, 0 % LNT; 360 min: 93.6 % LNT II, 6.4 % LNTI;
1440 min: 80.1 % LNT 11, 19.9 % LNT
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LNnNT synthesis — SpyC-p4GalT-agarose
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Fig. $S34 CE-LIF chromatograms of the LNnT synthesis with SpyT-agarose immobilized SpyC-B4GalT. Peak areas represent
product yields. 1 mM Maltose was used as internal standard. 5 min: 72.1 % LNT Il, 27.9 % LNnT; 60 min: 8.8 % LNT Il, 91.2 %
LNnT; 1440 min: 6.8 % LNT Il, 93.2 % LNnT

LNFP | synthesis = His,-LPP-FutC
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Fig. S35 CE-LIF chromatograms of the LNFP | synthesis with Hise-LPP-FutC. Peak areas represent product yields. 1 mM Maltose

was used as internal standard. Residual LNT Il can be seen in all chromatograms. 5 min: 93.0 % LNT, 7.0 % LNFP I; 30 min:
60.0 % LNT, 40.0 % LNFP I; 1440 min: 4.4 % LNT, 95.6 % LNFP |
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LNNFP | synthesis = His,-LPP-FutC
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Fig. $36 CE-LIF chromatograms of the LNnFP | synthesis with Hisg-LPP-FutC. Peak areas represent product yields. 1 mM

Maltose was used as internal standard. 5 min: 85.5 % LNnT, 14.5 % LNnFP I; 30 min: 58.2 % LNnT, 41.8 % LNnFP |; 1440 min:
12.2 % LNnT, 87.8 % LNnFP |

BGA hexaose | synthesis — SpyC-GTA/R176G-agarose
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Fig. S37 CE-LIF chromatograms of the BGA hexaose | synthesis with SpyT-agarose immobilized SpyC-GTA/R176G. Peak areas
represent product yields. 1 mM Maltose was used as internal standard. Even after 24 hours, BGA hexaose | was not detectable
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BGA hexaose Il synthesis — SpyC-GTA/R176G-agarose
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Fig. $38 CE-LIF chromatograms of the BGA hexaose Il synthesis with SpyT-agarose immobilized SpyC-GTA/R176G. Peak areas
represent product yields. 1 mM Maltose was used as internal standard. 0 min: 100 % LNnFP I, 0 % BGA Il; 60 min: 0 % LNnFP |,
100 % BGA Il
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Fig. $39 HPLC chromatograms of the LNT Il synthesis with SpyC-LgtA. Peak areas represent product yields. 5 min: 45.9 %
Lactosyl-tBoc, 54.1 % LNT ll-tBoc; 24 h: 4.1 % Lactosyl-tBoc, 95.9 % LNT II-tBoc
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Fig. S40 HPLC chromatograms of the LNT synthesis with SpyC-WbgO. Peak areas represent product yields. 5 min: 68.3 %
LNT II-tBoc, 31.7 % LNT-tBoc; 24 h: 0.3 % LNT II-tBoc, 99.7 % LNT-tBoc
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Fig. S41 HPLC chromatograms of the LNNnT synthesis with SpyC-B4GalT. Peak areas represent product yields. 5 min: 45.3 %
LNT II-tBoc, 54.7 % LNnT-tBoc; 24 h: 4.3 % LNT II-tBoc, 95.7 % LNnT-tBoc
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Fig. S42 HPLC chromatograms of the LNFP | synthesis with Hisg-LPP-FutC. Peak areas represent product yields. 5 min: 0 % LNT-
tBoc, 100 % LNFP |-tBoc
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Fig. S43 HPLC chromatograms of the LNnFP | synthesis with Hisg-LPP-FutC. Peak areas represent product yields. 5 min: 93.4 %
LNNnT-tBoc, 6.6 % LNnFP I-tBoc; 30 min: 52.1 % LNnT-tBoc, 47.9 % LNnFP I-tBoc; 24 h: 1.5 % LNnT-tBoc, 98.5 % LNnFP |-tBoc
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Fig. S44 HPLC chromatograms of the BGA hexaose | synthesis with SpyC-GTA/R176G. Peak areas represent product yields. 5
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Lacto-N-triose Il (LNT I1)-tBoc synthesis
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Fig. S46 Sequential glycan syntheses. Lactosyl-tBoc (5 mM) as initial acceptor. LNT II-tBoc, LNT-tBoc, LNnT-tBoc, Blood group
A hexaose |, and Blood group A hexaose Il syntheses were done with SpyC-GTs. Fucosylation was achieved with Hisg-LPP-FutC,
obtaining the products Lacto-N-fucopentaose | (LNFP 1)-tBoc and Lacto-N-neofucopentaose | (LNnFP I[)-tBoc. A) LNT II-tBoc
synthesis. Yield after 30 min: 91 %. B) LNT-tBoc synthesis. Yield after 30 min: 91 %. C) LNnT-tBoc synthesis. Yield after 30 min:
94 %. D) LNFP | synthesis. Yield after 5 min: 100 %. E) LNnFP | synthesis. Yield after 2 hours: 93 %. F) BGA | synthesis. Yield
after 5 min: 100 %. G) BGA Il synthesis. Yield after 5 min: 100 %
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Fig. S47 Mass spectrum (ESI-) of LNT II-tBoc. [M-H], m/z 744.9
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Fig. S48 Mass spectrum (ESI-) of LNT-tBoc. [M-H],, m/z 906.9
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Fig. $49 Mass spectrum (ESI-) of LNnT-tBoc. [M-H]-, m/z 906.8
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Fig. S50 Mass spectrum (ESI-) of LNFP I-tBoc. [M-H]-, m/z 1052.9
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Fig. S51 Mass spectrum (ESI-) of LNnFP I-tBoc. [M-H], m/z 1052.9
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Fig. S52 Mass spectrum (ESI-) of Blood group A antigen hexaose type I-tBoc. [M-H]-, m/z 1256.0
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Fig. S53 Mass spectrum (ESI-) of Blood group A antigen hexaose type II-tBoc. [M-H]-, m/z 1256.0
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