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Text S1. Model performance metrics
We use the Nash-Sutcliffe Efficiency (NSE), the Normalized Root Mean Squared Error (nRMSE), and the Kling–Gupta efficiency (KGE) metrics, along with the three components of KGE (i.e., Pearson’s correlation, bias ratio, and variability ratio) to evaluate the performance of random forest models. 
The NSE is expressed as
	
	(1)


where Si and Oi denote simulations and observations, respectively, and are applicable to all the following equations; Ō is the observed mean. 
The nRMSE is expressed as
	
	(2)


where N denotes the number of samples. Omax and Omin denote the maximum and minimum observations, respectively. 
The KGE is expressed as
	
	(3)


where r, β, and γ represent Pearson’s correlation, bias ratio, and variability ratio, respectively, and are expressed as
	
	(4)

	
	(5)

	
	(6)


In perfect prediction, where KGE and NSE equal unity, the r = β = γ = 1 and nRMSE = 0. According to equations 5 and 6, β < 1 corresponds with an overall negative bias, in which < . Similarly, β > 1 indicates a positive bias in prediction.

Table S1. Existing river flood projection studies. CMIP5/6 = Coupled Model Intercomparison Project Phase 5/6. ISIMIP = Inter-Sectoral Impact Model Intercomparison Project. CORDEX = Coordinated Regional Climate Downscaling Experiment. HM = hydrologic model. VIC = Variable Infiltration Capacity hydrologic model. CPM = convection-permitting climate model. AMS = annual maximum streamflow. MAX/MAX7 = maximum daily/7-day streamflow. Q90 = 90th percentile of daily streamflow.

	No.
	Approach
	Index
	Area (ref.)

	1
	CMIP6 + ISIMIP + LSTM
	AMS
	China 5

	2
	CMIP5/CMIP6/CORDEX + HM
	100-year flood
	Europe 6

	3
	CMIP6 + CaMa-Flood
	100-year flood
	Global 7

	4
	ISIMIP + VIC + CaMa-Flood
	100-year flood
	China urban areas 8

	5
	ISIMIP + LSTM
	MAX/MAX7/Q90
	Global 2062 river basins 9

	6
	ISIMIP
	MAX7
	Global 10

	7
	CMIP5 runoff + CaMa-Flood
	
	Global 11

	8
	ISIMIP 
	River flow seasonality
	Global 12

	9
	EC-EARTH3-HR + CMIP5 + LISFLOOD + local value of the flood protection
	Six return periods (10-500 years)
	Global 13

	10
	CMIP6 + VIC
	Widespread flooding (streamflow > Q99 for all subbasins within a river basin)
	India 14

	11
	Bias-corrected CMIP5 + VIC
	1 % annual exceedance probability
	USA 15

	12
	Bias-corrected CMIP5 + NOAA’s HL-RDHM + LISFLOOD-FP
	100-year flood peak
	Pennsylvania, USA 16

	13
	Bias-corrected CMIP5 + HBV + LISFLOOD-FP
	100-year flood 
	USA 17

	14
	HAPPI GCM + Tropical cyclone rainfall model + LISFLOOD-FP
	Hurricane rainfall-induced flood
	Puerto Rico 18

	15
	CPM + LISFLOOD-FP
	Urban flooding
	UK 19

	16
	CMIP6 + GAMLSS
	Annual exceedance probabilities (e.g., 1 in 10)
	USA 20

	17
	Bias-corrected CMIP5 + HM
	Annual exceedance probabilities (e.g., 1 in 10)
	Australia 21

	18
	CMIP6 runoff – base flow separation
	AMS
	Global 22

	19
	Downscaled CMIP6 + GAMLSS
	10-year, 50-year, and 100-year flood
	West-Central Himalayas 23





Table S2. 19 CMIP6 models used in this study

	No.
	Model (ref.)
	Variant label
	Horizontal resolution
(lon × lat)

	1
	ACCESS-CM2 24
	r1i1p1f1
	1.9° × 1.3°

	2
	ACCESS-ESM1-5 25
	r1i1p1f1
	1.9° × 1.2°

	3
	CanESM5 26
	r1i1p1f1
	2.8° × 2.8°

	4
	CNRM-ESM2-1 27
	r1i1p1f2
	1.4° × 1.4°

	5
	CNRM-CM6-1 28
	r1i1p1f2
	1.4° × 1.4°

	6
	AWI-ESM-1-REcoM 29
	r1i1p1f1
	1.9° × 1.9°

	7
	EC-Earth3 30
	r1i1p1f1
	0.7° × 0.7°

	8
	EC-Earth3-Veg 31
	r1i1p1f1
	0.7° × 0.7°

	9
	GFDL-ESM4 32
	r1i1p1f1
	1.3° × 1°

	10
	INM-CM5-0 33
	r1i1p1f1
	2° × 1.5°

	11
	HadGEM3-GC31-LL 34
	r1i1p1f3
	1.9° × 1.3°

	12
	MIROC6 35
	r1i1p1f1
	1.4° × 1.4°

	13
	MIROC-ES2L 36
	r1i1p1f2
	2.8° × 2.8°

	14
	MPI-ESM1-2-HR 37
	r1i1p1f1
	0.9° × 0.9°

	15
	MPI-ESM1-2-LR 38
	r1i1p1f1
	1.9° × 1.9°

	16
	MRI-ESM2-0 39
	r1i1p1f1
	1.1° × 1.1°

	17
	NorESM2-LM 40
	r1i1p1f1
	2.5° × 1.9°

	18
	UKESM1-0-LL 41
	r1i1p1f2
	1.9° × 1.3°

	19
	IPSL-CM6A-LR 42
	r1i1p1f1
	2.5° × 1.3°





Table S3. List of climate predictors used in the ML models. Area-weighted average values are extracted for each catchment, variable, and year, and then annual mean (mean) and standard deviation (std) are calculated for each variable across all years in the dataset.

	No.
	Variable
	Unit
	Potential predictors

	1
	Total precipitation (Psum)
	mm
	Psum_mean, Psum_std

	2
	Maximum 1-day precipitation (Rx1day)
	mm
	Rx1day_mean, Rx1day_std

	3
	Maximum 1-month precipitation (Rx1mon)
	mm
	Rx1mon_mean, Rx1mon_std

	4
	Maximum total precipitation of consecutive wet days (Pvol)
	mm
	Pvol_mean, Pvol_std

	5
	Maximum 5-day precipitation (Rx5day)
	mm
	Rx5day_mean, Rx5day_std

	6
	Relative humidity (RH)
	%
	RH_mean

	6
	Average snow melting (SMave)
	mm
	SMave_mean

	7
	Maximum near-surface air temperature (Tmax)
	degreeC
	Tmax_mean

	8
	Minimum near-surface air temperature (Tmin)
	degreeC
	Tmin_mean

	9
	Maximum snow melting (SMmax)
	mm
	SMmax_mean

	10
	Surface downwelling shortwave radiation (RSDS)
	W/m2
	RSDS_mean

	11
	Wind speed (WS)
	m/s
	WS_mean

	12
	Surface snow amount (SNW)
	kg/m2
	SNW_mean




Table S4. Geographic predictors used in the ML models 

	No.
	Predictor class
	Predictor
	Unit
	Data source
	Extraction method

	1
	Land cover
	Fractional built-up area
	%
	ESACCI land cover map in the year 2000 43
	Land cover fraction

	2
	Land cover
	Fractional forest
	%
	
	

	3
	Land cover
	Fractional grassland
	%
	
	

	4
	Geomorphology
	Slope
	−
	HydroSHEDS v1 DEM 44
	Area-weighted average


	5
	Geomorphology
	Elevation
	m
	
	

	6
	Soil
	Thickness of the permeable layer
	m
	Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers 45
	

	7
	Soil
	Permeability
	Log(k)
	GLHYMPS 2.0 46 
	

	8
	Climate
	Aridity index
	−
	Global Aridity Index and Potential Evapotranspiration Database - Version 3 47
	

	9
	Climate
	Potential evapotransipiration
	mm
	
	

	10
	Climate
	Fractional arid climate zone
	%
	Köppen-Geiger climate classification at an 1-km resolution for the present-day (1980–2016) 48
	Climate zone fraction

	11
	Climate
	Fractional cold climate zone
	%
	
	

	12
	Climate
	Fractional temperate climate zone
	%
	
	

	13
	Climate
	Fractional tropical climate zone
	%
	
	

	14
	Hydrologic signature
	Runoff ratio
	−
	MSWEP v2.2 rainfall49 and GloFAS v3.1 river discharge 50
	Area-weighted average
rainfall is extracted; River discharge is extracted for the grid cell that is closest to the outlet point.

	15
	Hydrologic signature
	Streamflow precipitation elasticity
	−
	
	

	16
	Hydrologic signature
	Baseflow index
	−
	
	

	17
	Hydrologic signature
	Richards-Baker flashiness index51
	−
	
	

	18
	Hydrologic signature
	Groundwater storage (Q10/Q50);  
	−
	
	

	19
	Hydrologic signature
	High-flow frequency 
	day
	
	

	20
	Hydrologic signature
	Coefficient of streamflow variation
	−
	
	

	21
	Coordinate
	Longitude
	−
	−
	−

	22
	Coordinate
	Latitude
	−
	−
	−

	23
	Human activity
	Population density
	%
	WorldPop 52
	Area-weighted average


	24
	Human activity
	GDP per capita
	$
	Gridded global datasets for Gross Domestic Product in 2000 53
	Area-weighted average


	25
	Human activity
	Number of dams
	%
	Global Dam Tracker 54
	Number of upstream dams




Table S5. Data sources of global streamflow observations

	No.
	Data source
	URL

	1
	Global Runoff Data Centre (GRDC)
	https://www.bafg.de/GRDC/EN/Home/homepage_node.html

	2
	The Bureau of Meteorology of the Australian Government (BOM)
	http://www.bom.gov.au/

	3
	The Brazilian National Water Agency and Bruno Guimarães for his Python webscraping code “scraping-hidroweb” (available on GitHub)
	http://www.snirh.gov.br/hidroweb/apresentacao

	4
	The Spanish Ecological transition ministry
	https://ceh.cedex.es/anuarioaforos/default.asp

	5
	Eaufrance, the public water information service in France
	https://www.eaufrance.fr/

	6
	National Water Data Archive of Canda (HYDAT)
	https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/

	7
	Polish Institute of Meteorology and Water Management (IMGW)
	https://www.imgw.pl/

	8
	The National River Flow Archive (NRFA), based at the UK Centre for Ecology & Hydrology
	https://nrfa.ceh.ac.uk/

	9
	The Norwegian Water Resources and Energy Directorate (NVE)
	https://www.nve.no/english/

	10
	The U.S. Geological Survey
	https://waterdata.usgs.gov/nwis

	11
	Environmental Information System for water resources and modelling for Africa (SIEREM) 
	http://www.hydrosciences.fr/sierem/

	12
	Colombia Institute of Hydrology, Meteorology and Environmental Studies
	http://institucional.ideam.gov.co/jsp/index.jsf

	13
	Federal Office for the Environment (Switzerland)
	https://www.bafu.admin.ch/bafu/en/home.html

	14
	The Hydroinformatic Data Center managed by Ministry of Water Resources of China
	http://xxfb.hydroinfo.gov.cn/ssIndex.html

	15
	Slovenian Environment Agency
	https://www.gov.si/en/state-authorities/bodies-within-ministries/slovenian-environment-agency/

	16
	India- Water Resource Information System (WRIS)
	https://indiawris.gov.in/wris/#/





[bookmark: _Ref192604041]Table S6. Parameter values used in the PCR-GLOBWB calibration process

	Parameter
	Short description
	Prefactor
	Scale

	Minimum soil depth fraction
	Controls the partitioning of liquid rainfall into direct runoff and infiltration to the soil
	0.5, 1, 2, and 3
	Linear

	Saturated hydraulic conductivity
	Determines the amount of infiltration into the first soil layer, the percolation to the second soil layer, and groundwater layer
	-0.5, 0, and 0.5
	Log

	Groundwater recession coefficient
	Describes the linear relation between groundwater storage and outflow
	-0.5, 0, and 0.5
	Log

	Degree day factor
	Relates the amount of snow melt to the temperature above the freezing point
	0.5, 1, 2, and 3
	Linear

	Manning's n
	Roughness coefficient used to simulate the kinematic wave routing
	0.5, 1, 2, and 3
	Linear
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Fig. S1 Length of streamflow records. A minimum of 300 valid streamflow measurements were required per year. The inset histogram illustrates the distribution of the record lengths.
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[bookmark: _Ref181982373][bookmark: _Hlk164701120]Fig. S2 Full cross-product cross-validation test of the ML models. The climate predictors and the 1-in-10-year flood magnitudes calculated for the 1981−2000 and 2001−2014 periods, respectively. A total of 20 cross-validation splits (i.e., 10 random spatial splits and 2 temporal splits) are generated to conduct the test.
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[bookmark: _Ref167092719][bookmark: _Ref167092715]Fig. S3 Same as Fig. S2 but shows cross-validated predictions during the period 1981–2000.
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Fig. S4 Same as Fig. S2 but shows cross-validated predictions during the period 2000–2014.


[image: ]
Fig. S5 Relative bias of the ML models versus the calibrated PCR-GLOBWB (HM) in predicting the 10-year flood event magnitude during the period 2001−2014. a Multi-model ensemble mean predictions of the 10-year flood magnitude from the 19-GCM ML models and PCR-GLOBWB global hydrologic models driven with five ISIMIP3b bias-corrected climate model outputs are compared with observed values to calculate the absolute relative bias separately. Note that the absolute value of relative bias is used here for better model comparison, and the ratio of the absolute relative biases generated from the ML and HM predictions are shown in a. The inset histogram in a indicates the distribution of absolute relative biases. b Absolute relative biases generated from the ML and PCR-GLOBWB driven by the same 5 GCMs (using the 5 GCMs from the ISIMIP3b experiment). c Bias of annual maximum 1-month CMIP6 precipitation (Rx1mon) in the ensemble mean of 19 ML models (uncorrected, blue) and 10 HMs (bias-corrected, red) versus bias of 10-year flood magnitude predicted by the same ML models and HMs. The contour lines in c represent the 95% confidence contour, indicating that 95% of the probability mass lies within the contour. Boxplots to the right and top of panel c indicate the distribution of flood biases and Rx1mon biases, respectively. Boxplot whiskers extend to the 2.5% and 97.5% percentiles. Note: average 10-year flood magnitude is computed as specific discharge (mm/day) for the HMs in each grid cell.


[image: ]
Fig. S6 Bias of CMIP6 annual maximum 1-month precipitation (Rx1mon) and of 10-year flood magnitude generated by the ensemble mean ML (blue) and HM (orange) predictions; contours represent the 95% confidence contour, indicating that 95% of the probability mass lies within the contour. Boxplots alongside each subplot indicate the distribution of flood biases and Rx1mon biases, respectively, and are significantly different (P < 0.01) based on the paired t-test. The boxplots whisker extend to the 2.5% and 97.5% percentiles.
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[bookmark: _Ref181982504]Fig. S7 Feature importance based on SHAP values. The mean absolute SHAP values for each feature were sorted to obtain the global feature importance and the procedure was repeated for each of the 19 CMIP6 models. The ranking from 1 to 54 indicates decreasing feature importance.


[image: ]
[bookmark: _Ref181982907]Fig. S8 We compare a simulation-only ML model (“CMIP6 only”, MLcmip6-only, shown in green) trained on climate model simulations and a perfect prediction ML model (MLperfect, shown in blue, as a baseline) in which the most important CMIP6 precipitation predictor (e.g., annual total precipitation, or another variable) is replaced by the equivalent predictor calculated from the MSWEP dataset. The most important climate predictor in each climate model is identified through the SHapley Additive exPlanations (SHAP) algorithm (see Fig. S7). The two ML models are trained separately over the period 1981−2014. We compare the contribution of the precipitation predictor to the flood magnitude in the two ML models using SHAP values. Positive SHAP values mean that the predictor affects the flood magnitude positively, and vice versa. The higher the absolute SHAP value, the more the predictor contributes to the flood magnitude. Each coloured circle represents a gauging station. The smooth lines were fitted with LOESS (locally weighted scatterplot smoothing) regression to highlight the average differences between the two ML models.
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Fig. S9 Same as Fig. S8 but the contribution of the aridity index to the flood magnitude in the two ML models (MLcmip6-only and MLperfect) are compared.
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[bookmark: _Ref181982533]Fig. S10 The difference in SHAP values (i.e., ΔSHAP) of the most important climate variable for the MLcmip6-only and MLperfect models is compared with that of the aridity index (y-axis). The most important climate variable is identified through SHapley Additive exPlanations (SHAP) for the MLcmip6-only model (see Fig. S7), however, the most important climate variables may differ between the MLcmip6-only and MLperfect models. Positive ΔSHAP values mean that the MLcmip6-only model increases the contribution of the predictor to flooding compared to the MLperfect model. The Spearman correlation and associated p-value are labelled in the bottom left of each panel. It should be noted that the most important climate predictor (x-axis) shown here varies with the climate model.


[image: ]
Fig. S11 Same as Fig. S10 but the dots are coloured by the bias of the climate predictors. It should be noted that the most important climate predictor (x-axis) shown here varies with the climate model (each panel is a different ML model and climate model).


[image: ]
Fig. S12 Multi-model ensemble mean in the projected changes of flood magnitude between historical (1981−2014) and future (2071−2100) periods. a indicates future changes under SSP2-4.5 and b indicates the difference between SSP2-4.5 and SSP5-8.5. The colour in the maps shows the magnitude of change and the saturation indicates the agreement, among ensemble members, in the sign of change. The inset graph on the right shows the latitudinal mean flood change.


[image: A map of the world
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[bookmark: _Ref182185307]Fig. S13 Multi-model ensemble mean in the projected changes of each climate predictor under SSP2-4.5. The colour hues in the maps show the magnitude of change and the saturation indicates the agreement, among ensemble members, in the sign of change. 
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Fig. S14 Same as Fig. S13 but for the difference between SSP2-4.5 and SSP5-8.5 scenarios. 
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Fig. S15 We compare a simulation-only ML model (MLcmip6-only) trained on climate model simulations and a perfect prediction ML model (MLperfect) in which the most important CMIP6 climate predictor is replaced by a “perfect" predictor calculated from the MSWEP v2 dataset. The difference in SHAP values (i.e., ΔSHAP) of the annual maximum 1-month precipitation (Rx1mon) generated from the MLcmip6-only and MLperfect models are compared with the projected changes of flood magnitude for the 7,115 river basins under SSP5-8.5. Multi-model ensemble means in the projected changes of flood magnitude and Rx1mon are calculated between historical (1981−2014) and future (2071−2100) periods. The dots in the right panel are coloured by the projected changes of Rx1mon.



[image: ]
Fig. S16 Spatial distribution of global streamflow stations and data sources.
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Fig. S17 GRIT reaches and 10-year flood magnitude. a presents reaches from the GRIT network with Global River Widths from Landsat (GRWL) width greater than 30 m as well as their downstream segments. The width is scaled by partitioned drainage area here for visualization purposes. The inset rectangles show the detail of the multi-threaded river network in three different regions of the globe (Rhine-Meuse, Congo, Padma-Brahmaputra). b presents the 10-year flood magnitude estimated using the empirical probability function of annual maximum discharge for each gauge, where each gauge has at least 10 years of daily discharge observations during the period 1981−2014.


[image: ]
[bookmark: _Hlk180989130]Fig. S18 Relative bias of the ML models versus hydrological models from the ISIMIP3b experiment in predicting the 10-year flood event during the period 2001−2014. Here grid cells are limited to those where the drainage area calculated using DDM30 differed by no more than 20% from the drainage area calculated using river basin polygons from the GRIT dataset. a Multi-model ensemble mean predictions of the 10-year flood magnitude from the 19-GCM ML models and 10 hydrologic models (HMs) from the ISIMIP3b experiment are compared with observed values to calculate the absolute relative bias separately. Note that the absolute value of relative bias is used here for better model comparison, and the ratio of the absolute relative biases generated from the ML and HM predictions is then shown in a. The inset histogram in a indicates the distribution of absolute relative biases. b Absolute relative biases generated from the ML and HMs driven by the same 5 GCMs (using the 5 GCMs from the ISIMIP3b experiment). c Bias of annual maximum 1-month CMIP6 precipitation (Rx1mon) in the ensemble mean of 19 ML models (uncorrected, blue) and 10 HMs (bias-corrected, red) versus bias of 10-year flood magnitude predicted by the same ML models and HMs. The contour lines in c represent the 95% confidence contour, indicating that 95% of the probability mass lies within the contour. Boxplots to the right and top of panel c indicate the distribution of flood biases and Rx1mon biases, respectively. Boxplot whiskers extend to the 2.5% and 97.5% percentiles. Note: average 10-year flood magnitude is computed as specific discharge (mm/day) for the HMs in each grid cell.

[image: ]
Fig. S19 Comparison of 10-year flood magnitude predictions (2001-2014) from the calibrated and uncalibrated 30-arcmin PCR-GLOBWB models, forced by five bias-corrected climate models (ISIMIP3b).  A three-fold spatiotemporal cross-validation test was conducted: the model was calibrated by minimizing 1 - KGE between predicted and observed 10-year flood magnitudes using 2/3 of available gauges from 1981-1990, and then validated against the remaining 1/3 of gauges from 2001-2014. This process was repeated three times.  The left panel compares the absolute relative biases of the calibrated and uncalibrated models (ratio) using the ensemble mean of the five climate model forcings; ratios < 1 indicate improved performance after calibration. The right panel presents the same comparison for each individual climate model forcing.
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