

1 **Methods**

2 ***Study Population***

3 Between 2012 and 2014, patients were recruited in two arms. Arm A required patients to be
4 diagnosed with LS associated CRC and surgically treated within 1 year before vaccination. Arm B
5 recruited patients who were known to be carriers of a germline MMR gene mutation associated with
6 LS and without cancer or more than 5-years cancer-free after primary CRC resection at the time of
7 the study. Being HLA-A*02 positive was an inclusion criteria for both arms. Patients who had any
8 non-CRC malignancy more than 5 years before inclusion, including extracolonic LS-associated
9 malignancies, were also eligible. WHO performance status had to be 0 or 1. Exclusion criteria were:
10 autoimmune diseases, an active viral infection, allergy to shellfish, concomitant use of
11 immunosuppressive drugs, pregnancy or lactation within the study period and laboratory
12 abnormalities (white blood cell count of $>3.0 \times 10^9/L$; lymphocytes $>0.8 \times 10^9/L$; platelets $>100 \times 10^9/L$;
13 serum creatinine $<150 \mu\text{mol}/L$; and serum bilirubin $<25 \mu\text{mol}/L$, exception Gilbert's syndrome)

14 ***Power of the study***

15 A power analysis was conducted by determining the probability of a positive study outcome, defined
16 as the detection of antigen specific T cells (here CEA) in more than half of the patients (i.e. at least
17 12 of 23), as a function of the “true” response rate r . Specifically, the number of patients for which
18 an immune response can be detected follows a binomial distribution with parameters 23 and r . An
19 80% power is achieved when the response rate is $\sim 59\%$. In a previous study conducted by our group,
20 where 11 patients were vaccinated with the CEA peptide pulsed DCs, CEA specific T cells were
21 observed in 72.7% of the patients¹; at this response rate, the power of our study is 99%.

22 ***Dendritic cell vaccine preparation and characterization***

23 Autologous moDCs were generated from leukapheresis product in compliance with Good
24 Manufacturing Practice in a cleanroom-facility². Plastic adherent monocytes or monocytes isolated
25 by centrifugal elutriation were cultured in X-VIVO-15 medium (Lonza) supplemented with 2% pooled
26 HS (Sanquin, Nijmegen, the Netherlands), IL-4 (500 U/ml), and granulocyte-macrophage-colony
27 stimulating factor (800 U/ml; both CellGenix). Immature DC were pulsed with Keyhole Limpet
28 hemocyanin (KLH) (10 mg/ml, Biosyn) and matured with recombinant tumor necrosis factor- α (TNF- α) (10 ng/ml), recombinant IL-6 (15 ng/ml), recombinant IL-1 β (5 ng/ml; all CellGenix) and
29 prostaglandin E2 (10 mg/ml; Pfizer). Mature DC were pulsed with the HLA-A*02:01-restricted
30 peptide of CEACAM5 (protein belonging to the CEA family, henceforth referred to as CEA; peptide
31 sequence: YLSGANLNL) and frameshift derived peptides of TGF- β RII (RLSSCVPVA) and Caspase-5
32 (FLIIWQNTM) (all Interdivisional GMP Facility LUMC, Leiden, the Netherlands). This protocol gave
33 rise to DCs with a mature phenotype meeting the release criteria: low expression of CD14, high
34 expression of MHC class I, MHC class II, CD83, CD86, CCR7, as analyzed by flow cytometry. Details of
35 antibodies used are summarized in Supplementary Table 1. Patients received at maximum 30×10^6 DC
36 per vaccination: 20×10^6 DC intravenously and 10×10^6 intradermally.

38 ***Treatment schedule***

39 The Dutch Central Committee on Research involving Human Subjects (CCMO) has approved the
40 study (NL28985.000.09) and written informed consent was obtained from all patients.

41 ClinicalTrials.gov identifier of the study is NCT01885702. The study was conducted in accordance
42 with the Good Clinical Practice guidelines and with the provisions of the Declaration of Helsinki
43 (October 9th 2004). Patients were injected intravenously and intradermally with autologous
44 monocyte-derived DC (moDC) loaded with HLA-A*02:01 binding peptides of tumor associated
45 antigen CEA and frameshift derived neoantigens caspase-5 and TGF- β RII according to a schedule of 3
46 weekly vaccinations. One to two weeks after the last vaccination a delayed-type hypersensitivity
47 (DTH)-skin test was performed. Patients who remained free of disease recurrence were eligible for
48 two maintenance cycles of three weekly vaccinations and a DTH skin test, each at 6-month intervals.
49 After the third round, a colonoscopy was performed.

50 ***Proliferative response to KLH***

51 For immunomonitoring purposes and to provide CD4 T cell help, all DCs were loaded with the
52 control antigen KLH to study T cell proliferation. 1×10^5 PBMCs, isolated from blood samples before
53 each vaccination, were plated per well of a 96-well tissue culture microplate in the presence of 10
54 mg/mL KLH or without KLH. After 4 days of culture, 1 μ Ci/well of tritiated thymidine was added for 8
55 hours and incorporation of tritiated thymidine was measured in a beta-counter. A proliferative
56 response to KLH was considered positive if the proliferation index (proliferation with KLH /
57 proliferation without KLH) is greater than 2.

58 ***Delayed type hypersensitivity skin test***

59 Delayed type hypersensitivity (DTH) challenges were performed within 1-2 weeks after each
60 vaccination cycle². 1×10^6 mature DC loaded with the indicated peptides were injected intradermally
61 at different sites. After 48 hours, 6 mm punch biopsies were taken. Half of the biopsy was manually
62 cut and cultured as described³. Lymphocytes cultured from DTH-biopsies were stained with anti-
63 CD8-FITC and tetrameric MHC complexes containing the TGF- β RII, caspase-5 and CEA HLA-A*02:01
64 epitopes (all Sanquin) and analyzed by flow cytometry. HIV was used as negative control. To test
65 peptide recognition, lymphocytes were challenged with T2 cells pulsed with the indicated peptides
66 or control melanoma peptide gp100:280-288. Production of IFN- γ , IL-2 and IL-5 was measured in the
67 supernatants after 16h by cytometric bead array according to the manufacturer's instructions
68 (eBiosciences).

69 ***Generation of (neo)antigen expressing tumor cell lines***

70 Plasmids with vector backbone of pcDNA3.1+/C-(K)DYK (DYK tag replacing the stop codon of the
71 insert) containing cDNA insert of CEA (OHu23459D), wild type *TGFB2* (OHu26872D), and wild type
72 *CASP5* (OHu04254D), custom generated mutant *TGFB2* (A-1 at position 458 based on
73 NM_001024847), and custom generated mutant *CASP5* (A-1 at position 202 based on NM_004347)
74 were ordered (all Genscript). Each of the 5 plasmids was first transformed in DH5 α bacteria and then
75 single cell colonies were selected post Sanger sequencing using T7 (5' TAATACGACTCACTATAGGG 3')
76 or BGHRev (5' TAGAAGGCACAGTCGAGG 3'): forward and reverse primers respectively (Invitrogen).
77 For each of the 5 plasmids, an HLA-A*02 tumor cell line (BLM) cultured in DMEM (21885108, Gibco)
78 with 10% FCS (Hyclone) was stably transfected using the calcium phosphate transfection kit
79 (K278001, Invitrogen) as per the manufacturer's protocol. Briefly 20 μ g of transfecting DNA plasmid
80 was precipitated in CaCl₂ and HBS and added to 1.5×10^6 BLM cells and given a 10% DMSO (Wak-
81 Chemie Medical GmbH) shock 5 hours after DNA addition to stimulate uptake and incubated

82 overnight at 37 °C in DMEM with 10% FCS. The cells were then selected with 1mg/mL geneticin or
83 G418 (Gibco) and single cell colonies were cloned through limiting dilution or cloning rings. The cell
84 lines were monitored periodically for expression of the desired antigen. Validation on RT-qPCR was
85 done using SYBR Green reagents on QuantStudio 3 (both Applied Biosystems). Flow cytometry was
86 measured on FACS Verse or FACS Lyric (BD Biosciences) and staining methods for different antigens
87 has been summarized in Supplementary Table 2. For BLM cell lines transfected with mutant *TGFB2*
88 and wild type and mutant *CASP5*, no antibodies that could be tested on flow cytometry were
89 available, but all cell lines could be shown to highly express the respective antigen indirectly on flow
90 cytometry through the increased expression of the Flag (DYK) tag protein conjugated with the
91 protein of interest. The secondary antibody used for flow cytometry is - Alexa647 Goat anti-mouse
92 IgG (H+L) (1:400, Invitrogen).

93 ***In-vitro expansion of (neo)antigen specific T cells***

94 (Neo)antigen specific T cell expansion was based on the protocol by Ali et al.⁴. Briefly, cryopreserved
95 patient PBMCs post vaccination were thawed in RPMI without additives (R8758, Sigma Aldrich) and
96 stained with APC and PE fluorochrome conjugated HLA-A2*02:01 MHC-I dextramers (Immudex) for
97 neoantigen TGF-βRII (WB3302), neoantigen caspase-5 (WB5812) and CEA (WB3277) as per
98 manufacturer's protocol with CD8 antibody (1:1000, BD Optibuild). The dextramer stained cells were
99 bulk sorted with FACSaria (BD Biosciences) in a 96 well round bottom plate on a layer of feeder cells
100 made by irradiating PBMCs at 64Gy on X-RAD 320ix (Precision X-Ray) from three healthy donors
101 (Sanquin, Nijmegen) to facilitate T cell growth. A maximum of 200 dextramer positive cells were
102 sorted in one well containing 2x10⁵ feeder cells. The sorted cells were cultured in X-vivo (Lonza) with
103 5% HS (Sigma Aldrich) and PHA (1 µg/mL, Remel), IL-2 (850 U/mL, Peprotech) and IL-15 (2 ng/mL,
104 Peprotech). Cells were routinely tested for dextramer specificity during culturing and resorted to a
105 new feeder layer if needed.

106 ***Cytotoxicity Assay***

107 Transfected and peptide loaded BLM cell lines were used as target cells in a calcein release assay.
108 For each assay, target cells were treated with IFN-γ (10ng/mL, RayBiotech) and effector CTLs were
109 rested in X-VIVO-15 medium with 2.5% HS, IL-2 (10 U/mL) and IL-15 (0.2 ng/mL) for 48 hours before
110 the assay. In peptide recognition assays, target cells were pre-incubated with 10µM of peptide for 3
111 hours at 37 °C. Target cells were labeled with calcein AM (2µg/mL, eBioscience) in DMEM (Gibco)
112 without serum in T25 flasks (Greiner) for 30 minutes at 37 °C and then seeded at 1x10⁴ cells per well
113 in a U bottom 96 well plate in 3-6 replicates in phenol red free RPMI with 8% HS. Varying amounts of
114 in-vitro expanded antigen specific patient T cells were then added to the target cells to achieve
115 different effector target ratios in a final volume of 200µL per well. As positive control to measure
116 maximum calcein release, RPMI with 8% HS and 2% Triton (Sigma Aldrich) was added. As negative
117 control to measure spontaneous calcein release, RPMI with 8% HS without T cells was added.
118 W6/32, anti-HLA-ABC class I ascites (ATCC) was used in blocking experiments for 1 hour with ascites
119 containing gp100 antibody (NKI-beteb) as control. After 4 hours of incubation, 100µL of supernatant
120 was used to measure the calcein released on Cytofluor-II (PreSeptive Biosystem) or ClarioStar (BMG
121 Labtech) at Ex:Em of 485:530. Cytotoxicity was calculated as [(Test release-spontaneous release) /
122 (maximum release - spontaneous release)] x 100%. In some conditions, calculated specific lysis
123 values for target (neo)antigen loaded target cells exceeded 100%, likely due to technical variation in

124 maximum and spontaneous release controls. As cell lysis beyond 100% is biologically implausible,
125 values exceeding 100% were capped at 100% to allow accurate representation and comparison of
126 cytotoxicity across conditions. Conversely, in non-target cell lines, low calcein retention in some
127 replicates was observed, likely due to dye leakage or non-specific effects, and such values were
128 capped at 0%.

129 ***Sequencing of tumor and adenoma samples***

130 To assess the microsatellite stability status of *CASP5* and *TGFBR2*, tumor and adenoma samples were
131 sequenced. Formalin fixed paraffin embedded (FFPE) tissues of tumor or adenomas that were
132 resected from the patients before or after the vaccination were available at the Department of
133 Pathology of Radboud university medical center, Nijmegen or requested from Rijnstate hospital in
134 Arnhem, Antoni van Leeuwenhoek hospital in Amsterdam, Jeroen Bosch hospital in 's
135 Hertogenbosch and Elizabeth Tweesteden Ziekenhuis hospital in Tilburg. Four to five sections of 10
136 μ m thickness were cut on a microtome and neoplastic areas were manually isolated with
137 macrodissection. DNA was isolated using the Qiagen AllPrep DNA/RNA FFPE kit as per standard
138 manufacturer's protocol and stored at -20 °C till further use. DNA isolated was quantified using the
139 Qubit fluorometer (Thermo Fisher Scientific) and up to 25ng when available was used in a PCR
140 reaction for amplification of the *CASP5* and *TGFBR2* genes with 0.3 μ M primer concentration. For
141 *CASP5* amplification, forward primer 5' CAGAGTTATGTCTTAGGTGAAGG 3' and reverse primer 5'
142 CTTCCTTCAATGTCAGAACATCGTG 3' was used in a PCR reaction using the TaKaRa PrimeStar GXL kit
143 (TaKaRa Bio) with amplification of 42 cycles with 10s at 98 °C, 15s at 57 °C and 30s at 68 °C. For
144 *TGFBR2* amplification, M13 tagged forward primer 5'
145 GTAAAACGACGGCCAGTCCCCAAGCTCCCTACCATG 3' and reverse primer 5'
146 GGCACAGATCTCAGGTCCA 3' was used in a PCR reaction using the TaKaRa Ex Premier DNA
147 Polymerase kit (TaKaRa Bio) with amplification of 39 cycles with 10s at 98 °C, 15s at 63 °C and 60s at
148 68 °C. The PCR products were cleaned using the exoSAP-IT PCR product cleanup reagent or the exo
149 CIP- A and B PCR product cleanup reagent (both Applied Biosystems) as per manufacturer's protocol
150 and sanger sequenced either in house or by Macrogen. For *CASP5* the original PCR primers were
151 used for sequencing. For *TGFBR2*, M13(-20) primer 5' GTAAAACGACGGCCAGT 3' and the original PCR
152 reverse primer were used for sequencing.

153 ***Statistical analysis***

154 Descriptive statistics of immunological response in the treatment group was conducted in Rstudio
155 (v4.2.1, RRID: SCR_000432) or GraphPad Prism(v8.0.2, GraphPad Software, Boston, Massachusetts
156 USA). Release of cytokines IFN- γ , IL-2 and IL-5 in response to target (neo)antigen was termed
157 positive if the release of the respective cytokine was at least 5 standard deviations larger than the
158 mean release in response to the irrelevant control peptide. Unpaired t-tests were conducted to
159 assess specific lysis in cytotoxicity assays. Correction for multiple t-tests was applied using the
160 Bonferroni-Dunn method on t-tests conducted per effector-target ratio in cytotoxicity assays. Linear
161 regression model was used to predict the possibility of developing at least one lesion with *TGFBR2*
162 mutation in the presence of mutant TGF- β RII specific T cells (logistic regression is not possible since
163 probability of having a lesion with *TGFBR2* mutation in the presence of mutant TGF- β RII specific T
164 cells is zero in this cohort). Log rank test was done to evaluate the statistical significance in disease
165 free survival Kaplan Meier curves. Statistical significance was defined as $p \leq 0.05$.

166 **References**

- 167 1. Lesterhuis, W. J. *et al.* Vaccination of colorectal cancer patients with CEA-loaded dendritic
168 cells: antigen-specific T cell responses in DTH skin tests. *Ann. Oncol.* **17**, 974–980 (2006).
- 169 2. de Vries, I. J. M. *et al.* Maturation of dendritic cells is a prerequisite for inducing immune
170 responses in advanced melanoma patients. *Clin. cancer Res. an Off. J. Am. Assoc. Cancer
171 Res.* **9**, 5091–5100 (2003).
- 172 3. Aarntzen, E. H. J. G. *et al.* Skin-Test Infiltrating Lymphocytes Early Predict Clinical Outcome of
173 Dendritic Cell-Based Vaccination in Metastatic Melanoma. *Cancer Res.* **72**, 6102–6110 (2012).
- 174 4. Ali, M. *et al.* Induction of neoantigen-reactive T cells from healthy donors. *Nat. Protoc.* **14**,
175 1926–1943 (2019).

176

177 **Supplementary Table 1:** Antibodies used in characterization of dendritic cell phenotype

Marker - Conjugate	Antibody clone	Company	Dilution used
CD14 - APC	REA599	Miltenyi Biotech	1:400
HLA ABC - APC	REA230	Miltenyi Biotech	1:80
HLA DR DQ DP - APC	REA332	Miltenyi Biotech	1:80
CD80 - APC	2D10	Miltenyi Biotech	1:80
CD83 - APC	HB15	Miltenyi Biotech	1:160
CD86 - APC	FM95	Miltenyi Biotech	1:160
CCR7 - APC	REA108	Miltenyi Biotech	1:80

178

179 **Supplementary Table 2:** Staining method and antibodies used in monitoring antigen expression in
180 target cell lines used in cytotoxicity assays

	<u>Flow Cytometry</u>		<u>RT-qPCR</u>	
	Method	Antibody	Forward primer(5'-3')	Reverse primer(5'-3')
BLM wild type TGF- β RII	Cell surface staining	Primary- Anti TGF- β RII antibody(1:50, ab78419 Abcam)	CAACATCAACCACAACACAG AG	CCGTCTTCCGCTCCTCAG
BLM mutant TGF- β RII	Intracellular staining with Foxp3/trans cription Factor staining	Primary- Anti- DYKDDDD K (1:500, Genscript)	CAACATCAACCACAACACAG AG	CTTATCGTCGTACCTTGTA TCG

	buffer kit (eBioscienc e)			
BLM wild type caspase- 5	Intracellular staining with Cytofix/cyto perm kit(BD)	Primary- Anti- DYKDDDD K (1:500, Genscript)	ACGGATCAAAAGTCGACCA GT	ACCATGAAGAACATCTTGCC CAG
BLM mutant caspase- 5	Intracellular staining with Cytofix/cyto perm kit(BD)	Primary- Anti- DYKDDDD K (1:500, Genscript)	ACGGATCAAAAGTCGACCA GT	CTTATCGTCGTACCTTGAA TCG
BLM CEA	Cell surface staining	Primary- CEACAM5 clone Col- 1(1:50 ,abcam)	GACGCAAGAGCCTATGTAT G	GGCATAGGTCCCGTTATTA