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[bookmark: _Toc75979506]Non-Abelian topological charges in four-band models
The calculation1 of non-Abelian topological charges requires lifting the Berry connection one-form from the Lie algebra  to , i.e.,
				(S1)
where the corresponding coefficients  are kept as,
		(S2)
[bookmark: OLE_LINK62][bookmark: OLE_LINK63][bookmark: OLE_LINK328][bookmark: OLE_LINK329]We set the basis of the Lie algebra  as , the explicit forms are,
	(S3)
We use the following  matrices,
			       			(S4)
They are obtained from,
		(S5)
where  are Pauli matrices and  is the  identity matrix. They satisfy the anticommutation relations .

The basis of Clifford algebra  that generates the group  is obtained by,
				(S6)
for . Their explicit forms are,
[bookmark: OLE_LINK118][bookmark: OLE_LINK119]					
				
				     (S7)
[bookmark: OLE_LINK75][bookmark: OLE_LINK76]with  and  (or we combine them two together as ).

From the basis , we have,

		(S8)
where,
		
	      (S9)
We rename each  group element as (to be more convenient in physics analysis; also see Table 1 in the main text),
	(S10)
Finally, we have the multiplication tables as shown in Tables S1 and S2.
[bookmark: OLE_LINK330][bookmark: OLE_LINK331]







Table S1. Multiplication table of  group labelled with Clifford algebra basis.
[image: ]

Table S2. Multiplication table of  group labelled with band-index.
[image: ]

[bookmark: OLE_LINK287][bookmark: OLE_LINK288][bookmark: _Toc75979507]Rotations in four-dimension
[bookmark: OLE_LINK157][bookmark: OLE_LINK158][bookmark: OLE_LINK109][bookmark: OLE_LINK110][bookmark: OLE_LINK113][bookmark: OLE_LINK114][bookmark: OLE_LINK229][bookmark: OLE_LINK230][bookmark: OLE_LINK123][bookmark: OLE_LINK124][bookmark: OLE_LINK125][bookmark: OLE_LINK126][bookmark: OLE_LINK127][bookmark: OLE_LINK128][bookmark: OLE_LINK111][bookmark: OLE_LINK112][bookmark: OLE_LINK115][bookmark: OLE_LINK281][bookmark: OLE_LINK282]We briefly recall some facts about rotations in the four-dimension2-4. For each rotation , there is at least one pair of orthogonal 2-planes (the 2-planes are also dubbed as invariant planes) -  and  which are invariant under the rotation  and span the four-dimensional space, i.e. for any  and  we have ,  and . We define the angle between  and  ( and ) in the 2-plane  () as  (). As thus, four-dimensional rotations can be categorized into two types: simple rotations ( and  or  and ) and double rotations ( and ). When the two rotation angles satisfy , the rotation  is called isoclinic rotation, where there are infinitely many pairs of orthogonal 2-planes. Assuming that the coordinate set is ordered as  with  indicating the origin, we consider two 2-planes  and  and set the rotation angle  () positive from  to  ( to ). Then isoclinic rotations with  are denoted as left-isoclinic; those with  as right-isoclinic. Note that the two cases with  are the only ones that are simultaneously left- and right-isoclinic. When the Bloch wave-vector runs across the 1D first Brillouin zone (), the rotation matrix  at each  for each charge can be classified to be single or double rotations. The charges  have to be realized via double rotations. In some ideal cases,  consists of purely left/right-isoclinic rotations, where there are infinitely many pairs of orthogonal 2-planes. All the other charges can be ideally described by simple rotations.

[bookmark: OLE_LINK151][bookmark: OLE_LINK152][bookmark: OLE_LINK120][bookmark: OLE_LINK121][bookmark: OLE_LINK141][bookmark: OLE_LINK142][bookmark: OLE_LINK143][bookmark: OLE_LINK144][bookmark: OLE_LINK145][bookmark: OLE_LINK146][bookmark: OLE_LINK147][bookmark: OLE_LINK148]It is well known that rotations can be encoded by quaternion () multiplication (discovered by Hamilton in 1843 and frequently used in engineering applications). For example, in three-dimension the rotation  can be calculated with , where  being the unit quaternion and  can be identified with the pure quaternion (no real part), i.e. , respectively. Actually the calculation is made by a surjective homomorphism, , whose kernel is  indicting  is a double cover of . In four-dimension, we have similar forms like  where  and  are identified with , respectively. Likewise, a surjective homomorphism  with kernel being  also enables a double-cover. All above properties can be summarized as  is a double cover of , and there are group isomorphisms  and .

[bookmark: OLE_LINK531][bookmark: OLE_LINK532]Left/right isoclinic rotations are represented by left/right multiplication of unit quaternions. Thus, any rotation in four-dimension can be factorized into the commutative composition of two isoclinic rotations, i.e. . We denote  with  and . Then,
			(S11)
This is a left quaternion multiplication of  by . For a right quaternion multiplication, i.e. . Assuming , we have,
			(S12)
It is easy to see  where quaternion multiplication is associative. Thus, the two isoclinic rotations are commutative.

[bookmark: OLE_LINK285][bookmark: OLE_LINK286][bookmark: _Toc75979508]Tight-binding model
[bookmark: OLE_LINK28][bookmark: OLE_LINK29]The real-space Hamiltonian reads,
	(S13)
[bookmark: OLE_LINK51][bookmark: OLE_LINK52]where  and  are creation and annihilation operators on the sub-lattice ‘/’ and site ‘’, respectively. Here, we consider a more general case having both the NN (nearest neighbour) and NNN (next-nearest neighbour) hoppings. After Fourier transformation we obtain,

		   (S14)
where we have set,
				(S15)

Table S3. Tight-binding coefficients of the ideal flat band models for different non-Abelian topological charges (charge  needs next nearing neighbour hoppings).
[image: ]






Table S4. Tight-binding coefficients of the ideal flat band models for different factorizations of charges .
[image: ]

Table S5. Integer-valued tight-binding coefficients of the general simulation and experiment models for transmission line networks.
[image: ]

[bookmark: _Toc75979509]Analytical solutions of edge states for the flat-band models
[bookmark: OLE_LINK173][bookmark: OLE_LINK174]Here we present an analytic method to find the exact solutions of edge states for the flat-band models. We consider the following five types: (i) Edge states of the charges ; (ii) Edge states of the charges ; (iii) Evolution of edge states of the charges  between different factorizations; (iv) Edge states of the charge  represented by ; (v) Evolution of edge states of the charge .

[bookmark: _Toc75979510](i) Edge states of the charges qmn
The 1D Hamiltonian corresponding to the above charges can be constructed as , where the rotation matrix  with  and It should be noted that the choice of  is different from the choice of  with  (used in the main text). The eigen energy of edge states is independent of the choice. In order to find the edge states of the system, we rewrite  in the form of,
				(S16)
Take the charge  as an example. We have,
				(S17)
and,
				   (S18)

In terms of the tight-binding model, the diagonal elements of  describe the site energies and   and  describe the nearest-neighbour hoppings between two sites. Since all bulk modes are strongly localized in real space due to the fact that all bands are flat, it is natural to assume that the edge modes of the system are also strongly localized at the boundaries. For a system of  sites, we use the following ansatz for the edge state wave functions:  and , for the left and right edge states, respectively. To study the edge state at the left end, we let N goes to infinity. Since the wave function vanishes for all sites except , the only non-trivial equations of motion at sites  and 2 we need to consider are , respectively. It is easy to see that the matrix  is defective and there exists only one solution for the edge state:  and . Similarly, for the edge state at the right boundary, we find from the equations of motion at sites  and , i.e.,  and , the solution  and . Thus two edge states are degenerate and have their wave functions in complex conjugate pairs. This is the result of PT symmetry. In the following, we will only consider the left edge state. The method can be equally applied to all other  charges in this subsection. For charge , we only need to replace  by  in . Since the solutions found here satisfy the equations of motion for all sites, they are exact solutions. Here we do not concern with the normalization of the wave function.

[bookmark: _Toc75979511](ii) Edge states of the charges q1234
This charge  can be factorized into three different configurations, i.e.,   and  The corresponding rotation matrices are   and , respectively, from which we can obtain  for each configuration. By expressing  in terms of  and  and solving the equations of motion at the sites  and 2, i.e.,  and , we find two edge states for each configuration, i.e.,  with  and  with  for the case of ;  with  and  with  for the case of ;  with  and  with  for the case of

[bookmark: _Toc75979512](iii) Evolution of edge states of the charges q1234 between different factorizations
Here we first consider the trajectory of edge states when the system is continuously transformed from one configuration to another one. There are three possible cases: (a) From to ; (b) From  to ; (c) From .

For case (c), we consider two commuting hybrid generators  and , where the parameter  describing the transition from From the corresponding rotation matrix , we obtain the Hamiltonian  and the decomposed components:
	(S19)
		(S20)
[bookmark: OLE_LINK179][bookmark: OLE_LINK180]The matrix  is partially defective and has two eigenvectors, which can be chosen as  and . We write the edge state wave functions as  and solve the equation for E and . We find the two edge states at energies  This result is shown in Fig. 3f. The corresponding wave functions are . The edge state energies can also be obtained directly from the eigenvalues of  without knowing the edge state wave functions. Similarly, we apply the same procedure to cases (a) and (b) and find the following trajectories of the edge state energies:  for case (a) and  for case (b). These results are plotted in Figs. 3d and 3e, respectively.

[bookmark: _Toc75979513](iv) Edge states of the charge -1 represented by qmn2
For the above cases, the rotation matrix becomes . We can simply replace  in (k) by  and rewrite it in the form of . In the real space, such replacement represents a next-nearest neighbor hopping. For a finite chain with even number of sites, the tight-binding Hamiltonian becomes two disconnected sublattices, one with indices  and the other with . For the case of , the matrices  and  are identical to those shown in Eqs. (S17) and (S18), respectively. From which we find one edge state at the left boundary per sublattice, i.e.,  and  with the same eigen energy at .

[bookmark: _Toc75979514](v) Evolution of edge states of the charge -1
Here we consider the following three cases: (a) Transition from  to ; (b) Edge state evolution involving the mixing of ,  and  with rotation of eigenvectors in three bands; (c) Edge state evolution involving the mixing of ,  and  with rotation of eigenvectors in four bands.

(a) Transition from  to 
As an example, we consider a continuous transition from  to  We choose a hybrid generator  with  We obtain the Hamiltonian through and rewrite it in the form of,
     (S21)
where,
 (S22)
			(S23)
		(S24)
[bookmark: OLE_LINK176][bookmark: OLE_LINK177]At  or   and the system reduces to two disconnected sublattices and describes the hopping elements within each sublattice. For a general value of ,  couples two sublattices and it is natural to assume that an edge state occupies two sites at boundary, one from each sublattice. Thus, we use the edge state ansatz with the form of , where and . Both the wave function and the edge state energy  are to be determined through solving the equations of motion. Since the wave function vanishes for sites with , we only need to consider the equations of motion of the four boundary sites, i.e.,
			(S25)
			(S26)
				(S27)
						(S28)
Both the matrices  and  are defective.  has two independent eigen vectors, which can be chosen as  and . However, the matrix  has only one coalesced eigenvector in the form of . With these eigen vectors of  and , a simple edge state can be obtained immediately by choosing  and , which satisfies Eqs. S25-28. Eigenvalue of such an edge state is determined from Eq. (S25). From the equation , we obtain the first solution of the edge state,
					 (S29)
with,
				(S30)
The other edge state solutions can be obtained by choosing  and  so that Eqs. (S27) and (S28) are satisfied automatically. The unknown function  and the eigenvalue E are to be determined by solving Eqs. (S25) and (S26), from which we find two more edge states:
 				(S31)
with,
 		(S32)
where . Eqs. (S29) and (S31) are plotted in the Panel “From  to ” of Fig. S10c with .

(b) Edge state evolution involving the mixing of ,  and  with rotation of eigenvectors in three bands
Now we consider a more general case where the edge states form surfaces in a 2D parameter space. As an example, we consider a hybrid generator of the form:
			(S33)
where the parameters  From the rotation matrix , we obtain the Hamiltonian  and the decomposed components of ,  and . By solving Eqs. (S25-S28) we can obtain both the edge state energies and wave functions. However, the edge state energies can also be obtained from the roots of the determinant in Eqs. (S25) and (S26), i.e., det. From which, we find four pairs of degenerate eigen energies. Apart from the trivial one at , the other three are edge state energies of the left and right edge states with the forms of,
		(S34)
(S35)
Eqs. (S34) and (S35) are plotted in the Fig. S11a, which shows three surfaces of edge states involving three bands only. Since these edge states do not involve the fourth band, Fig. S11a also describes the edge state evolution of the charge  in the 3-band model5 involving the mixtures of factorizations , and .
It should be noted that Fig. S11a shows the edge state surfaces inside the triangle formed by ,  and  shown in Figs. S10a and b. At , Eqs. (S34) and (S35) reduce to Eqs. (S29) and (S31), describing the edge state evolution from  to . At , the parameter  describes the evolution from  to  as can be seen from Eq. (S33). The above results reduce to,
					(S36)
			(S37)
Eqs. (S36) and (S37) are plotted in the Panel “From  to ” of Fig. S10c with .

At , the parameter  describes the evolution from  to  as can be seen from Eq. (S33). Eqs. (S34) and (S35) reduce to,
					(S38)
			(S39)
Eqs. (S38) and (S39) are plotted in the Panel “From  to ” of Fig. S10c with . It should be noted the same analytic method can be applied to all edges of the regular octahedron as shown in Figs. S10a and b. It can also be used to obtain the 3D maps of edge state surfaces resulting from the mixing of ,  and  for any three bands ,  and .

(c) Edge state evolution involving the mixing of ,  and  with rotation of eigenvectors in four bands
Finally, we consider a hybrid generator of the form,
			(S40)
where. Different from case (b), Eq. (S40) now produces the edge state surfaces inside the triangle formed by ,  and  highlighted in the Figs. S10a and b, in which all four bands are involved. By using the same procedure of case (b), we obtain the four edge state surfaces as shown in Fig. S11b, which fits well with the numerical results shown in Fig. S10d. One of the four surfaces has the form of,
		(S41)
The other three ones are complex as the roots of a cubic equation.

Thus, the method can be used to obtain the edge states inside every face triangle of the regular octahedron as shown in the Figs. S10a and b. The number of edge state surfaces depends on the number of bands involved.

[bookmark: _Toc75979515]Experimental methods
There are four meta-atoms A, B, C and D in one unit-cell. The hoppings between two meta-atoms are realized by connecting 2-m-long coaxial cables (model: RG58C/U). To achieve the complex hoppings, we create a hidden dimension by placing four nodes in each meta-atom so that four subspaces are allowed. Due to periodic connections in this hidden dimension, the four subspaces correspond to four pseudo angular momenta that are , with . Through the specific excitation from a 4-channel signal generator (Keysight M3201A), we carried out our experiments in the  subspace. The amplitude and phase of voltage of each meta-atom are probed by an oscilloscope (Keysight DSOX2002A). After subsequent Fourier transformation, we obtain the energy bands and eigenstates in the momentum space. Figure S13 shows the specific transmission line network corresponding to charges .

[bookmark: _Toc75979516]Reference:
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[bookmark: _Toc75979517]Supplementary Figures

[image: ]
Figure S1. Trajectories of eigenstates of charges  orthographically projected onto four solid spheres in . The colours (red, cyan, magenta, blue) correspond to the (first, second, third, fourth) bands. The direction of line-width decreasing indicates .

[image: ]
Figure S2. Trajectories of eigenstates of charges  orthographically projected onto four solid spheres in . We factorize the charge  into three configurations: ,  and . The colours (red, cyan, magenta, blue) correspond to the (first, second, third, fourth) bands. The direction of line-width decreasing indicates .

[image: ]
Figure S3. Trajectories of eigenstates of charge  orthographically projected onto four solid spheres in . We continuously rotate the charge  from the configuration  to , where the parameter  is defined as, . The Hamiltonian can be written as  with . The colours (red, cyan, magenta, blue) correspond to the (first, second, third, fourth) bands. The direction of line-width decreasing indicates .

[image: ]
Figure S4. Trajectories of eigenstates of charge  orthographically projected onto four solid spheres in . We continuously rotate the charge  from the configuration  to , where the parameter  is defined as, . The Hamiltonian can be written as  with . The colours (red, cyan, magenta, blue) correspond to the (first, second, third, fourth) bands. The direction of line-width decreasing indicates .

[image: ]
Figure S5. Stereographically projected Clifford tori in , i.e. . The index  indicates the eigenstates rotate  and  on the  and  planes, respectively. a, The three cases corresponding to charge , they can be continuously transformed into each other. b, The opposite rotation senses corresponding to charge .

[image: ]
Figure S6. Edge state distributions at the hard boundaries of a finite lattice for charges  of flat band models.

[image: ]
[bookmark: OLE_LINK139][bookmark: OLE_LINK140]Figure S7. Evolution of edge state distributions for charge  from the factorization of  to , parametrized by  with unit of degrees. Lines/dots indicate numerical/analytical results.

[image: ]
Figure S8. Evolution of edge state distributions for charge  from the factorization of  to , parametrized by  with unit of degrees. Lines/dots indicate numerical/analytical results.

[image: ]
Figure S9. Evolution of edge state distributions for charge  from the factorization of  to , parametrized by  with unit of degrees. Lines/dots indicate numerical/analytical results.

[image: ]
[bookmark: OLE_LINK382][bookmark: OLE_LINK383][bookmark: OLE_LINK164][bookmark: OLE_LINK165][bookmark: OLE_LINK170][bookmark: OLE_LINK166][bookmark: OLE_LINK167][bookmark: OLE_LINK168][bookmark: OLE_LINK169]Figure S10. Evolution of edge state distributions for charge . a, All possible factorizations of charge  illustrated on a regular octahedron. b, Orthogonal projection centred by face. There are 12 possible transitions, the direct transition (dashed lines) between one pair of diagonal points is not allowed as they are located on two orthogonal planes, i.e. . c, Evolution of edge state distributions along 12 edges of the regular octahedron. d, Evolution of edge state distributions on one face (with vertices ) of the regular octahedron. Lines/dots indicate numerical/analytical results.
[image: ]
Figure S11. Analytical edge state surfaces. a, Edge state surfaces on the triangle face of  involving three bands. b, Edge state surfaces on the triangle face of  involving four bands.

[image: ]
[bookmark: OLE_LINK384][bookmark: OLE_LINK385][bookmark: OLE_LINK149][bookmark: OLE_LINK150]Figure S12. The evolution of radial cuts  of the extended two-dimensional bands between different factorizations of charge . The point degeneracies at  can be topologically related to the edge states of the 1D systems shown in Fig. S10. The other degeneracies () are accidental without topological meaning.
[image: ]
Figure S13. Transmission line network constructed for charges , where around 880 coaxial cables are used.

[image: ]Figure S14. Distribution of hard boundary edge states for charges (a) and (b). Detailed parameters are listed in Table S5.

[image: ]
[bookmark: OLE_LINK153][bookmark: OLE_LINK154][bookmark: OLE_LINK155][bookmark: OLE_LINK156][bookmark: OLE_LINK159][bookmark: OLE_LINK160][bookmark: OLE_LINK161]Figure S15. Construction of domain-wall (blue spheres in panel a) and distribution of domain-wall states (DWS) indicated by the black ellipse in panel (d). Panels (a) and (c) are copied from the main text (Fig. 4) for comparison purpose. b, Bulk states of , they are overlapped. Detailed parameters are listed in Table S5 (see the column of ). For charge , we set . We say that one domain-wall state locating in the second bandgap and another one with energy beyond the bulk spectrum are induced by the domain-wall construction, and thus topologically trivial.

[image: ]
Figure S16. The case of . a, Bulk states. b, Trajectories of four eigenstates as wavevector runs across the first Brillouin zone (). c, The extended energy bands on a 2D plane, where the white circles indicate the corresponding 1D energy bands. d, Distribution of hard boundary edge states. The first, second, third and fourth bands are coloured as red, cyan, magenta and blue, respectively. There is one linear Dirac cone between the first/third and second/fourth bands, and two linear Dirac cones between the second and third bands. Each linear Dirac cone implies one corresponding edge state per edge.
[image: ]
[bookmark: OLE_LINK471][bookmark: OLE_LINK472]Figure S17. The case of . a, Bulk states. b, Trajectories of four eigenstates as wavevector runs across the first Brillouin zone (). c, The extended energy bands on a 2D plane, where the white circles indicate the corresponding 1D energy bands. d, Distribution of hard boundary edge states. The first, second, third and fourth bands are coloured as red, cyan, magenta and blue, respectively. There is one four-fold linear Dirac cone between the four bands, which implies two edge states per edge.
[image: ]
[bookmark: OLE_LINK162][bookmark: OLE_LINK163]Figure S18. The case of charge . a, Bulk states. b, Trajectories of four eigenstates as wavevector runs across the first Brillouin zone (). c, The extended energy bands on a 2D plane, where the white circles indicate the corresponding 1D energy bands. d, Distribution of hard boundary edge states. The first, second, third and fourth bands are coloured as red, cyan, magenta and blue, respectively. There is one triple linear degeneracy constructed by the lower three bands, which implies that for the first and second bandgaps each supports one edge state per edge, being similar to some cases of charge  in three-band models5.


48

image3.png
v,
BB
cc
DD

AB
AC
AD
BC
BD
co

912347912934
32
312
712
712

912347912934
1/4

-1/4

1/4

-1/4

9123491294
1/4

0

0

0

0

1/4

12347912934
312
312
712
712

12347912934
1/4

14

1/4

-1/4

Q123491294
14

0

0

0

0

1/4

syx coefficient

G1234=913%4
2

3
2
3

Vyx coefficient
G1234™913%4
12
12
-12
-12

Wy coefficient
91234 913%4
0

-12

0

0

12

91234~ 913%24

w N oW N

912347913924
12

12

-12

-12

91234~ 913%4
0

12

0

0

12

91234791493
52
52
52
52

912347914923
3/4

1/4

114

-3/4

912347%14%23
0

0

3/4

1/4

12347914923
52
52
52
52

12347914023
3/4

1/4

Em

-3/4

Q123491493
0

0

-3/4

1/4




image4.png
BB
cC
DD

v,
BB
cc
DD

AB
AC
AD
BC
BD
cp

“A1a

“A1a

2

~ o 20 o~

syx coefficient

912347 (A 12%34)
-4
-4
4
4
Vyx coefficient

“A1234=(A12934)

Wy coefficient

U1234™(q12934)

~ o 2o o~

q

1234=(013924)

-2
-2

0
0

q
1

1234913924

-1

1

-1

q
1
0
0
1
0
1

1234=(913924)

123470 14%23)
0

0
0
0

“A1234=(A14923)
1

-2

2

-1

“A12347(91493)
1
0
0
1
0

-1




image5.png




image6.emf









image7.png
0 0 0 0

Q234101 D234l B1234l01 1

G123410),=

22.5 22.5 22.5 225

G123l 1™

45 45 45 45

D234l ™

67.5 67.5 67.5 67.5

D104l ™ D204l 1=

0 0 90

1204l =9





image8.png
110, 0 M5, 1570 M5, 4570 M5, 4570

125137

0, 157225 A0, 57225 A0, 57225 -0, 57225

El 67.5

125137





image9.png
Grzse

a
x/(1-u) @ x/(1-u) x/(1-u) @
y/(1-u) z/(1-u) y/(1-u) z/(1-u) Z/(1-u)
1 (-13) =31
b Grass
x/(1-u) x/(1-u) x/(1-u)
y/(1-u) z/(1-u) y/(1-u) z/(1-u) yi(1-u) z/(1-u)
(-11) (13) (31




image10.png
o x
O
T

| I

| .

H,

| o
fiil i fiit





image11.png
I
Ll

i |
I L

|||||||||||||

b
§mwm Wil
M |

b
ié”mmag ,
I |

|

%éiﬂﬁfm

il

llllllllllll

lllllllllllll

L B T
L i
4«\%% M lw\mfms\i j |
I | | I T.T.ﬁ.??.?ﬁﬁfiu U |





image12.png
||||||
.........

| Wf;'usaa i w |

W

é"fﬁﬂ b EfFf | |
". T Y m }
||||.'!||-'||.!.||'||1 —
i, s N N

L e A

e o |
L]
%%ﬁﬂgﬁ

IIIIII




image13.png
D134l ,1=0

||||||||||||||

|||||||||||||

2341011~

I
I

i
Ml

|||||

m'rq'!ri#iiif‘ m.rlslﬁifi#éf ] JW*???‘??“W
;gsmtmntnum | ggjbll\lili!tmlllm 1 j%“ﬁ!”ttl?%::kjm
fg%flili:lfinumlf ’émﬁléifif!iiﬂml s
i
e
i%ﬁw:g smzﬁw | §WJ?WJ %:mﬁw | I,
SO WM WA




image14.png
Face

Projgction

From qu to qfa

From qfa to qu

From qu to qg‘,

4
3
’ __/
1
0 4 w2 0 4 w2 0 w4 2
01213 013, 14 014 34
From q§4 to q§4 From qu to q§3 From q§3 to q%z
4
3 _{
2 )—
1
0 4 w2 0 4 w2 0 4 2
034, 24 0245 23 023 12
From o2, to a2, From o2, to a2, From a2, to a2,
4
3
2
1
0 74 w2 0 7l4 w2 0 7l4 /2
012, 14 014 24 024 12
From q%a to q; From q§4 to q%a From q§3 to qig
4
3
, \
1
0 4 w2 0 4 w2 0 4 2
013534 034,23 023513




image15.png
NI,
NI,
Ny

S
n I




image16.png
From o2, to g%, From g2, to o7, From o2, to g%,

1213 1314 14534

From q;l to qga From q§3 to qu

034, 24 0223 025 12
From qf“ to q§4 From q; to ‘ﬁz
4
3
w2
1 o 75 90
-1 30 45
04>, 15
ke
012, 14 014, 24 924 12
From g3, to a2, From a2, to a7,

13534 34523

23513




image17.jpeg
AN«





image18.png
L T s S R i





image19.png
° *+A125)
L]

e
it

il Hil'.'. -
. ¥

i





image20.png
vvvvv “i‘ E‘
ii‘ln h'.‘l'i
.

[T

MIA

Index of Eigenstates

10




image21.png
Index of Eigenstates

SN

TIT
%’-fsi.s

-10 0 10




image22.png
Index of Eigenstates

s i"Hi

1”15

I|.l;l

i |

-10 0 10




image1.png
Q¢ multiplication table

1 %2 N3 914 %3 Y4 93¢ %i2aa|-1 G123 Gis G23 Gp G934 G123

#1 |+ Gz 93 G4 %3 924 93¢ 91234 |-1 G2 G4z Qg G239z 934 G123
G2 |92 -1 923 9 G143 G14 91234 Y34 [Gy2 +1 U3 G4 913 G1s i34 934

913 |93 923 -1 934 G2 G1234 Y44 %24 G4z 923 1 Gz Grp Gpza4 Y1 G

G1s |914 G4 G4 -1 Q1234 912 Y13 923 |44 924 93¢ +1 Oz 912 G139z

925 |93 %13 912 Gepss -1 Y3s G4 G4 G253 943 Gz Gr2aat1 Gas G2 Yig

924 |94  %1a 912347012 G341 93 G4z |G G14 Grp34 Y2 Gz #1 O3 Gy

93 |94 %1234 1a Uiz G4 G2z -1 Gz U3 Gip34Uis Y43 G4 93 41 dpp

91234 |91234 934 924 U3 “G1a U3 G2 1 [G1234 934 U24 Y3 914 Y43 912 1

| 912 913 G944 93 Y24 93 Graagt1 92 G13 914 923 924 Gaq Yioa4
iz |12 *1 G5 Y24 Yz Yia Yiz3a 934 (912 1 93 Y24 Y4z Gis Yroas G
i3 |3 923 +1 O34 G12 Qi34 914 U4 (T3 G2z -1 934 912 Gizsq Gis Y24
“Aig |4 920 930 1 Qg3 912 Gq3 93 (G1a G Gza -1 Gi23 912 G4z G
23 |23 913 912 U2z *1 Gz 92 G4q (923 13 U1z Qyze -1 93y U2q Gy
924 |24 G914 91234 Y12 Y34 #1193 U3 (924 914 Q234 912 G4 1 3 Y43
34 |34 G124 914 Y43 G2a Y23t Gyp Q34 G123 G4 G13 G2 Uz -1 Gp
1234 Y1234 934 924 923 Y44 G13 912 -1 (G234 934 G4 G2z Gr4 Gy3 Uiz +1

Q, 4 multiplication table

16

1 & % % ©3 Cr3 |1 ®1 % €3 ©1p C3 3
R €23 123 |1 €1 €2 €3 €y ©y3 €3 i3
N C123 C3 [®1 1 By B3 € €5 €y Oy
€ %2 ©n3 ®3 Gz Sz *1 3 8 Sz &3 By
© % €1 & ey C13 ®23 +1 €13 € € €
€12 |®12 €3 ®13 €3 |y e C123 *1 €3 ©3 ©3
Ci3 |®13 ®3 B3 &1 €3 -1 €y € g3 €5 Cyp3 & € #1 €pp &
€23 |®2 ©2 C3 Ci2 1 By [y By €3 & €3 € 41 &
C123 |®123 C12 ®3 G ® 1 [®ix3 S Cq3 G2 G € A
R 12 C13 C3 Cpp |t & € € &y €23 Ci23
I €2 ©3 i3 G |&
© | ©s ®1 G %3 g3 |
3 | 1 C ©y & &qp |8
T2 |®12 B2 & iz +1 €y S5 S5 (8
C13 [®13 3 C13 & €3 1 Bp € 8y
23 |®23 C3 C3 € €3 C&p H1 &y €y
i3 |®123 B3 13 G2 3 € & 1 [8p





image2.png
AB
AC
AD
BC
BD
cD

912
3
312

912
1/4
114

912
1/4

o o o o

12
32
312

w

iz
1/4
/4

12
-1/4

©o o o o

FNINIINNN

914
52

512

14
3/4

314

syx coefficient
14 G923 G23 Y24
52 1 1
2 52 52
3 52 512
52 4 4

[RAPRIFRAN

Vyx coefficient

14 G923 G23 Y24
34 0 0 0
0 1/4 1/4 12
0 -4 -1/4 0
-314 0 0 -112

Wyy coefficient
“G1g 923 93 Y4
0 0 0 0
0 0 0 0
-3/4 0 0 0
0 14 -14 0
0 0 0 12
0 0 0 0

34

712
712

G4

1/4
-1l4

34

© oo oo

114

91234

312
3/2
712
712

1234

1/4

114

1/4

114

1/4

Aizza +1 -1
32 1
312 2
72 3
72 4
Aizza 1 -1
14 0
-1/4 0
14 0
-14 0
Aigza +1 A1
-1/4 0
0 0
0 0
0 0
0 0
14 0




