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Abstract

Social mixing in cities emerges from encounters between individuals of different backgrounds in shared
spaces [1-3]. These opportunities for inter-group contact are not randomly distributed but shaped by urban
transport systems that channel millions of daily trajectories. As cities face rising segregation, understand-
ing and quantifying these opportunity structures has become critical for designing evidence-based policies
that foster social inclusion [4-6]. Yet existing approaches face significant limitations in capturing the prob-
abilistic nature of these opportunities within complex, multimodal cities [7]. This study addresses this gap
by developing a computational framework that treats encounters as likelihoods shaped by behavioral uncer-
tainty. Encounter probabilities among individuals are calculated within mode-specific encounter spaces—from
individual roads, city blocks to rail and bus service segments—by aggregating potential trajectories across
socioeconomic groups. Using city-scale mobility data, the outcomes reveal how infrastructure, daily rhythms,
and travel choices interweave to create spatially and temporally varying opportunity structures across multi-
modal transport systems. We then extend these findings through agent-based simulations, demonstrating how
transport policies designed to promote sustainable mobility may produce unintended social consequences.
The study underscores that effective policymaking for social inclusion must account for how transport
interventions reshape encounter opportunities in citizens’ daily mobility.

Keywords: social interaction, mobility, transport infrastructure, mobility data

Introduction

Socially cohesive cities thrive on interactions between diverse individuals, which foster mutual understanding
and shared identity [8, 9]. The foundation for these interactions, however, is the simple, yet crucial, opportunity
for people to be in the same place at the same time [6, 10, 11]. While not every instance of co-presence—
whether a shared bus ride, or a crosswalk encounter—leads to meaningful interaction, it constitutes a necessary
structural condition, what social and geographical scientists refer to as interaction potential[12] rooted in the
principles of time geography [13] that govern interaction opportunities between pairs of people. In an era of
increasing urban inequality, understanding how to create more opportunities for cross-group contact has become
a critical priority for policymakers seeking to build inclusive cities [14, 15].

In urban environments, these opportunities for interaction are not randomly distributed; they are shaped
by transportation infrastructure that channels millions of daily trajectories into predictable patterns of social
mixing [16, 17]. Every journey, whether by foot, car, bus, or train, traces a trajectory through physical and
social space, creating chances for contact with others whose paths intersect [18]. Transport systems do more
than move people efficiently; they structure who is likely to share space with whom during daily mobility.

Despite growing recognition of mobility’s role in shaping social life, current methods for mapping interac-
tion opportunities across urban transport networks remain limited. Many computational studies using mobile
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phone data [4, 5, 19, 20], transit records [21-23], and social networks [24—26] typically infer encounters from spa-
tiotemporal overlaps, assuming co-presence when two individuals’ recorded positions coincide within distance
and time thresholds. Such deterministic methods not only overestimate the interaction certainty when mobility
records happen to overlap, but more fundamentally, underestimate the interaction potential in the unobserved
intervals between recorded locations due to the sampling sparsity of real-world mobility data [27]. While other
approaches—such as space-time prisms [28-30], Bayesian location models [31, 32|, and entropy-based tie infer-
ence [33]—have been developed to address uncertainty in data and activity, they remain largely theoretical or
confined to small-scale demonstrations with restrictive assumptions. Crucially, they fail to capture the reality
of large, multimodal cities, where vertically layered transport infrastructures create mode-specific interaction
potentials that cannot be measured by simple proximity [34, 35].

Here we introduce a novel probabilistic framework that quantifies cross-group encounter opportunities across
multimodal transport systems at city scale. We conceptualize co-presence not as a binary event but as a
probabilistic opportunity—a likelihood shaped by individuals’ route choices, mode preferences, and behavioral
uncertainty inherent in human mobility. We develop two core indices: the Probabilistic Mixing Index (PMI),
which assesses the diversity of potential encounters using each transport mode (active, private, bus, railway),
and the Multimodal Uniformity Index (MUI), which measures the consistency or divergence of these mixing
opportunities across different mobility layers within the same geographic area. Applied to Beijing’s metropoli-
tan area using mobile phone data from 11 million users, our framework uncovers the hidden social opportunity
structures for cross-group contact embedded within transport systems that vary across modes, times, and urban
contexts. To translate the findings into actionable guidance, we further develop an agent-based model to explore
how targeted policies can reshape these opportunity structures to foster more inclusive urban encounters.

Results

A probabilistic framework for measuring encounter opportunities

To quantify how urban transport systems create opportunities for cross-group encounters, we develop a
probabilistic framework (Fig. 1a) using high-resolution mobile phone data from 11 million anonymous users in
Beijing, China. We infer individuals’ socioeconomic status by matching home locations to community property
values from LianJia (China’s largest real estate platform), categorizing users into four income quartiles (see
Methods). Our approach conceptualizes an ”encounter opportunity” not as a confirmed interaction, but as
the probabilistic co-presence of individuals within specific urban environments, allowing us to account for the
inherent uncertainty in mobility data and focus on the structural potential for interaction.

We define potential encounter spaces differently across transport modes: 1 km grids for diffuse modes like
active travel and driving, and station-to-station segments for contained modes like bus and rail, where individ-
uals share a vehicle or platform (Fig. 1b). Co-presence likelihood is assessed within 1-hour windows, balancing
temporal resolution with computational feasibility (see Supplementary Note 2.3 for sensitivity analysis of spa-
tiotemporal scales). By aggregating encounter probabilities across income groups, we compute the Probabilistic
Mixing Index (PMI; ), a mode-specific measure that quantifies the diversity of potential encounters within
a given spatial unit s for mode m (a higher PMI, approaching 1, signifies greater potential for cross-group
encounters). To assess how these mixing opportunities vary across different transport layers in the same area,
we introduce the Multimodal Uniformity Index (MUI,4), which measures the consistency of PMI values across
all transport modes within the same geographic context (e.g., a specific region A) (see Methods).

Divergent opportunity structures across mobility layers

Urban transport systems generate distinct patterns of mixing opportunities across Beijing’s metropolitan
area (Fig. 1c). Active mobility shows the most localized mixing patterns (PM [,ctive = 0.4881), with concentrated
opportunities in mixed-use districts (e.g., business centers where diverse workers converge) but limited cross-
group contact in homogeneous residential neighborhoods. Private vehicle travel shows intermediate mixing
potential (PMIpyivate = 0.7102) along arterial roads where diverse traffic streams converge. Public transport
reveals striking contrasts: railways create the most extensive opportunities (PM I aiiway = 0.9050) by connecting
disparate neighborhoods, except in suburbs, while buses sustain limited mixing (PMI,s = 0.7257) due to
localized routes serving similar demographics.

Encounter opportunities generally diminish peripherally (declining PMI; Fig. le), yet railway-scarce suburbs
show unexpected mixing where shared bus dependency unites residents lacking alternatives. The MUI distri-
butions (Fig. 1d,f) further reveal that central areas show high uniformity (high MUI), where different modes
offer similarly high mixing opportunities, whereas peripheral zones exhibit highly divergent, mode-dependent
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Fig. 1 | Probabilistic framework quantifies encounter opportunities in multimodal transport systems.
a, Conceptual overview of the methodology. Individual trajectories from mobile phone data estimate probabilities of
co-presence between pairs of individuals traveling via different transport modes (active, private, bus, railway). b, Mode-
specific spatial units for calculating co-presence probabilities. Road-based encounter opportunities (active/private modes)
are assessed in 1 km x 1 km grids representing potential roadside proximity. Public transport (bus/railway modes)
opportunities are assessed along station-to-station segments, representing shared vehicle or platform environments. c,
Spatial maps of the Probabilistic Mixing Index (PMI) for each transport mode across Beijing metropolitan area. Distinct
patterns emerge depending on the mode, with mean citywide PMI values noted above each map. d, Spatial distribution
of Multimodal Uniformity Index (MUI), measuring consistency of PMI values across the four transport modes in the
same region (1 km x 1 km grids shown). e, Distance-dependent mixing patterns. Points show PMI averages in 5 km
concentric zones from the city center. Dashed line marks railway-deprived suburbs with elevated mixing opportunities.
f, Average MUI versus distance from the center, showing declining cross-modal uniformity toward the periphery.

opportunity structures. This highlights that transport infrastructure creates geographically varied landscapes
of potential social interaction [36].

Encounter opportunities unfolds with residents’ daily rhythms

Temporal patterns across Beijing’s downtown, peri-urban, and outskirts zones (Fig. 2a) show how routines
influence mixing opportunities. A midday window (e.g., 11:00-13:00) boosts diversity across modes, with syn-
chronized PMI and MUI peaks (Fig. 2b—e), driven by balanced, multidirectional flows (mean angular dispersion
90°, Fig. 2g-i; see Methods). This reflects diverse activities enhancing cross-group co-presence potential. In con-
trast, morning (06:00-08:00) and evening (post-18:00) commutes limit opportunities, as stratified flows converge
downtown and disperse peripherally. Buses notably enhance mixing in peripheral areas, with higher relative
PMI from downtown to outskirts (Fig. 2b-d). These findings challenge conventional assumption that extensive
public transit ensures equity [37], showing that encounter potential is dynamically shaped by the interplay of
daily schedules, transport infrastructure, and urban spatial organization.
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Fig. 2 | Daily rhythms drive multimodal mixing opportunities across urban contexts. a, Beijing metropolitan
area partitioned into three zones—downtown, peri-urban, and outskirts—based on equal population distribution. b-d,
Hourly variation in PMI shown for each transport mode within the three spatial contexts. Points indicate the average
PMI for a given mode and context during each one-hour interval. e, Temporal fluctuations in the MUI f, Schematic
defining the mobility flow directional angle 65 for spatial units (grids or transit segments), calculated relative to the city
center (0° towards, 180° away). g-i, Hourly rhythms of the context-specific average directional angle. Midday periods
exhibit more balanced, multidirectional travel (mean angular dispersion approaching 90°), correlating with enhanced
mixing opportunities. In contrast, commuting hours show strongly directional flows (towards center in morning, away in
evening) that limit cross-group co-presence.

Transport infrastructure shapes opportunities for social interaction

To unravel how transport infrastructure unevenly shapes opportunities for social interaction, we use OLS
regression models linking grid-level transport infrastructure features to mode-specific contact opportunities
(PMI) and cross-modal uniformity (MUI) (see Methods; Supplementary Note 3). Dense infrastructure gener-
ally enhances interaction potential within respective modes (Fig. 3a; Supplementary Table 2): high motorways
accessibility increase opportunities for private vehicle users (853 private > 0), tertiary roads accessibility bene-

fit active travelers (Bpiir active > 0), and subway stations boost railway encounters (Bpy > 0). However,

PMI,railwa;
mode-exclusive infrastructure creates divergent opportunity structures: motorways decrease zross—modal uni-
formity (B5fy; < 0) by enhancing private-mode encounters while excluding other users, whereas diverse road
networks promote equitable opportunities across modes (83;{;; > 0). Temporal analysis shows infrastructure’s
impact varies with daily rhythms (Fig. 3b). For example, tertiary roads maximize encounter potential during
commute hours for road users but shift peak contribution to public transport midday, while weekend patterns
support more equitable cross-modal opportunities. These findings demonstrate infrastructure’s social impact

depends not just on physical presence but on when and how diverse groups utilize it.

Model simulation for policy interventions

To explore how policy can actively shape these opportunity structures, we developed an agent-based model
that simulates morning commutes based on income-differentiated travel preferences (see Methods; Supple-
mentary Note 4.1). The model, calibrated to match empirically observed encounter diversity PMI (Fig. 4b;
Supplementary Note 4.2), allows us to test the distributional effects of common transport policies (private car
control [38, 39], public transport subsidies [40], active travel promotion [41, 42]).

Our simulations reveal that interventions often produce complex and counter-intuitive social outcomes. For
instance, a uniform citywide increase in driving costs Apfprivate (akin to fuel taxes [43] or parking fees [44])
disproportionately shifts lower-income users to other modes, paradoxically making the pool of remaining drivers
less socioeconomically diverse (PMI decreases; Fig. 4c) even as the policy has a progressive financial impact
(Fig. 4d).

The spatial application of policy is also critical. A downtown congestion charge (mimicking congestion pricing
[39]; Supplementary Note 4.3), for example, creates a different trade-off, enhancing encounter diversity among
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Fig. 3 | OLS regression models explain encounter opportunities. a, Contribution of transport infrastructure
features on encounter diversity estimated using the daily granularity model. The leftmost column shows feature names.
Each feature is associated with one or two bars, representing significant coefficients (8 > 0) on workdays and weekends
respectively. A positive coefficient (8 > 0, rightward arrow) indicates the feature enhances co-presence potential (for PMT)
or cross-modal uniformity (for MUI), while a negative coefficient (8 > 0, leftward arrow) indicates reduced opportunities
or more varied patterns among modes. Bold arrow denotes more pronounced weekend effects, non-bold marks stronger
workday effects. b, Variation in the influence of selected feature (tertiary roads) throughout the day estimated using the
hourly granularity model. In the compass plot, each point’s angular position represents a specific hour (0:00 to 23:00),
with numeric labels indicating the coefficient’s value for that hour and day type.

drivers citywide but reducing it on other modes by altering specific commuter flows. Similarly, while public
transport subsidies provide clear benefits to lower-income groups, they can inadvertently concentrate them
onto rail, reducing interaction potential within that mode and showing diminishing returns (Supplementary
Note 4.4). Promoting active travel (through infrastructure or safety improvements [42]) also yields spatially
polarized results, fostering diverse encounters downtown but reinforcing socially sorted patterns in suburbs
(Supplementary Note 4.5). These findings underscore a crucial insight for urban governance: transport policies
designed for efficiency or environmental goals have profound, spatially-dependent impacts on the social fabric,
presenting critical trade-offs between policy goals and social equity that demand integrated, context-aware
planning.

Discussion

Cities shape social life through the encounter opportunities they create or constrain[15, 36]. Our probabilistic
framework reveals how transport systems structure these opportunities, moving beyond deterministic measures
that assume precise spatiotemporal overlaps. By treating co-presence as likelihood rather than certainty, our
metrics (PMI and MUI) capture the inherent uncertainty in human behavior and mobility data. Our framework
reconceptualizes social dynamics not as fixed patterns but as probabilistic opportunities emerging from the
interplay of infrastructure, mobility choices, and daily rhythms.

Our findings challenge assumptions that physical proximity automatically fosters social cohesion [45-47].
Railway systems create extensive encounter opportunities yet remain temporally constrained; buses in periph-
eries paradoxically enhance cross-group contact through shared dependency; motorways generate mode-based
stratification despite improving connectivity. These patterns demonstrate that infrastructure’s social impact
depends critically on who uses it, when, and under what constraints—aligning with time-geography principles
[48] while extending them to multimodal contexts. These findings compel infrastructure-centric urban design
[49, 50] to move beyond simple expansion and instead embrace strategies that coordinate infrastructure, policy,
and operations with urban rhythms, a perspective central to the concept of chrono-urbanism [51].
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Fig. 4 | Agent-based model simulates policy impacts on encounter opportunities. a, Schematic of the agent-
based mobility model. Individuals choose between active, private car, or railway modes probabilistically to minimize
perceived travel cost, which incorporates travel time (Ti), income-specific value of time (ag4), and mode-specific costs
(Bm). b, Spatial distribution of model-predicted PMI for active, private, and railway travel during the morning com-
muting hour. The optimal model parameters calibrated using empirical data are displayed above the maps. ¢, Simulated
impact of a uniform citywide increase in private car cost (ABprivate). Top row: Proportional change in mode usage rela-
tive to baseline by income groups. Bottom row: Change in overall citywide encounter potential (PMI) for each mode. d,
Impact of the uniform private car policy on average travel costs relative to baseline by income group, showing a generally
progressive burden.

Policy simulations reveal tensions between transport objectives and social goals. Interventions optimizing
efficiency or sustainability may inadvertently reduce encounter opportunities, highlighting that transport policies
reshape cities’ social opportunity landscapes in complex, often unexpected ways. These outcomes underscore
that transport policies cannot be evaluated solely on efficiency or environmental grounds—their impacts on the
social opportunity structure demand equal consideration.

Finally, while our Beijing case provides detailed insights, the framework’s probabilistic approach and focus on
structural opportunities offers a transferable methodology for examining how different urban contexts create or
constrain possibilities for cross-group contact. Future comparative research across cities with different transport
legacies, urban forms, and social compositions will be crucial to test the universality of these patterns. Such
work can help build a more comprehensive theory of how urban mobility systems shape the social fabric of our
cities, paving the way for the design of environments that are not only connected, but also cohesive.

Methods
Datasets

Mobile phone data. The anonymous mobile phone dataset come from a telecommunications service provider
in China. The dataset was collected over one-month period (June) in 2023, and consists of anonymized records
of GPS locations (“pings”) from users that have signed up to provide data through explicit consent agreements
outlined in the telecoms company’s privacy notice. The mobile phone users were informed about how their
data will be used and stored under the regulation of China’s Personal Information Protection Law (PIPL).
In alignment with China’s data protection and cybersecurity regulations, all data are thoroughly anonymized
to remove personally identifiable information and processed to ensure privacy. This work was exempt from
the ethical review by the Business, Environment, Social Sciences Faculty Research Ethics Committee in the
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University of Leeds (Reference: BESS+ FREC - 2024 1663-2108). The raw data consist of 11,018,253 users
(covering 50% population) and 8,386,564,428 pings in Beijing, China. Each ping consists of a de-identified user
ID, latitude, longitude and timestamp. The mean number of raw pings associated with a user in a month is 1008
and the median number of pings is 872. To ensure data reliability, we removed duplicate pings to ensure accuracy.
We filtered out users with fewer than 300 pings to eliminate noise. The filtered dataset consists of 7,562,482
users and 4,815,969,539 pings. The population representativeness of the dataset is validated in Supplementary
Note 1.2.

LianJia housing. The LianJia housing dataset [52], sourced from China’s largest real-time property trans-
action platform, offers a detailed repository of residential property information in Beijing. As of June 2023, this
dataset encompasses 9,501 communities, covering 97.3% of Beijing’s residential market. This dataset provides
granular metrics including average transaction prices (RMB/m?), architectural typologies, household counts,
and precise geographic coordinates. As China’s residential neighborhoods are predominantly planned, gated com-
munities with homogeneous pricing and shared amenities, the dataset captures near-complete market dynamics,
enabling robust socioeconomic inference.

Transport facilities. We collected a dataset of 64,805 transport facilities in Beijing, China, using Application
Programming Interface (API) of Amap [53], a leading mapping and navigation service provider in China.
Each record includes name, address, latitude, longitude and category. The categories of transport facilities
encompassed in this dataset include: Airport, Train Station, Port, Intercity Bus Station, Subway Station, Bus
Station, Parking Lot, Toll Station, and Highway Service.

Transport networks. We retrieved the urban road networks from OpenStreetMap [54], including both driv-
ing roads and pedestrian pathways. Urban road networks in Beijing consist of 307,978 junctions and 437,337
segments. We used Amap API [53] to obtain public transport networks, encompassing bus and railway routes.
The API generates 4,238 directional bus routes (15,876 stations and 44,370 segments) and 118 directional rail-
way routes (432 stations and 1,028 segments) in Beijing. Each record includes the route names, station names,
station coordinates (latitude and longitude), average travel duration between stations, and route operational
hours.

Geolife. The Geolife GPS Trajectory dataset [55], a widely-used public benchmark for travel mode inference,
released by Microsoft Research Asia comprises 17,621 trajectories collected from 182 volunteer users between
April 2007 and August 2012. Tt includes raw GPS points (latitude, longitude, timestamp) and labels for transport
modes. We used a processed subset of this dataset, totaling 4,425 trips with unambiguous labels (1,819 active,
881 private, 1,725 public) for training and validating our travel mode inference model (Supplementary Note 1.4)
and validating route generation accuracy (Supplementary Note 1.5).

MemDA. The MemDA (Memory-Augmented Deep Architecture) dataset [56] is an open-sourced dataset
providing traffic speeds on major road segments in Beijing over a 75-day period (May 12 - July 25, 2022).
This dataset serves as an independent ground truth to validate the reliability of our inferred mobility patterns,
particularly the travel mode inference and route generation processes (Supplementary Note 1.6).

Inferring home locations and workplaces

We first detected significant stays during individuals’ trips through a spatiotemporal clustering approach [57].
These stays were defined by high-density clusters of trajectory points within a 50-meter radius and a minimum
of 10 points, subsequently linked to nearby POIs within 100 meters for contextual validation. Stays shorter than
15 minutes or longer than 24 hours were excluded to ensure focus on meaningful activities. Home locations were
determined by analyzing stays during nighttime hours (21:00-6:00) across multiple days, selecting the location
with the highest cumulative duration and at least 25 visits over the 30-day period, situated in residential areas
as confirmed by Amap POIs. Workplaces were identified from stays during typical working hours (9:00-17:00)
on workdays, requiring a minimum of 4 visits per 5 workdays, cross-referenced with commercial POIs. This
method reliably assigned home/work locations to 604,7368 individuals. The inference reliability was validated
by comparing home-based trip frequencies with China’s National Population Census in 2020 [58], adjusted for
population growth (see Supplementary Note 1.1 and 1.2).

Inferring income quartiles

To estimate socioeconomic status, we leveraged China’s distinct residential structure—characterized by uni-
formly priced, gated communities with shared amenities—which enables housing expenditure to serve as robust
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proxies for income stratification. Individuals’ geolocated homes were systematically matched to property trans-
action data from LianJia, China’s largest real estate platform (n = 9,501 Beijing communities). We constructed
Voronoi polygons around each community to delineate localized socioeconomic zones, ensuring spatial contiguity
while minimizing edge effects through nearest-neighbor allocation. Individuals within a polygon were assigned
corresponding community’s average transaction price as a proxy for socioeconomic status. This method capi-
talizes on the inherent homogeneity of Chinese residential communities where housing prices strongly correlate
with residents’ economic capacity. Validation confirms 80% of inferred home locations resided within 250 meters
(90% within 500 meters) of matched communities, ensuring spatial reliability. Individuals were categorized into
four income quartiles based on 25th, 50th and 75th percentiles of community price distributions. Spatial anal-
ysis reproduces the distinct residential segregation patterns in Beijing, reinforcing the validity of our approach
(see Supplementary Note 1.3).

Quantifying encounter opportunities

To quantify the opportunities for cross-group encounters shaped by multimodal mobility, we developed two
entropy-based measures grounded in probabilistic co-location patterns. The foundation is the calculation of the
likelihood that individuals are simultaneously present at specific locations along their journeys. This involves
first estimating the probability of individuals choosing specific transport modes—active (walking/cycling), pri-
vate (car/taxi), bus, or railway—for each trip using a machine learning model pre-trained on the Geolife GPS
trajectory dataset (see Supplementary Note 1.4). The most probable route for each potential mode is then
generated using the Amap navigation API, incorporating real-time traffic, transit schedules, and original GPS
waypoints to enhance realism (see Supplementary Note 1.5). The likelihood of any two individuals encountering
each other via the same mode m within a specific spatial unit s is calculated as the product of the probabilities
that their routes intersect within that unit and their estimated travel times overlap. The reliability of these
co-location likelihood estimates was confirmed via cross-validation using MemDA traffic speed data (see Supple-
mentary Note 1.6). Aggregating these encounter probabilities across all individuals belonging to the four inferred
income quartiles (¢), we estimated the expected population mix in each spatial unit popgsm = 3 ;¢ q Pism; where
Pism is the probability that individual ¢ from group ¢ occupies spatial unit s via mode m during a specific time
window. Our first measure, the mode-specific Probabilistic Mixing Index (PMI), quantifies the income group
diversity within this expected population mix using a normalized entropy metric [59]:

1
PMI, ,, = ~ioa (@) Eq: Tysm 108 (Tgsm ) (1)
where Tgsm = Popgsm/ Y. ¢ POPgsm- PM I n, spans from 0 (indicating highly sorted co-presence, dominated by a
single group) to 1 (representing maximum mixing potential with equal group representation).
Our second measure, the Multimodal Uniformity Index (MUI), evaluates how consistently these encounter
opportunities are distributed across the different transport modes within a specific geographic area A. It is
calculated by computing the normalized entropy [59] of the mode-averaged PMI values within that region:

1
MUI, = —m ;TA,m log (TA,m)y (2)

where 74,3, = PMIg />, PMI4 . Here, PM1I 4, represents the average mixing level across all the mode-
specific spatial units located in region A. A higher MU 4 value (close to 1) indicates that encounter opportunities
are equitable across modes within region A. Conversely, a lower value (closer to 0) signals that the potential
for social encounters is highly stratified by mode choice. Together, these measures provide a framework for
evaluating how urban transport systems function as social opportunity structures, shaping the likelihood of
socioeconomic encounters in cities.

Mobility flow directionality

We adopt a vector-based approach [60] to capture the spatial orientation of population movements across
urban contexts. The city center is first defined as the point of highest population density within the Beijing
metropolitan area. For each spatial unit (1 km x 1 km grid for active and private modes; transit segment
for bus and railway modes), mobility flow vector for each groups is calculated based on trip origin-destination
pairs recorded over hourly intervals. The vector magnitude represents the total number of trips weighted by
the probabilities of individuals from the specific group being present in that spatial unit during the given hour.
Next, the group-specific vectors within each spatial unit s are summed into a composite mobility flow vector
V,. The directional angle of this composite vector is then computed as the angle between the vector and the
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A
pointing from s to city center. Angles measured in radians are converted to degrees on a 0°—180° scale (0°:
strictly toward center, 180°: strictly outward). For each urban context C (downtown, peri-urban, or outskirts),
the mean directional angle f¢ in a given hour is computed as the arithmetic average of directional angles from
all spatial units within the context: O = % > .cc Os, where N denotes the number of spatial units.

reference line connecting the unit’s centroid to the city center: §; = arccos ( ), where €. is the unit vector

seC

OLS regression models

We employ ordinary least squares (OLS) regression models [61] to quantify how transport infrastructure
shapes the spatiotemporal distribution of encounter opportunities. These models operate at the 1 x 1 km grid
level, linking grid-specific indices of social mixing to transport-related explanatory variables {7T;}. Specifically,
either the Probabilistic Mixing Index for a given mode m (PMI4.,) or the Multimodal Uniformity Index
(MUI4,) within grid A at time ¢ (collectively denoted M) is modeled as a function of these transport infras-
tructure features. The features {T;} encompass characteristics such as the lengths of different road types, road
type diversity, and counts of transport facilities. A detailed list and description of these grid-level variables are
provided in Supplementary Table 1. To capture fine-grained temporal dynamics, we fitted separate models for
each hour of the day, distinguishing between workdays and weekends (see Supplementary Note 3 for further
details on the model specification).

Individual mobility model

We develop an agent-based model to simulate how policy interventions can reshape travel choices and,
consequently, the city’s structure of social encounter opportunities. For a given home-to-work trip, an individual
i from income group g € G (|G| = 4) probabilistically chooses a mode m € M = {active, private, railway} to
minimize a perceived travel cost Cyy, using a multinomial logit formulation [62]:

_ exp(—6Cym) (3)
Pom o mrem €XP(=0Cgmr)’
where ¢ is a sensitivity parameter. The perceived cost Cgyy, combines the income-specific value of time (o)
with other mode-specific costs (5, ), such as monetary expenses or inconvenience, applied to the travel time T,
(computed as the duration of the shortest path R,, for mode m):

Cgm = ang + BT (4)

We use the model to simulate the travel preferences of individuals during the morning peak hour (9:00-10:00
AM). The model’s outputs, including individual choice probabilities p,,, and shortest paths R,,, are used as
inputs for calculating our mode-specific measure of encounter diversity (PMI). Model parameters are calibrated
using empirical data: relative time values (o) are fixed based on group incomes, while the sensitivity (J) and
mode-specific costs (3,,) are estimated by minimizing the difference between the model’s predicted PMI and the
empirically observed values during the peak hour. Detailed calibration procedures and performance validation
are provided in Supplementary Note 4.2.

We then utilize the calibrated model to evaluate the distributional effects of three common transport policy
archetypes. These policies are simulated by systematically modifying the relevant mode-specific cost parameters
(Bm). For each policy scenario, we recalculate individual mode choices and analyze the resulting changes in
encounter diversity (PMI), mode shares, and average travel costs across income groups to assess the trade-offs

between policy goals and social equity. Detailed simulation setups and results are provided in Supplementary
Notes 4.3-4.5.

Data availability

The source data supporting the findings of this study are available online (https://github.com/
UrbanMobility-y/multimodal-segregation /tree/main/Source%20data). The raw mobile phone mobility data are
not publicly available to preserve individual privacy and user confidentiality. The datasets of transport facil-
ities and public transport networks are commercially available and may be requested for research use (https:
//1bs.amap.com/). Road networks were from OpenStreetMap (https://www.openstreetmap.org/). LianJia hous-
ing transaction data (https://bj.lianjia.com/xiaoqu/), China National Population Census 2020 data (https:
//www.stats.gov.cn/english /PressRelease/202105/t20210510-1817185.html), Geolife trajectory data (https://
www.microsoft.com/en-us/download/details.aspx?id=52367) and MemDA traffic speed data (https://github.
com/deepkashiwa20/Urban_Concept_Drift) are available online.
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Code availability

All analysis was conducted using Python. Code is publicly available at GitHub (https://github.com/
UrbanMobility-y/multimodal-segregation).
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