

How transport systems create opportunities for social interaction

Ed Manley

E.J.Manley@leeds.ac.uk

University of Leeds https://orcid.org/0000-0002-8904-0513

Yitao Yang

University of Leeds https://orcid.org/0000-0002-9650-9981

Erjian Liu

Beijing Jiaotong University

Bin Jia

Beijing Jiaotong University https://orcid.org/0000-0001-5071-2573

Article

Keywords: social interaction, mobility, transport infrastructure, mobility data

Posted Date: October 28th, 2025

DOI: https://doi.org/10.21203/rs.3.rs-6716648/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.

Read Full License

Additional Declarations: There is **NO** Competing Interest.

How transport systems create opportunities for social interaction

Yitao Yang^{1†}, Erjian Liu^{2†}, Bin Jia², Ed Manley^{1*}

1*School of Geography, University of Leeds, Leeds, UK.

2School of Systems Science, Beijing Jiaotong University, Beijing, 100044, China.

*Corresponding author(s). E-mail(s): e.j.manley@leeds.ac.uk;

Contributing authors: y.yang@leeds.ac.uk; 17120752@bjtu.edu.cn; bjia@bjtu.edu.cn;

†These authors contributed equally to this work.

8 Abstract

Social mixing in cities emerges from encounters between individuals of different backgrounds in shared spaces [1–3]. These opportunities for inter-group contact are not randomly distributed but shaped by urban transport systems that channel millions of daily trajectories. As cities face rising segregation, understanding and quantifying these opportunity structures has become critical for designing evidence-based policies that foster social inclusion [4–6]. Yet existing approaches face significant limitations in capturing the probabilistic nature of these opportunities within complex, multimodal cities [7]. This study addresses this gap by developing a computational framework that treats encounters as likelihoods shaped by behavioral uncertainty. Encounter probabilities among individuals are calculated within mode-specific encounter spaces—from individual roads, city blocks to rail and bus service segments—by aggregating potential trajectories across socioeconomic groups. Using city-scale mobility data, the outcomes reveal how infrastructure, daily rhythms, and travel choices interweave to create spatially and temporally varying opportunity structures across multimodal transport systems. We then extend these findings through agent-based simulations, demonstrating how transport policies designed to promote sustainable mobility may produce unintended social consequences. The study underscores that effective policymaking for social inclusion must account for how transport interventions reshape encounter opportunities in citizens' daily mobility.

Keywords: social interaction, mobility, transport infrastructure, mobility data

25 Introduction

Socially cohesive cities thrive on interactions between diverse individuals, which foster mutual understanding and shared identity [8, 9]. The foundation for these interactions, however, is the simple, yet crucial, opportunity for people to be in the same place at the same time [6, 10, 11]. While not every instance of co-presence—whether a shared bus ride, or a crosswalk encounter—leads to meaningful interaction, it constitutes a necessary structural condition, what social and geographical scientists refer to as interaction potential[12] rooted in the principles of time geography [13] that govern interaction opportunities between pairs of people. In an era of increasing urban inequality, understanding how to create more opportunities for cross-group contact has become a critical priority for policymakers seeking to build inclusive cities [14, 15].

In urban environments, these opportunities for interaction are not randomly distributed; they are shaped by transportation infrastructure that channels millions of daily trajectories into predictable patterns of social mixing [16, 17]. Every journey, whether by foot, car, bus, or train, traces a trajectory through physical and social space, creating chances for contact with others whose paths intersect [18]. Transport systems do more than move people efficiently; they structure who is likely to share space with whom during daily mobility.

Despite growing recognition of mobility's role in shaping social life, current methods for mapping interaction opportunities across urban transport networks remain limited. Many computational studies using mobile

phone data [4, 5, 19, 20], transit records [21–23], and social networks [24–26] typically infer encounters from spatiotemporal overlaps, assuming co-presence when two individuals' recorded positions coincide within distance 42 43 and time thresholds. Such deterministic methods not only overestimate the interaction certainty when mobility records happen to overlap, but more fundamentally, underestimate the interaction potential in the unobserved 45 intervals between recorded locations due to the sampling sparsity of real-world mobility data [27]. While other approaches—such as space-time prisms [28–30], Bayesian location models [31, 32], and entropy-based tie infer-46 ence [33]—have been developed to address uncertainty in data and activity, they remain largely theoretical or 48 confined to small-scale demonstrations with restrictive assumptions. Crucially, they fail to capture the reality 49 of large, multimodal cities, where vertically layered transport infrastructures create mode-specific interaction 50 potentials that cannot be measured by simple proximity [34, 35].

Here we introduce a novel probabilistic framework that quantifies cross-group encounter opportunities across multimodal transport systems at city scale. We conceptualize co-presence not as a binary event but as a probabilistic opportunity—a likelihood shaped by individuals' route choices, mode preferences, and behavioral uncertainty inherent in human mobility. We develop two core indices: the Probabilistic Mixing Index (PMI), which assesses the diversity of potential encounters using each transport mode (active, private, bus, railway), and the Multimodal Uniformity Index (MUI), which measures the consistency or divergence of these mixing opportunities across different mobility layers within the same geographic area. Applied to Beijing's metropolitan area using mobile phone data from 11 million users, our framework uncovers the hidden social opportunity structures for cross-group contact embedded within transport systems that vary across modes, times, and urban contexts. To translate the findings into actionable guidance, we further develop an agent-based model to explore how targeted policies can reshape these opportunity structures to foster more inclusive urban encounters.

Results 62

41

44

47

51

52

53

54

5556

57

58 59

60

61

64

65

66

67

68 69

70

71

73

74

75

76

77 78

79

80

82

83

84 85

86 87

88 89

90 91

92

A probabilistic framework for measuring encounter opportunities 63

To quantify how urban transport systems create opportunities for cross-group encounters, we develop a probabilistic framework (Fig. 1a) using high-resolution mobile phone data from 11 million anonymous users in Beijing, China. We infer individuals' socioeconomic status by matching home locations to community property values from LianJia (China's largest real estate platform), categorizing users into four income quartiles (see Methods). Our approach conceptualizes an "encounter opportunity" not as a confirmed interaction, but as the probabilistic co-presence of individuals within specific urban environments, allowing us to account for the inherent uncertainty in mobility data and focus on the structural potential for interaction.

We define potential encounter spaces differently across transport modes: 1 km grids for diffuse modes like active travel and driving, and station-to-station segments for contained modes like bus and rail, where individuals share a vehicle or platform (Fig. 1b). Co-presence likelihood is assessed within 1-hour windows, balancing temporal resolution with computational feasibility (see Supplementary Note 2.3 for sensitivity analysis of spatiotemporal scales). By aggregating encounter probabilities across income groups, we compute the Probabilistic Mixing Index $(PMI_{s,m})$, a mode-specific measure that quantifies the diversity of potential encounters within a given spatial unit s for mode m (a higher PMI, approaching 1, signifies greater potential for cross-group encounters). To assess how these mixing opportunities vary across different transport layers in the same area, we introduce the Multimodal Uniformity Index (MUI_A) , which measures the consistency of PMI values across all transport modes within the same geographic context (e.g., a specific region A) (see Methods).

Divergent opportunity structures across mobility layers 81

Urban transport systems generate distinct patterns of mixing opportunities across Beijing's metropolitan area (Fig. 1c). Active mobility shows the most localized mixing patterns ($PMI_{active} = 0.4881$), with concentrated opportunities in mixed-use districts (e.g., business centers where diverse workers converge) but limited crossgroup contact in homogeneous residential neighborhoods. Private vehicle travel shows intermediate mixing potential $(PMI_{private} = 0.7102)$ along arterial roads where diverse traffic streams converge. Public transport reveals striking contrasts: railways create the most extensive opportunities ($PMI_{railway} = 0.9050$) by connecting disparate neighborhoods, except in suburbs, while buses sustain limited mixing $(PMI_{\text{bus}} = 0.7257)$ due to localized routes serving similar demographics.

Encounter opportunities generally diminish peripherally (declining PMI; Fig. 1e), yet railway-scarce suburbs show unexpected mixing where shared bus dependency unites residents lacking alternatives. The MUI distributions (Fig. 1d,f) further reveal that central areas show high uniformity (high MUI), where different modes offer similarly high mixing opportunities, whereas peripheral zones exhibit highly divergent, mode-dependent

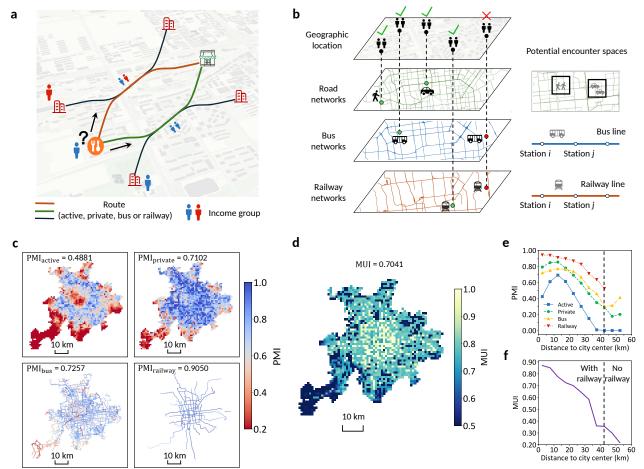


Fig. 1 | Probabilistic framework quantifies encounter opportunities in multimodal transport systems. a, Conceptual overview of the methodology. Individual trajectories from mobile phone data estimate probabilities of co-presence between pairs of individuals traveling via different transport modes (active, private, bus, railway). b, Modespecific spatial units for calculating co-presence probabilities. Road-based encounter opportunities (active/private modes) are assessed in 1 km \times 1 km grids representing potential roadside proximity. Public transport (bus/railway modes) opportunities are assessed along station-to-station segments, representing shared vehicle or platform environments. c, Spatial maps of the Probabilistic Mixing Index (PMI) for each transport mode across Beijing metropolitan area. Distinct patterns emerge depending on the mode, with mean citywide PMI values noted above each map. d, Spatial distribution of Multimodal Uniformity Index (MUI), measuring consistency of PMI values across the four transport modes in the same region (1 km \times 1 km grids shown). e, Distance-dependent mixing patterns. Points show PMI averages in 5 km concentric zones from the city center. Dashed line marks railway-deprived suburbs with elevated mixing opportunities. f, Average MUI versus distance from the center, showing declining cross-modal uniformity toward the periphery.

opportunity structures. This highlights that transport infrastructure creates geographically varied landscapes of potential social interaction [36].

96 Encounter opportunities unfolds with residents' daily rhythms

Temporal patterns across Beijing's downtown, peri-urban, and outskirts zones (Fig. 2a) show how routines influence mixing opportunities. A midday window (e.g., 11:00-13:00) boosts diversity across modes, with synchronized PMI and MUI peaks (Fig. 2b-e), driven by balanced, multidirectional flows (mean angular dispersion 90° , Fig. 2g-i; see Methods). This reflects diverse activities enhancing cross-group co-presence potential. In contrast, morning (06:00-08:00) and evening (post-18:00) commutes limit opportunities, as stratified flows converge downtown and disperse peripherally. Buses notably enhance mixing in peripheral areas, with higher relative PMI from downtown to outskirts (Fig. 2b-d). These findings challenge conventional assumption that extensive public transit ensures equity [37], showing that encounter potential is dynamically shaped by the interplay of daily schedules, transport infrastructure, and urban spatial organization.

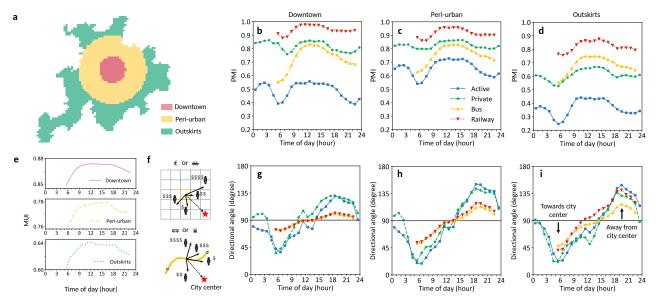


Fig. 2 | Daily rhythms drive multimodal mixing opportunities across urban contexts. a, Beijing metropolitan area partitioned into three zones—downtown, peri-urban, and outskirts—based on equal population distribution. b-d, Hourly variation in PMI shown for each transport mode within the three spatial contexts. Points indicate the average PMI for a given mode and context during each one-hour interval. e, Temporal fluctuations in the MUI. f, Schematic defining the mobility flow directional angle θ_s for spatial units (grids or transit segments), calculated relative to the city center (0° towards, 180° away). g-i, Hourly rhythms of the context-specific average directional angle. Midday periods exhibit more balanced, multidirectional travel (mean angular dispersion approaching 90°), correlating with enhanced mixing opportunities. In contrast, commuting hours show strongly directional flows (towards center in morning, away in evening) that limit cross-group co-presence.

106 Transport infrastructure shapes opportunities for social interaction

107 To unravel how transport infrastructure unevenly shapes opportunities for social interaction, we use OLS regression models linking grid-level transport infrastructure features to mode-specific contact opportunities 108 (PMI) and cross-modal uniformity (MUI) (see Methods; Supplementary Note 3). Dense infrastructure gener-109 110 ally enhances interaction potential within respective modes (Fig. 3a; Supplementary Table 2): high motorways accessibility increase opportunities for private vehicle users ($\beta_{\text{PMI,private}}^{****} > 0$), tertiary roads accessibility benefit active travelers ($\beta_{\text{PMI,active}}^{***} > 0$), and subway stations boost railway encounters ($\beta_{\text{PMI,railway}}^{***} > 0$). However, 111 112 mode-exclusive infrastructure creates divergent opportunity structures: motorways decrease cross-modal uni-113 formity $(\beta_{\text{MUI}}^{**} < 0)$ by enhancing private-mode encounters while excluding other users, whereas diverse road 114 networks promote equitable opportunities across modes ($\beta_{\text{MUI}}^{***} > 0$). Temporal analysis shows infrastructure's 115 impact varies with daily rhythms (Fig. 3b). For example, tertiary roads maximize encounter potential during 116 117 commute hours for road users but shift peak contribution to public transport midday, while weekend patterns 118 support more equitable cross-modal opportunities. These findings demonstrate infrastructure's social impact depends not just on physical presence but on when and how diverse groups utilize it. 119

120 Model simulation for policy interventions

121

122

123

124

125

126

127

128

129

 $130 \\ 131$

132

To explore how policy can actively shape these opportunity structures, we developed an agent-based model that simulates morning commutes based on income-differentiated travel preferences (see Methods; Supplementary Note 4.1). The model, calibrated to match empirically observed encounter diversity PMI (Fig. 4b; Supplementary Note 4.2), allows us to test the distributional effects of common transport policies (private car control [38, 39], public transport subsidies [40], active travel promotion [41, 42]).

Our simulations reveal that interventions often produce complex and counter-intuitive social outcomes. For instance, a uniform citywide increase in driving costs $\Delta\beta_{\text{private}}$ (akin to fuel taxes [43] or parking fees [44]) disproportionately shifts lower-income users to other modes, paradoxically making the pool of remaining drivers less socioeconomically diverse (*PMI* decreases; Fig. 4c) even as the policy has a progressive financial impact (Fig. 4d).

The spatial application of policy is also critical. A downtown congestion charge (mimicking congestion pricing [39]; Supplementary Note 4.3), for example, creates a different trade-off, enhancing encounter diversity among

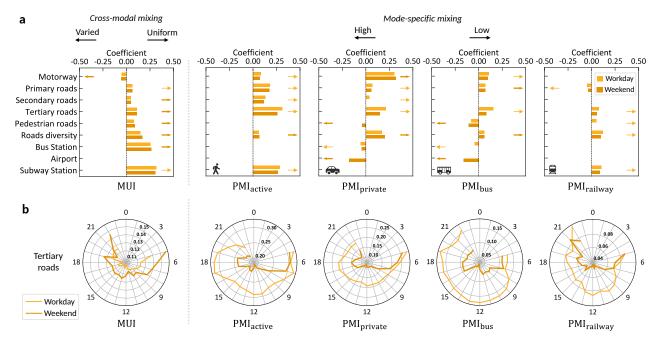


Fig. 3 | OLS regression models explain encounter opportunities. a, Contribution of transport infrastructure features on encounter diversity estimated using the daily granularity model. The leftmost column shows feature names. Each feature is associated with one or two bars, representing significant coefficients ($\beta > 0$) on workdays and weekends respectively. A positive coefficient ($\beta > 0$, rightward arrow) indicates the feature enhances co-presence potential (for PMI) or cross-modal uniformity (for MUI), while a negative coefficient ($\beta > 0$, leftward arrow) indicates reduced opportunities or more varied patterns among modes. Bold arrow denotes more pronounced weekend effects, non-bold marks stronger workday effects. b, Variation in the influence of selected feature (tertiary roads) throughout the day estimated using the hourly granularity model. In the compass plot, each point's angular position represents a specific hour (0:00 to 23:00), with numeric labels indicating the coefficient's value for that hour and day type.

drivers citywide but reducing it on other modes by altering specific commuter flows. Similarly, while public transport subsidies provide clear benefits to lower-income groups, they can inadvertently concentrate them onto rail, reducing interaction potential within that mode and showing diminishing returns (Supplementary Note 4.4). Promoting active travel (through infrastructure or safety improvements [42]) also yields spatially polarized results, fostering diverse encounters downtown but reinforcing socially sorted patterns in suburbs (Supplementary Note 4.5). These findings underscore a crucial insight for urban governance: transport policies designed for efficiency or environmental goals have profound, spatially-dependent impacts on the social fabric, presenting critical trade-offs between policy goals and social equity that demand integrated, context-aware planning.

142 Discussion

135

 $137 \\ 138$

 $144\\145$

 $148 \\ 149$

Cities shape social life through the encounter opportunities they create or constrain [15, 36]. Our probabilistic framework reveals how transport systems structure these opportunities, moving beyond deterministic measures that assume precise spatiotemporal overlaps. By treating co-presence as likelihood rather than certainty, our metrics (PMI and MUI) capture the inherent uncertainty in human behavior and mobility data. Our framework reconceptualizes social dynamics not as fixed patterns but as probabilistic opportunities emerging from the interplay of infrastructure, mobility choices, and daily rhythms.

Our findings challenge assumptions that physical proximity automatically fosters social cohesion [45–47]. Railway systems create extensive encounter opportunities yet remain temporally constrained; buses in peripheries paradoxically enhance cross-group contact through shared dependency; motorways generate mode-based stratification despite improving connectivity. These patterns demonstrate that infrastructure's social impact depends critically on who uses it, when, and under what constraints—aligning with time-geography principles [48] while extending them to multimodal contexts. These findings compel infrastructure-centric urban design [49, 50] to move beyond simple expansion and instead embrace strategies that coordinate infrastructure, policy, and operations with urban rhythms, a perspective central to the concept of chrono-urbanism [51].

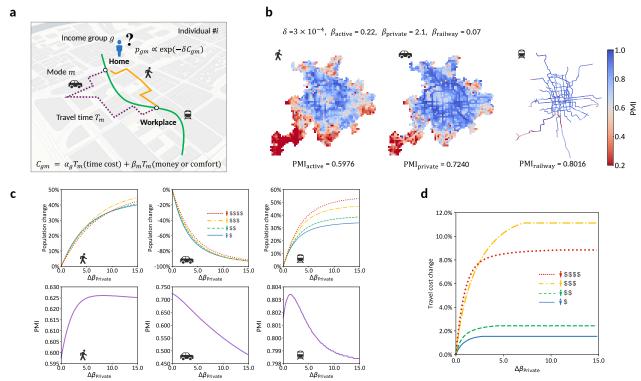


Fig. 4 | Agent-based model simulates policy impacts on encounter opportunities. a, Schematic of the agent-based mobility model. Individuals choose between active, private car, or railway modes probabilistically to minimize perceived travel cost, which incorporates travel time (T_m) , income-specific value of time (α_g) , and mode-specific costs (β_m) . b, Spatial distribution of model-predicted PMI for active, private, and railway travel during the morning commuting hour. The optimal model parameters calibrated using empirical data are displayed above the maps. c, Simulated impact of a uniform citywide increase in private car cost $(\Delta\beta_{\text{private}})$. Top row: Proportional change in mode usage relative to baseline by income groups. Bottom row: Change in overall citywide encounter potential (PMI) for each mode. d, Impact of the uniform private car policy on average travel costs relative to baseline by income group, showing a generally progressive burden.

Policy simulations reveal tensions between transport objectives and social goals. Interventions optimizing efficiency or sustainability may inadvertently reduce encounter opportunities, highlighting that transport policies reshape cities' social opportunity landscapes in complex, often unexpected ways. These outcomes underscore that transport policies cannot be evaluated solely on efficiency or environmental grounds—their impacts on the social opportunity structure demand equal consideration.

Finally, while our Beijing case provides detailed insights, the framework's probabilistic approach and focus on structural opportunities offers a transferable methodology for examining how different urban contexts create or constrain possibilities for cross-group contact. Future comparative research across cities with different transport legacies, urban forms, and social compositions will be crucial to test the universality of these patterns. Such work can help build a more comprehensive theory of how urban mobility systems shape the social fabric of our cities, paving the way for the design of environments that are not only connected, but also cohesive.

168 Methods

169 Datasets

157

158

159

160

161

162

163

164

 $\begin{array}{c} 165 \\ 166 \end{array}$

167

170 **Mobile phone data.** The anonymous mobile phone dataset come from a telecommunications service provider 171in China. The dataset was collected over one-month period (June) in 2023, and consists of anonymized records 172 of GPS locations ("pings") from users that have signed up to provide data through explicit consent agreements outlined in the telecoms company's privacy notice. The mobile phone users were informed about how their 173 174 data will be used and stored under the regulation of China's Personal Information Protection Law (PIPL). 175In alignment with China's data protection and cybersecurity regulations, all data are thoroughly anonymized 176 to remove personally identifiable information and processed to ensure privacy. This work was exempt from 177 the ethical review by the Business, Environment, Social Sciences Faculty Research Ethics Committee in the

- 178 University of Leeds (Reference: BESS+ FREC 2024 1663-2108). The raw data consist of 11,018,253 users
- 179 (covering 50% population) and 8,386,564,428 pings in Beijing, China. Each ping consists of a de-identified user
- 180 ID, latitude, longitude and timestamp. The mean number of raw pings associated with a user in a month is 1008
- 181 and the median number of pings is 872. To ensure data reliability, we removed duplicate pings to ensure accuracy.
- 182 We filtered out users with fewer than 300 pings to eliminate noise. The filtered dataset consists of 7,562,482
- 183 users and 4,815,969,539 pings. The population representativeness of the dataset is validated in Supplementary
- 184 Note 1.2.
- 185 **LianJia housing.** The LianJia housing dataset [52], sourced from China's largest real-time property trans-
- action platform, offers a detailed repository of residential property information in Beijing. As of June 2023, this
- 187 dataset encompasses 9,501 communities, covering 97.3% of Beijing's residential market. This dataset provides
- 188 granular metrics including average transaction prices (RMB/m²), architectural typologies, household counts,
- 189 and precise geographic coordinates. As China's residential neighborhoods are predominantly planned, gated com-
- 190 munities with homogeneous pricing and shared amenities, the dataset captures near-complete market dynamics,
- 191 enabling robust socioeconomic inference.
- 192 Transport facilities. We collected a dataset of 64,805 transport facilities in Beijing, China, using Application
- 193 Programming Interface (API) of Amap [53], a leading mapping and navigation service provider in China.
- 194 Each record includes name, address, latitude, longitude and category. The categories of transport facilities
- 195 encompassed in this dataset include: Airport, Train Station, Port, Intercity Bus Station, Subway Station, Bus
- 196 Station, Parking Lot, Toll Station, and Highway Service.
- 197 Transport networks. We retrieved the urban road networks from OpenStreetMap [54], including both driv-
- 198 ing roads and pedestrian pathways. Urban road networks in Beijing consist of 307,978 junctions and 437,337
- 199 segments. We used Amap API [53] to obtain public transport networks, encompassing bus and railway routes.
- 200 The API generates 4,238 directional bus routes (15,876 stations and 44,370 segments) and 118 directional rail-
- 201 way routes (432 stations and 1,028 segments) in Beijing. Each record includes the route names, station names,
- 202 station coordinates (latitude and longitude), average travel duration between stations, and route operational
- 203 hours.
- 204 Geolife. The Geolife GPS Trajectory dataset [55], a widely-used public benchmark for travel mode inference,
- 205 released by Microsoft Research Asia comprises 17,621 trajectories collected from 182 volunteer users between
- 206 April 2007 and August 2012. It includes raw GPS points (latitude, longitude, timestamp) and labels for transport
- 207 modes. We used a processed subset of this dataset, totaling 4,425 trips with unambiguous labels (1,819 active,
- 208 881 private, 1,725 public) for training and validating our travel mode inference model (Supplementary Note 1.4)
- 209 and validating route generation accuracy (Supplementary Note 1.5).
- 210 MemDA. The MemDA (Memory-Augmented Deep Architecture) dataset [56] is an open-sourced dataset
- 211 providing traffic speeds on major road segments in Beijing over a 75-day period (May 12 July 25, 2022).
- 212 This dataset serves as an independent ground truth to validate the reliability of our inferred mobility patterns,
- 213 particularly the travel mode inference and route generation processes (Supplementary Note 1.6).

214 Inferring home locations and workplaces

- We first detected significant stays during individuals' trips through a spatiotemporal clustering approach [57].
- These stays were defined by high-density clusters of trajectory points within a 50-meter radius and a minimum
- 217 of 10 points, subsequently linked to nearby POIs within 100 meters for contextual validation. Stays shorter than
- 218 15 minutes or longer than 24 hours were excluded to ensure focus on meaningful activities. Home locations were
- 219 determined by analyzing stays during nighttime hours (21:00–6:00) across multiple days, selecting the location
- with the highest cumulative duration and at least 25 visits over the 30-day period, situated in residential areas
- 221 as confirmed by Amap POIs. Workplaces were identified from stays during typical working hours (9:00–17:00)
- 222 on workdays, requiring a minimum of 4 visits per 5 workdays, cross-referenced with commercial POIs. This
- method reliably assigned home/work locations to 604,7368 individuals. The inference reliability was validated
- by comparing home-based trip frequencies with China's National Population Census in 2020 [58], adjusted for
- 225 population growth (see Supplementary Note 1.1 and 1.2).

226 Inferring income quartiles

- 227 To estimate socioeconomic status, we leveraged China's distinct residential structure—characterized by uni-
- 228 formly priced, gated communities with shared amenities—which enables housing expenditure to serve as robust

229 proxies for income stratification. Individuals' geolocated homes were systematically matched to property trans-230 action data from Lian Jia, China's largest real estate platform (n = 9,501 Beijing communities). We constructed 231 Voronoi polygons around each community to delineate localized socioeconomic zones, ensuring spatial contiguity 232 while minimizing edge effects through nearest-neighbor allocation. Individuals within a polygon were assigned 233 corresponding community's average transaction price as a proxy for socioeconomic status. This method capi-234 talizes on the inherent homogeneity of Chinese residential communities where housing prices strongly correlate 235 with residents' economic capacity. Validation confirms 80% of inferred home locations resided within 250 meters 236 (90% within 500 meters) of matched communities, ensuring spatial reliability. Individuals were categorized into 237 four income quartiles based on 25th, 50th and 75th percentiles of community price distributions. Spatial anal-238 ysis reproduces the distinct residential segregation patterns in Beijing, reinforcing the validity of our approach 239 (see Supplementary Note 1.3).

240 Quantifying encounter opportunities

241

242

243

244

245

 $246 \\ 247$

248

249

250

251

252

 $253 \\ 254$

255

256

269

270

271

272

273

274

275

276

To quantify the opportunities for cross-group encounters shaped by multimodal mobility, we developed two entropy-based measures grounded in probabilistic co-location patterns. The foundation is the calculation of the likelihood that individuals are simultaneously present at specific locations along their journeys. This involves first estimating the probability of individuals choosing specific transport modes—active (walking/cycling), private (car/taxi), bus, or railway—for each trip using a machine learning model pre-trained on the Geolife GPS trajectory dataset (see Supplementary Note 1.4). The most probable route for each potential mode is then generated using the Amap navigation API, incorporating real-time traffic, transit schedules, and original GPS waypoints to enhance realism (see Supplementary Note 1.5). The likelihood of any two individuals encountering each other via the same mode m within a specific spatial unit s is calculated as the product of the probabilities that their routes intersect within that unit and their estimated travel times overlap. The reliability of these co-location likelihood estimates was confirmed via cross-validation using MemDA traffic speed data (see Supplementary Note 1.6). Aggregating these encounter probabilities across all individuals belonging to the four inferred income quartiles (q), we estimated the expected population mix in each spatial unit $pop_{qsm} = \sum_{i \in q} p_{ism}$, where p_{ism} is the probability that individual i from group q occupies spatial unit s via mode m during a specific time window. Our first measure, the mode-specific Probabilistic Mixing Index (PMI), quantifies the income group diversity within this expected population mix using a normalized entropy metric [59]:

$$PMI_{s,m} = -\frac{1}{\log(4)} \sum_{q} \tau_{qsm} \log \left(\tau_{qsm}\right), \tag{1}$$

where $\tau_{qsm} = pop_{qsm} / \sum_q pop_{qsm}$. $PMI_{s,m}$ spans from 0 (indicating highly sorted co-presence, dominated by a single group) to 1 (representing maximum mixing potential with equal group representation).

Our second measure, the Multimodal Uniformity Index (MUI), evaluates how consistently these encounter opportunities are distributed across the different transport modes within a specific geographic area A. It is calculated by computing the normalized entropy [59] of the mode-averaged PMI values within that region:

$$MUI_A = -\frac{1}{\log(4)} \sum_{m} r_{A,m} \log (r_{A,m}), \tag{2}$$

where $r_{A,m} = PMI_{A,m} / \sum_m PMI_{A,m}$. Here, $PMI_{A,m}$ represents the average mixing level across all the modespecific spatial units located in region A. A higher MUI_A value (close to 1) indicates that encounter opportunities are equitable across modes within region A. Conversely, a lower value (closer to 0) signals that the potential for social encounters is highly stratified by mode choice. Together, these measures provide a framework for evaluating how urban transport systems function as social opportunity structures, shaping the likelihood of socioeconomic encounters in cities.

268 Mobility flow directionality

We adopt a vector-based approach [60] to capture the spatial orientation of population movements across urban contexts. The city center is first defined as the point of highest population density within the Beijing metropolitan area. For each spatial unit (1 km \times 1 km grid for active and private modes; transit segment for bus and railway modes), mobility flow vector for each groups is calculated based on trip origin-destination pairs recorded over hourly intervals. The vector magnitude represents the total number of trips weighted by the probabilities of individuals from the specific group being present in that spatial unit during the given hour. Next, the group-specific vectors within each spatial unit s are summed into a composite mobility flow vector \vec{V}_s . The directional angle of this composite vector is then computed as the angle between the vector and the

reference line connecting the unit's centroid to the city center: $\theta_s = \arccos\left(\frac{\vec{V}_s \cdot \vec{e}_c}{\|\vec{V}_s\|}\right)$, where \vec{e}_c is the unit vector 277 pointing from s to city center. Angles measured in radians are converted to degrees on a $0^{\circ}-180^{\circ}$ scale (0° : 278 279 strictly toward center, 180°: strictly outward). For each urban context \mathcal{C} (downtown, peri-urban, or outskirts), 280 the mean directional angle $\theta_{\mathcal{C}}$ in a given hour is computed as the arithmetic average of directional angles from all spatial units within the context: $\bar{\theta}_{\mathcal{C}} = \frac{1}{N} \sum_{s \in \mathcal{C}} \theta_s$, where N denotes the number of spatial units. 281

OLS regression models 282

283 We employ ordinary least squares (OLS) regression models [61] to quantify how transport infrastructure 284 shapes the spatiotemporal distribution of encounter opportunities. These models operate at the 1×1 km grid 285level, linking grid-specific indices of social mixing to transport-related explanatory variables $\{T_i\}$. Specifically, 286 either the Probabilistic Mixing Index for a given mode m ($PMI_{A,t,m}$) or the Multimodal Uniformity Index 287 $(MUI_{A,t})$ within grid A at time t (collectively denoted M_t) is modeled as a function of these transport infras-288 tructure features. The features $\{T_i\}$ encompass characteristics such as the lengths of different road types, road 289 type diversity, and counts of transport facilities. A detailed list and description of these grid-level variables are 290 provided in Supplementary Table 1. To capture fine-grained temporal dynamics, we fitted separate models for each hour of the day, distinguishing between workdays and weekends (see Supplementary Note 3 for further 292 details on the model specification).

Individual mobility model **293**

291

301 302

303 304

305 306

307

294 We develop an agent-based model to simulate how policy interventions can reshape travel choices and, 295 consequently, the city's structure of social encounter opportunities. For a given home-to-work trip, an individual 296 i from income group $g \in \mathcal{G}$ ($|\mathcal{G}| = 4$) probabilistically chooses a mode $m \in \mathcal{M} = \{\text{active, private, railway}\}$ to minimize a perceived travel cost C_{gm} using a multinomial logit formulation [62]: 297

$$p_{gm} = \frac{\exp(-\delta C_{gm})}{\sum_{m' \in \mathcal{M}} \exp(-\delta C_{gm'})},\tag{3}$$

298 where δ is a sensitivity parameter. The perceived cost \mathcal{C}_{gm} combines the income-specific value of time (α_g) with other mode-specific costs (β_m) , such as monetary expenses or inconvenience, applied to the travel time T_m 299 300 (computed as the duration of the shortest path \mathbf{R}_m for mode m):

$$C_{gm} = \alpha_g T_m + \beta_m T_m. \tag{4}$$

We use the model to simulate the travel preferences of individuals during the morning peak hour (9:00–10:00 AM). The model's outputs, including individual choice probabilities p_{gm} and shortest paths \mathbf{R}_m , are used as inputs for calculating our mode-specific measure of encounter diversity (PMI). Model parameters are calibrated using empirical data: relative time values (α_q) are fixed based on group incomes, while the sensitivity (δ) and mode-specific costs (β_m) are estimated by minimizing the difference between the model's predicted PMI and the empirically observed values during the peak hour. Detailed calibration procedures and performance validation are provided in Supplementary Note 4.2.

308 We then utilize the calibrated model to evaluate the distributional effects of three common transport policy 309 archetypes. These policies are simulated by systematically modifying the relevant mode-specific cost parameters 310 (β_m) . For each policy scenario, we recalculate individual mode choices and analyze the resulting changes in 311 encounter diversity (PMI), mode shares, and average travel costs across income groups to assess the trade-offs between policy goals and social equity. Detailed simulation setups and results are provided in Supplementary 312 313 Notes 4.3-4.5.

Data availability 314

315 The source data supporting the findings of this study are available online (https://github.com/ 316 UrbanMobility-y/multimodal-segregation/tree/main/Source%20data). The raw mobile phone mobility data are 317 not publicly available to preserve individual privacy and user confidentiality. The datasets of transport facil-318 ities and public transport networks are commercially available and may be requested for research use (https: 319 //lbs.amap.com/). Road networks were from OpenStreetMap (https://www.openstreetmap.org/). LianJia hous-320 ing transaction data (https://bj.lianjia.com/xiaoqu/), China National Population Census 2020 data (https: 321 //www.stats.gov.cn/english/PressRelease/202105/t20210510_1817185.html), Geolife trajectory data (https:// 322 www.microsoft.com/en-us/download/details.aspx?id=52367) and MemDA traffic speed data (https://github. 323 com/deepkashiwa20/Urban_Concept_Drift) are available online.

324 Code availability

- 325 All analysis was conducted using Python. Code is publicly available at GitHub (https://github.com/
- 326 UrbanMobility-y/multimodal-segregation).

327 Acknowledgments

- 328 We thank our funders who supported this research the Leverhulme Trust via Philip Leverhulme Prize
- 329 funding (Ref: PLP-2022-262) and the National Natural Science Foundation of China (Refs: 72288101, 72242102).

330 Author contributions

- Y. Y. and E. M. conceived the study, overall research design, and developed the probabilistic framework. Y.
- 332 Y. and E. L. performed data processing, implemented the software, ran the formal analyses and simulations,
- 333 prepared the figures, and drafted the manuscript. B. J. curated the mobility data and provided transport-
- 334 systems expertise in result interpretation. E. M. supervised the project, provided critical feedback, and reviewed
- 335 and edited the manuscript. All authors discussed the results and approved the final version of the manuscript.

336 Competing interests

337 The authors declare no competing interests.

338 References

- [1] de la Prada, a. G. & Small, M. L. How people are exposed to neighborhoods racially different from their own. *Proceedings of the National Academy of Sciences of the United States of America* **121** (2024).
- 341 [2] Cagney, K., York Cornwell, E., Goldman, A. & Cai, L. Urban mobility and activity space. *Annual Review of Sociology* **46**, 623–648 (2020).
- 343 [3] Phillips, N., Levy, B., Sampson, R., Small, M. & Wang, R. The social integration of American cities: 344 Network measures of connectedness based on everyday mobility across neighborhoods. *Sociological Methods*

345 and Research **50**, 1110–1149 (2021).

- 346 [4] Nilforoshan, H. *et al.* Human mobility networks reveal increased segregation in large cities. *Nature* **624**, 347 586 (2023).
- [5] Moro, E., Calacci, D., Dong, X. & Pentland, A. Mobility patterns are associated with experienced income segregation in large us cities. *Nature Communications* **12** (2021).
- 350 [6] Farber, S., Neutens, T., Miller, H. J. & Li, X. The social interaction potential of metropolitan regions: A time-geographic measurement approach using joint accessibility. *Annals of the Association of American Geographers* **103**, 483–504 (2013).
- [7] Liao, Y., Gil, J., Yeh, S., Pereira, R. H. & Alessandretti, L. Socio-spatial segregation and human mobility: A review of empirical evidence. *Computers, Environment and Urban Systems* **117**, 102250 (2025).
- 355 [8] Jacobs, J. The death and life of great american cities (Random House, New York City, 1961).
- 356 [9] Whyte, W. H. *The social life of small urban spaces* (Project for Public Spaces, New York City, United States, 1980).
- 358 [10] Hägerstrand, T. What about people in regional science? Papers of the Regional Science Association 24, 359 6–21 (1970).
- 360 [11] Farber, S., Neutens, T., Carrasco, J.-A. & Rojas, C. Social interaction potential and the spatial distribution of face-to-face social interactions. *Environment and Planning B: Planning and Design* 41, 960–976 (2014).
- 362 [12] Miller, H. J. A measurement theory for time geography. Geographical Analysis 37, 17–45 (2005).
- 363 [13] Hägerstraand, T. What about people in regional science? Papers in Regional Science 24, 7–21 (1970).
- 364 [14] Farber, S. & Li, X. Urban sprawl and social interaction potential: an empirical analysis of large metropolitan regions in the united states. *Journal of Transport Geography* **31**, 267–277 (2013).
- 366 [15] Farber, S., Neutens, T., Miller, H. J. & Li, X. The social interaction potential of metropolitan regions: A time-geographic measurement approach using joint accessibility. *Annals of the Association of American Geographers* **103**, 483–504 (2013).

- 369 [16] Xian, S., Qi, Z. & ming Yip, N. Beyond home neighborhood: Mobility, activity and temporal variation of socio-spatial segregation. *Journal of Transport Geography* **99**, 103304 (2022).
- 371 [17] Aiello, L. M., Vybornova, A., Juhász, S., Szell, M. & Bokányi, E. Urban highways are barriers to social ties. *Proceedings of the National Academy of Sciences* **122**, e2408937122 (2025).
- 18] Loo, B. P. Y., Fan, Z. & Moro, E. Residential and experienced social segregation: the roles of different transport modes, metro extensions, and longitudinal changes in hong kong. *Humanities & Social Sciences Communications* 11 (2024).
- 376 [19] Athey, S., Ferguson, B., Gentzkow, M. & Schmidt, T. Estimating experienced racial segregation in us cities using large-scale gps data. *Proceedings of the National Academy of Sciences* **118**, e2026160118 (2021).
- 378 [20] Fan, Z. et al. Diversity beyond density: Experienced social mixing of urban streets. PNAS Nexus 2, pgad077 (2023).
- 380 [21] Abbasi, S., Ko, J. & Min, J. Measuring destination-based segregation through mobility patterns: 381 Application of transport card data. *Journal of Transport Geography* **92**, 103025 (2021).
- 382 [22] Gao, Q.-L. *et al.* Revealing transport inequality from an activity space perspective: A study based on human mobility data. *Cities* **131**, 104036 (2022).
- 384 [23] Kolkowski, L. et al. Measuring activity-based social segregation using public transport smart card data.
 385 Journal of Transport Geography 110, 103642 (2023).
- Wang, Q., Phillips, N. E., Small, M. L. & Sampson, R. J. Urban mobility and neighborhood isolation in america's 50 largest cities. *Proceedings of the National Academy of Sciences* **115**, 7735–7740 (2018).
- 388 [25] Tóth, G. et al. Inequality is rising where social network segregation interacts with urban topology. Nature Communications 12, 1143 (2021).
- 390 [26] Candipan, J., Phillips, N. E., Sampson, R. J. & Small, M. From residence to movement: The nature of racial segregation in everyday urban mobility. *Urban Studies* **58**, 3095–3117 (2021).
- 392 [27] Barreras, F. & Watts, D. J. The exciting potential and daunting challenge of using GPS human-mobility data for epidemic modeling. *Nature Computational Science* 4, 398–411 (2024).
- 394 [28] Song, Y. & Miller, H. J. Simulating visit probability distributions within planar space-time prisms.

 395 International Journal of Geographical Information Science 28, 104–125 (2014).
- 396 [29] Elias, D. & Kuijpers, B. Visit probability in space–time prisms based on binomial random walk. *ISPRS* 397 International Journal of Geo-Information 9 (2020).
- 398 [30] Winter, S. & Yin, Z.-C. Directed movements in probabilistic time geography. *International Journal of Geographical Information Science* **24**, 1349–1365 (2010).
- 400 [31] Huang, L. et al. Reconstructing human activities via coupling mobile phone data with location-based social networks. Travel Behaviour and Society 33, 100606 (2023).
- 402 [32] Crandall, D. J. et al. Inferring social ties from geographic coincidences. Proceedings of the National Academy of Sciences 107, 22436–22441 (2010).
- 404 [33] Pham, H., Shahabi, C. & Liu, Y. Inferring social strength from spatiotemporal data. *ACM Trans. Database* 405 Syst. **41** (2016).
- 406 [34] Alessandretti, L., Orozco, L. G. N., Saberi, M., Szell, M. & Battiston, F. Multimodal urban mobility 407 and multilayer transport networks. *Environment and Planning B: Urban Analytics and City Science* **50**, 408 2038–2070 (2023).
- 409 [35] Liao, Y., Gil, J., Yeh, S., Pereira, R. H. & Alessandretti, L. Socio-spatial segregation and human mobility: 410 A review of empirical evidence. *Computers, Environment and Urban Systems* **117**, 102250 (2025).
- 411 [36] Zhou, M., Zhou, J., Zhou, J., Lei, S. & Zhao, Z. Introducing social contacts into the node-place model: A case study of hong kong. *Journal of Transport Geography* **107**, 103532 (2023).
- 413 [37] Lucas, K. Transport and social exclusion: Where are we now? Transport Policy 20, 105–113 (2012).
- 414 [38] Creutzig, F. et al. Adjust urban and rural road pricing for fair mobility. Nature Climate Change 10, 591–594 (2020).
- 416 [39] Cramton, P., Geddes, R. R. & Ockenfels, A. Set road charges in real time to ease traffic. Nature 560, 23 -25 (2018).
- 418 [40] Wachs, M. U.S. transit subsidy policy: In need of reform. Science 244, 1545–1549 (1989).

- 419 [41] Ding, D. et al. The co-benefits of active travel interventions beyond physical activity: a systematic review.
 420 The Lancet Planetary Health 8, e790–e803 (2024).
- 421 [42] Timmons, S., Andersson, Y., McGowan, F. P. & Lunn, P. D. Active travel infrastructure design and implementation: Insights from behavioral science. Wiley Interdisciplinary Reviews: Climate Change 15, e878 (2024).
- 424 [43] Ross, M. L., Hazlett, C. & Mahdavi, P. Global progress and backsliding on gasoline taxes and subsidies.

 425 Nature Energy 2, 16201 (2017).
- 426 [44] Shoup, D. C. The high cost of free parking. Journal of Planning Education and Research 17, 3–20 (1997).
- 427 [45] Eagle, N. & Pentland, A. Reality mining: sensing complex social systems. *Personal and Ubiquitous Computing* **10**, 255–268 (2006).
- 429 [46] Chetty, R. et al. Social capital I: measurement and associations with economic mobility. Nature 608, 430 108–121 (2022).
- 431 [47] Chetty, R. et al. Social capital II: determinants of economic connectedness. Nature 608, 122–134 (2022).
- 432 [48] Thrift, N. & Pred, A. Time-geography: a new beginning. Progress in Human Geography 5, 277–286 (1981).
- 433 [49] Batty, M. The size, scale, and shape of cities. Science **319**, 769–771 (2008).
- 434 [50] Graham, S. & Marvin, S. Splintering Urbanism: Networked Infrastructures, Technological Mobilities and the Urban Condition 1st edn (Routledge, London, 2001).
- 436 [51] Moreno, C., Allam, Z., Chabaud, D., Gall, C. & Pratlong, F. Introducing the "15-minute city": 437 Sustainability, resilience and place identity in future post-pandemic cities. *Smart Cities* 4, 93–111 (2021).
- 438 [52] LianJia property database. https://bj.lianjia.com/xiaoqu/. Accessed on May 2024.
- 439 [53] Amap navigation application API. https://lbs.amap.com/. Accessed on May 2024.
- 440 [54] OpenStreetMap Contributors. OpenStreetMap Data. https://www.openstreetmap.org/. Accessed on May 2024.
- 442 [55] Zheng, Y., Zhang, L., Xie, X. & Ma, W.-Y. Mining interesting locations and travel sequences from GPS trajectories. *Proceedings of the 18th International Conference on World Wide Web* 791–800 (2009).
- 444 [56] Cai, Z. et al. MemDA: Forecasting urban time series with memory-based drift adaptation. Proceedings of 445 the 32nd ACM International Conference on Information and Knowledge Management 193–202 (2023).
- 446 [57] Hariharan, R. & Toyama, K. Project lachesis: Parsing and modeling location histories. *Geographic Information Science* 106–124 (2004).
- 448 [58] National Bureau of Statistics of China. The seventh national population census (2021). https://www.stats. 449 gov.cn/english/PressRelease/202105/t20210510_1817185.html.
- 450 [59] Shannon, C. E. A mathematical theory of communication. *The Bell System Technical Journal* 5, 3–55 (2001).
- 452 [60] Zhao, P., Wang, H., Liu, Q., Yan, X.-Y. & Li, J. Unravelling the spatial directionality of urban mobility.

 453 Nature Communications 15, 4507 (2024).
- 454 [61] Greene, W. H. Econometric Analysis 8th edn (Pearson, New York, NY, 2018).
- 455 [62] McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior (Academic Press, New York, 456 1974).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

• supplementary.pdf