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Abstract8

Social mixing in cities emerges from encounters between individuals of different backgrounds in shared9
spaces [1–3]. These opportunities for inter-group contact are not randomly distributed but shaped by urban10
transport systems that channel millions of daily trajectories. As cities face rising segregation, understand-11
ing and quantifying these opportunity structures has become critical for designing evidence-based policies12
that foster social inclusion [4–6]. Yet existing approaches face significant limitations in capturing the prob-13
abilistic nature of these opportunities within complex, multimodal cities [7]. This study addresses this gap14
by developing a computational framework that treats encounters as likelihoods shaped by behavioral uncer-15
tainty. Encounter probabilities among individuals are calculated within mode-specific encounter spaces—from16
individual roads, city blocks to rail and bus service segments—by aggregating potential trajectories across17
socioeconomic groups. Using city-scale mobility data, the outcomes reveal how infrastructure, daily rhythms,18
and travel choices interweave to create spatially and temporally varying opportunity structures across multi-19
modal transport systems. We then extend these findings through agent-based simulations, demonstrating how20
transport policies designed to promote sustainable mobility may produce unintended social consequences.21
The study underscores that effective policymaking for social inclusion must account for how transport22
interventions reshape encounter opportunities in citizens’ daily mobility.23

Keywords: social interaction, mobility, transport infrastructure, mobility data24

Introduction25

Socially cohesive cities thrive on interactions between diverse individuals, which foster mutual understanding26
and shared identity [8, 9]. The foundation for these interactions, however, is the simple, yet crucial, opportunity27
for people to be in the same place at the same time [6, 10, 11]. While not every instance of co-presence—28
whether a shared bus ride, or a crosswalk encounter—leads to meaningful interaction, it constitutes a necessary29
structural condition, what social and geographical scientists refer to as interaction potential[12] rooted in the30
principles of time geography [13] that govern interaction opportunities between pairs of people. In an era of31
increasing urban inequality, understanding how to create more opportunities for cross-group contact has become32
a critical priority for policymakers seeking to build inclusive cities [14, 15].33

In urban environments, these opportunities for interaction are not randomly distributed; they are shaped34
by transportation infrastructure that channels millions of daily trajectories into predictable patterns of social35
mixing [16, 17]. Every journey, whether by foot, car, bus, or train, traces a trajectory through physical and36
social space, creating chances for contact with others whose paths intersect [18]. Transport systems do more37
than move people efficiently; they structure who is likely to share space with whom during daily mobility.38

Despite growing recognition of mobility’s role in shaping social life, current methods for mapping interac-39
tion opportunities across urban transport networks remain limited. Many computational studies using mobile40
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phone data [4, 5, 19, 20], transit records [21–23], and social networks [24–26] typically infer encounters from spa-41
tiotemporal overlaps, assuming co-presence when two individuals’ recorded positions coincide within distance42
and time thresholds. Such deterministic methods not only overestimate the interaction certainty when mobility43
records happen to overlap, but more fundamentally, underestimate the interaction potential in the unobserved44
intervals between recorded locations due to the sampling sparsity of real-world mobility data [27]. While other45
approaches—such as space-time prisms [28–30], Bayesian location models [31, 32], and entropy-based tie infer-46
ence [33]—have been developed to address uncertainty in data and activity, they remain largely theoretical or47
confined to small-scale demonstrations with restrictive assumptions. Crucially, they fail to capture the reality48
of large, multimodal cities, where vertically layered transport infrastructures create mode-specific interaction49
potentials that cannot be measured by simple proximity [34, 35].50

Here we introduce a novel probabilistic framework that quantifies cross-group encounter opportunities across51
multimodal transport systems at city scale. We conceptualize co-presence not as a binary event but as a52
probabilistic opportunity—a likelihood shaped by individuals’ route choices, mode preferences, and behavioral53
uncertainty inherent in human mobility. We develop two core indices: the Probabilistic Mixing Index (PMI ),54
which assesses the diversity of potential encounters using each transport mode (active, private, bus, railway),55
and the Multimodal Uniformity Index (MUI ), which measures the consistency or divergence of these mixing56
opportunities across different mobility layers within the same geographic area. Applied to Beijing’s metropoli-57
tan area using mobile phone data from 11 million users, our framework uncovers the hidden social opportunity58
structures for cross-group contact embedded within transport systems that vary across modes, times, and urban59
contexts. To translate the findings into actionable guidance, we further develop an agent-based model to explore60
how targeted policies can reshape these opportunity structures to foster more inclusive urban encounters.61

Results62

A probabilistic framework for measuring encounter opportunities63

To quantify how urban transport systems create opportunities for cross-group encounters, we develop a64
probabilistic framework (Fig. 1a) using high-resolution mobile phone data from 11 million anonymous users in65
Beijing, China. We infer individuals’ socioeconomic status by matching home locations to community property66
values from LianJia (China’s largest real estate platform), categorizing users into four income quartiles (see67
Methods). Our approach conceptualizes an ”encounter opportunity” not as a confirmed interaction, but as68
the probabilistic co-presence of individuals within specific urban environments, allowing us to account for the69
inherent uncertainty in mobility data and focus on the structural potential for interaction.70

We define potential encounter spaces differently across transport modes: 1 km grids for diffuse modes like71
active travel and driving, and station-to-station segments for contained modes like bus and rail, where individ-72
uals share a vehicle or platform (Fig. 1b). Co-presence likelihood is assessed within 1-hour windows, balancing73
temporal resolution with computational feasibility (see Supplementary Note 2.3 for sensitivity analysis of spa-74
tiotemporal scales). By aggregating encounter probabilities across income groups, we compute the Probabilistic75
Mixing Index (PMIs,m), a mode-specific measure that quantifies the diversity of potential encounters within76
a given spatial unit s for mode m (a higher PMI, approaching 1, signifies greater potential for cross-group77
encounters). To assess how these mixing opportunities vary across different transport layers in the same area,78
we introduce the Multimodal Uniformity Index (MUIA), which measures the consistency of PMI values across79
all transport modes within the same geographic context (e.g., a specific region A) (see Methods).80

Divergent opportunity structures across mobility layers81

Urban transport systems generate distinct patterns of mixing opportunities across Beijing’s metropolitan82
area (Fig. 1c). Active mobility shows the most localized mixing patterns (PMIactive = 0.4881), with concentrated83
opportunities in mixed-use districts (e.g., business centers where diverse workers converge) but limited cross-84
group contact in homogeneous residential neighborhoods. Private vehicle travel shows intermediate mixing85
potential (PMIprivate = 0.7102) along arterial roads where diverse traffic streams converge. Public transport86
reveals striking contrasts: railways create the most extensive opportunities (PMIrailway = 0.9050) by connecting87
disparate neighborhoods, except in suburbs, while buses sustain limited mixing (PMIbus = 0.7257) due to88
localized routes serving similar demographics.89

Encounter opportunities generally diminish peripherally (declining PMI ; Fig. 1e), yet railway-scarce suburbs90
show unexpected mixing where shared bus dependency unites residents lacking alternatives. The MUI distri-91
butions (Fig. 1d,f) further reveal that central areas show high uniformity (high MUI ), where different modes92
offer similarly high mixing opportunities, whereas peripheral zones exhibit highly divergent, mode-dependent93
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Fig. 1 | Probabilistic framework quantifies encounter opportunities in multimodal transport systems.
a, Conceptual overview of the methodology. Individual trajectories from mobile phone data estimate probabilities of
co-presence between pairs of individuals traveling via different transport modes (active, private, bus, railway). b, Mode-
specific spatial units for calculating co-presence probabilities. Road-based encounter opportunities (active/private modes)
are assessed in 1 km × 1 km grids representing potential roadside proximity. Public transport (bus/railway modes)
opportunities are assessed along station-to-station segments, representing shared vehicle or platform environments. c,
Spatial maps of the Probabilistic Mixing Index (PMI ) for each transport mode across Beijing metropolitan area. Distinct
patterns emerge depending on the mode, with mean citywide PMI values noted above each map. d, Spatial distribution
of Multimodal Uniformity Index (MUI ), measuring consistency of PMI values across the four transport modes in the
same region (1 km × 1 km grids shown). e, Distance-dependent mixing patterns. Points show PMI averages in 5 km
concentric zones from the city center. Dashed line marks railway-deprived suburbs with elevated mixing opportunities.
f, Average MUI versus distance from the center, showing declining cross-modal uniformity toward the periphery.

opportunity structures. This highlights that transport infrastructure creates geographically varied landscapes94
of potential social interaction [36].95

Encounter opportunities unfolds with residents’ daily rhythms96

Temporal patterns across Beijing’s downtown, peri-urban, and outskirts zones (Fig. 2a) show how routines97
influence mixing opportunities. A midday window (e.g., 11:00–13:00) boosts diversity across modes, with syn-98
chronized PMI and MUI peaks (Fig. 2b–e), driven by balanced, multidirectional flows (mean angular dispersion99
90°, Fig. 2g-i; see Methods). This reflects diverse activities enhancing cross-group co-presence potential. In con-100
trast, morning (06:00–08:00) and evening (post-18:00) commutes limit opportunities, as stratified flows converge101
downtown and disperse peripherally. Buses notably enhance mixing in peripheral areas, with higher relative102
PMI from downtown to outskirts (Fig. 2b-d). These findings challenge conventional assumption that extensive103
public transit ensures equity [37], showing that encounter potential is dynamically shaped by the interplay of104
daily schedules, transport infrastructure, and urban spatial organization.105
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Fig. 2 | Daily rhythms drive multimodal mixing opportunities across urban contexts. a, Beijing metropolitan
area partitioned into three zones—downtown, peri-urban, and outskirts—based on equal population distribution. b-d,
Hourly variation in PMI shown for each transport mode within the three spatial contexts. Points indicate the average
PMI for a given mode and context during each one-hour interval. e, Temporal fluctuations in the MUI. f, Schematic
defining the mobility flow directional angle θs for spatial units (grids or transit segments), calculated relative to the city
center (0° towards, 180° away). g-i, Hourly rhythms of the context-specific average directional angle. Midday periods
exhibit more balanced, multidirectional travel (mean angular dispersion approaching 90°), correlating with enhanced
mixing opportunities. In contrast, commuting hours show strongly directional flows (towards center in morning, away in
evening) that limit cross-group co-presence.

Transport infrastructure shapes opportunities for social interaction106

To unravel how transport infrastructure unevenly shapes opportunities for social interaction, we use OLS107
regression models linking grid-level transport infrastructure features to mode-specific contact opportunities108
(PMI ) and cross-modal uniformity (MUI ) (see Methods; Supplementary Note 3). Dense infrastructure gener-109
ally enhances interaction potential within respective modes (Fig. 3a; Supplementary Table 2): high motorways110
accessibility increase opportunities for private vehicle users (β∗∗∗

PMI,private > 0), tertiary roads accessibility bene-111
fit active travelers (β∗∗∗

PMI,active > 0), and subway stations boost railway encounters (β∗∗∗
PMI,railway > 0). However,112

mode-exclusive infrastructure creates divergent opportunity structures: motorways decrease cross-modal uni-113
formity (β∗∗

MUI < 0) by enhancing private-mode encounters while excluding other users, whereas diverse road114
networks promote equitable opportunities across modes (β∗∗∗

MUI > 0). Temporal analysis shows infrastructure’s115
impact varies with daily rhythms (Fig. 3b). For example, tertiary roads maximize encounter potential during116
commute hours for road users but shift peak contribution to public transport midday, while weekend patterns117
support more equitable cross-modal opportunities. These findings demonstrate infrastructure’s social impact118
depends not just on physical presence but on when and how diverse groups utilize it.119

Model simulation for policy interventions120

To explore how policy can actively shape these opportunity structures, we developed an agent-based model121
that simulates morning commutes based on income-differentiated travel preferences (see Methods; Supple-122
mentary Note 4.1). The model, calibrated to match empirically observed encounter diversity PMI (Fig. 4b;123
Supplementary Note 4.2), allows us to test the distributional effects of common transport policies (private car124
control [38, 39], public transport subsidies [40], active travel promotion [41, 42]).125

Our simulations reveal that interventions often produce complex and counter-intuitive social outcomes. For126
instance, a uniform citywide increase in driving costs ∆βprivate (akin to fuel taxes [43] or parking fees [44])127
disproportionately shifts lower-income users to other modes, paradoxically making the pool of remaining drivers128
less socioeconomically diverse (PMI decreases; Fig. 4c) even as the policy has a progressive financial impact129
(Fig. 4d).130

The spatial application of policy is also critical. A downtown congestion charge (mimicking congestion pricing131
[39]; Supplementary Note 4.3), for example, creates a different trade-off, enhancing encounter diversity among132
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Fig. 3 | OLS regression models explain encounter opportunities. a, Contribution of transport infrastructure
features on encounter diversity estimated using the daily granularity model. The leftmost column shows feature names.
Each feature is associated with one or two bars, representing significant coefficients (β > 0) on workdays and weekends
respectively. A positive coefficient (β > 0, rightward arrow) indicates the feature enhances co-presence potential (for PMI )
or cross-modal uniformity (for MUI ), while a negative coefficient (β > 0, leftward arrow) indicates reduced opportunities
or more varied patterns among modes. Bold arrow denotes more pronounced weekend effects, non-bold marks stronger
workday effects. b, Variation in the influence of selected feature (tertiary roads) throughout the day estimated using the
hourly granularity model. In the compass plot, each point’s angular position represents a specific hour (0:00 to 23:00),
with numeric labels indicating the coefficient’s value for that hour and day type.

drivers citywide but reducing it on other modes by altering specific commuter flows. Similarly, while public133
transport subsidies provide clear benefits to lower-income groups, they can inadvertently concentrate them134
onto rail, reducing interaction potential within that mode and showing diminishing returns (Supplementary135
Note 4.4). Promoting active travel (through infrastructure or safety improvements [42]) also yields spatially136
polarized results, fostering diverse encounters downtown but reinforcing socially sorted patterns in suburbs137
(Supplementary Note 4.5). These findings underscore a crucial insight for urban governance: transport policies138
designed for efficiency or environmental goals have profound, spatially-dependent impacts on the social fabric,139
presenting critical trade-offs between policy goals and social equity that demand integrated, context-aware140
planning.141

Discussion142

Cities shape social life through the encounter opportunities they create or constrain[15, 36]. Our probabilistic143
framework reveals how transport systems structure these opportunities, moving beyond deterministic measures144
that assume precise spatiotemporal overlaps. By treating co-presence as likelihood rather than certainty, our145
metrics (PMI and MUI ) capture the inherent uncertainty in human behavior and mobility data. Our framework146
reconceptualizes social dynamics not as fixed patterns but as probabilistic opportunities emerging from the147
interplay of infrastructure, mobility choices, and daily rhythms.148

Our findings challenge assumptions that physical proximity automatically fosters social cohesion [45–47].149
Railway systems create extensive encounter opportunities yet remain temporally constrained; buses in periph-150
eries paradoxically enhance cross-group contact through shared dependency; motorways generate mode-based151
stratification despite improving connectivity. These patterns demonstrate that infrastructure’s social impact152
depends critically on who uses it, when, and under what constraints—aligning with time-geography principles153
[48] while extending them to multimodal contexts. These findings compel infrastructure-centric urban design154
[49, 50] to move beyond simple expansion and instead embrace strategies that coordinate infrastructure, policy,155
and operations with urban rhythms, a perspective central to the concept of chrono-urbanism [51].156
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Fig. 4 | Agent-based model simulates policy impacts on encounter opportunities. a, Schematic of the agent-
based mobility model. Individuals choose between active, private car, or railway modes probabilistically to minimize
perceived travel cost, which incorporates travel time (Tm), income-specific value of time (αg), and mode-specific costs
(βm). b, Spatial distribution of model-predicted PMI for active, private, and railway travel during the morning com-
muting hour. The optimal model parameters calibrated using empirical data are displayed above the maps. c, Simulated
impact of a uniform citywide increase in private car cost (∆βprivate). Top row: Proportional change in mode usage rela-
tive to baseline by income groups. Bottom row: Change in overall citywide encounter potential (PMI ) for each mode. d,
Impact of the uniform private car policy on average travel costs relative to baseline by income group, showing a generally
progressive burden.

Policy simulations reveal tensions between transport objectives and social goals. Interventions optimizing157
efficiency or sustainability may inadvertently reduce encounter opportunities, highlighting that transport policies158
reshape cities’ social opportunity landscapes in complex, often unexpected ways. These outcomes underscore159
that transport policies cannot be evaluated solely on efficiency or environmental grounds—their impacts on the160
social opportunity structure demand equal consideration.161

Finally, while our Beijing case provides detailed insights, the framework’s probabilistic approach and focus on162
structural opportunities offers a transferable methodology for examining how different urban contexts create or163
constrain possibilities for cross-group contact. Future comparative research across cities with different transport164
legacies, urban forms, and social compositions will be crucial to test the universality of these patterns. Such165
work can help build a more comprehensive theory of how urban mobility systems shape the social fabric of our166
cities, paving the way for the design of environments that are not only connected, but also cohesive.167

Methods168

Datasets169

Mobile phone data. The anonymous mobile phone dataset come from a telecommunications service provider170
in China. The dataset was collected over one-month period (June) in 2023, and consists of anonymized records171
of GPS locations (“pings”) from users that have signed up to provide data through explicit consent agreements172
outlined in the telecoms company’s privacy notice. The mobile phone users were informed about how their173
data will be used and stored under the regulation of China’s Personal Information Protection Law (PIPL).174
In alignment with China’s data protection and cybersecurity regulations, all data are thoroughly anonymized175
to remove personally identifiable information and processed to ensure privacy. This work was exempt from176
the ethical review by the Business, Environment, Social Sciences Faculty Research Ethics Committee in the177
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University of Leeds (Reference: BESS+ FREC - 2024 1663-2108). The raw data consist of 11,018,253 users178
(covering 50% population) and 8,386,564,428 pings in Beijing, China. Each ping consists of a de-identified user179
ID, latitude, longitude and timestamp. The mean number of raw pings associated with a user in a month is 1008180
and the median number of pings is 872. To ensure data reliability, we removed duplicate pings to ensure accuracy.181
We filtered out users with fewer than 300 pings to eliminate noise. The filtered dataset consists of 7,562,482182
users and 4,815,969,539 pings. The population representativeness of the dataset is validated in Supplementary183
Note 1.2.184

LianJia housing. The LianJia housing dataset [52], sourced from China’s largest real-time property trans-185
action platform, offers a detailed repository of residential property information in Beijing. As of June 2023, this186
dataset encompasses 9,501 communities, covering 97.3% of Beijing’s residential market. This dataset provides187
granular metrics including average transaction prices (RMB/m²), architectural typologies, household counts,188
and precise geographic coordinates. As China’s residential neighborhoods are predominantly planned, gated com-189
munities with homogeneous pricing and shared amenities, the dataset captures near-complete market dynamics,190
enabling robust socioeconomic inference.191

Transport facilities. We collected a dataset of 64,805 transport facilities in Beijing, China, using Application192
Programming Interface (API) of Amap [53], a leading mapping and navigation service provider in China.193
Each record includes name, address, latitude, longitude and category. The categories of transport facilities194
encompassed in this dataset include: Airport, Train Station, Port, Intercity Bus Station, Subway Station, Bus195
Station, Parking Lot, Toll Station, and Highway Service.196

Transport networks. We retrieved the urban road networks from OpenStreetMap [54], including both driv-197
ing roads and pedestrian pathways. Urban road networks in Beijing consist of 307,978 junctions and 437,337198
segments. We used Amap API [53] to obtain public transport networks, encompassing bus and railway routes.199
The API generates 4,238 directional bus routes (15,876 stations and 44,370 segments) and 118 directional rail-200
way routes (432 stations and 1,028 segments) in Beijing. Each record includes the route names, station names,201
station coordinates (latitude and longitude), average travel duration between stations, and route operational202
hours.203

Geolife. The Geolife GPS Trajectory dataset [55], a widely-used public benchmark for travel mode inference,204
released by Microsoft Research Asia comprises 17,621 trajectories collected from 182 volunteer users between205
April 2007 and August 2012. It includes raw GPS points (latitude, longitude, timestamp) and labels for transport206
modes. We used a processed subset of this dataset, totaling 4,425 trips with unambiguous labels (1,819 active,207
881 private, 1,725 public) for training and validating our travel mode inference model (Supplementary Note 1.4)208
and validating route generation accuracy (Supplementary Note 1.5).209

MemDA. The MemDA (Memory-Augmented Deep Architecture) dataset [56] is an open-sourced dataset210
providing traffic speeds on major road segments in Beijing over a 75-day period (May 12 - July 25, 2022).211
This dataset serves as an independent ground truth to validate the reliability of our inferred mobility patterns,212
particularly the travel mode inference and route generation processes (Supplementary Note 1.6).213

Inferring home locations and workplaces214

We first detected significant stays during individuals’ trips through a spatiotemporal clustering approach [57].215
These stays were defined by high-density clusters of trajectory points within a 50-meter radius and a minimum216
of 10 points, subsequently linked to nearby POIs within 100 meters for contextual validation. Stays shorter than217
15 minutes or longer than 24 hours were excluded to ensure focus on meaningful activities. Home locations were218
determined by analyzing stays during nighttime hours (21:00–6:00) across multiple days, selecting the location219
with the highest cumulative duration and at least 25 visits over the 30-day period, situated in residential areas220
as confirmed by Amap POIs. Workplaces were identified from stays during typical working hours (9:00–17:00)221
on workdays, requiring a minimum of 4 visits per 5 workdays, cross-referenced with commercial POIs. This222
method reliably assigned home/work locations to 604,7368 individuals. The inference reliability was validated223
by comparing home-based trip frequencies with China’s National Population Census in 2020 [58], adjusted for224
population growth (see Supplementary Note 1.1 and 1.2).225

Inferring income quartiles226

To estimate socioeconomic status, we leveraged China’s distinct residential structure—characterized by uni-227
formly priced, gated communities with shared amenities—which enables housing expenditure to serve as robust228
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proxies for income stratification. Individuals’ geolocated homes were systematically matched to property trans-229
action data from LianJia, China’s largest real estate platform (n = 9,501 Beijing communities). We constructed230
Voronoi polygons around each community to delineate localized socioeconomic zones, ensuring spatial contiguity231
while minimizing edge effects through nearest-neighbor allocation. Individuals within a polygon were assigned232
corresponding community’s average transaction price as a proxy for socioeconomic status. This method capi-233
talizes on the inherent homogeneity of Chinese residential communities where housing prices strongly correlate234
with residents’ economic capacity. Validation confirms 80% of inferred home locations resided within 250 meters235
(90% within 500 meters) of matched communities, ensuring spatial reliability. Individuals were categorized into236
four income quartiles based on 25th, 50th and 75th percentiles of community price distributions. Spatial anal-237
ysis reproduces the distinct residential segregation patterns in Beijing, reinforcing the validity of our approach238
(see Supplementary Note 1.3).239

Quantifying encounter opportunities240

To quantify the opportunities for cross-group encounters shaped by multimodal mobility, we developed two241
entropy-based measures grounded in probabilistic co-location patterns. The foundation is the calculation of the242
likelihood that individuals are simultaneously present at specific locations along their journeys. This involves243
first estimating the probability of individuals choosing specific transport modes—active (walking/cycling), pri-244
vate (car/taxi), bus, or railway—for each trip using a machine learning model pre-trained on the Geolife GPS245
trajectory dataset (see Supplementary Note 1.4). The most probable route for each potential mode is then246
generated using the Amap navigation API, incorporating real-time traffic, transit schedules, and original GPS247
waypoints to enhance realism (see Supplementary Note 1.5). The likelihood of any two individuals encountering248
each other via the same mode m within a specific spatial unit s is calculated as the product of the probabilities249
that their routes intersect within that unit and their estimated travel times overlap. The reliability of these250
co-location likelihood estimates was confirmed via cross-validation using MemDA traffic speed data (see Supple-251
mentary Note 1.6). Aggregating these encounter probabilities across all individuals belonging to the four inferred252
income quartiles (q), we estimated the expected population mix in each spatial unit popqsm =

∑

i∈q pism, where253
pism is the probability that individual i from group q occupies spatial unit s via mode m during a specific time254
window. Our first measure, the mode-specific Probabilistic Mixing Index (PMI ), quantifies the income group255
diversity within this expected population mix using a normalized entropy metric [59]:256

PMIs,m = −
1

log(4)

∑

q

τqsm log
(

τqsm
)

, (1)

where τqsm = popqsm/
∑

q popqsm. PMIs,m spans from 0 (indicating highly sorted co-presence, dominated by a257
single group) to 1 (representing maximum mixing potential with equal group representation).258

Our second measure, the Multimodal Uniformity Index (MUI ), evaluates how consistently these encounter259
opportunities are distributed across the different transport modes within a specific geographic area A. It is260
calculated by computing the normalized entropy [59] of the mode-averaged PMI values within that region:261

MUIA = −
1

log(4)

∑

m

rA,m log
(

rA,m

)

, (2)

where rA,m = PMIA,m/
∑

m PMIA,m. Here, PMIA,m represents the average mixing level across all the mode-262
specific spatial units located in region A. A higherMUIA value (close to 1) indicates that encounter opportunities263
are equitable across modes within region A. Conversely, a lower value (closer to 0) signals that the potential264
for social encounters is highly stratified by mode choice. Together, these measures provide a framework for265
evaluating how urban transport systems function as social opportunity structures, shaping the likelihood of266
socioeconomic encounters in cities.267

Mobility flow directionality268

We adopt a vector-based approach [60] to capture the spatial orientation of population movements across269
urban contexts. The city center is first defined as the point of highest population density within the Beijing270
metropolitan area. For each spatial unit (1 km × 1 km grid for active and private modes; transit segment271
for bus and railway modes), mobility flow vector for each groups is calculated based on trip origin-destination272
pairs recorded over hourly intervals. The vector magnitude represents the total number of trips weighted by273
the probabilities of individuals from the specific group being present in that spatial unit during the given hour.274
Next, the group-specific vectors within each spatial unit s are summed into a composite mobility flow vector275
V⃗s. The directional angle of this composite vector is then computed as the angle between the vector and the276
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reference line connecting the unit’s centroid to the city center: θs = arccos
(

V⃗s·e⃗c
∥V⃗s∥

)

, where e⃗c is the unit vector277

pointing from s to city center. Angles measured in radians are converted to degrees on a 0°–180° scale (0°:278
strictly toward center, 180°: strictly outward). For each urban context C (downtown, peri-urban, or outskirts),279
the mean directional angle θ̄C in a given hour is computed as the arithmetic average of directional angles from280
all spatial units within the context: θ̄C = 1

N

∑

s∈C θs, where N denotes the number of spatial units.281

OLS regression models282

We employ ordinary least squares (OLS) regression models [61] to quantify how transport infrastructure283
shapes the spatiotemporal distribution of encounter opportunities. These models operate at the 1 × 1 km grid284
level, linking grid-specific indices of social mixing to transport-related explanatory variables {Ti}. Specifically,285
either the Probabilistic Mixing Index for a given mode m (PMIA,t,m) or the Multimodal Uniformity Index286
(MUIA,t) within grid A at time t (collectively denoted Mt) is modeled as a function of these transport infras-287
tructure features. The features {Ti} encompass characteristics such as the lengths of different road types, road288
type diversity, and counts of transport facilities. A detailed list and description of these grid-level variables are289
provided in Supplementary Table 1. To capture fine-grained temporal dynamics, we fitted separate models for290
each hour of the day, distinguishing between workdays and weekends (see Supplementary Note 3 for further291
details on the model specification).292

Individual mobility model293

We develop an agent-based model to simulate how policy interventions can reshape travel choices and,294
consequently, the city’s structure of social encounter opportunities. For a given home-to-work trip, an individual295
i from income group g ∈ G (|G| = 4) probabilistically chooses a mode m ∈ M = {active, private, railway} to296
minimize a perceived travel cost Cgm using a multinomial logit formulation [62]:297

pgm =
exp(−δCgm)

∑

m′∈M exp(−δCgm′)
, (3)

where δ is a sensitivity parameter. The perceived cost Cgm combines the income-specific value of time (αg)298
with other mode-specific costs (βm), such as monetary expenses or inconvenience, applied to the travel time Tm299
(computed as the duration of the shortest path Rm for mode m):300

Cgm = αgTm + βmTm. (4)

We use the model to simulate the travel preferences of individuals during the morning peak hour (9:00–10:00301
AM). The model’s outputs, including individual choice probabilities pgm and shortest paths Rm, are used as302
inputs for calculating our mode-specific measure of encounter diversity (PMI ). Model parameters are calibrated303
using empirical data: relative time values (αg) are fixed based on group incomes, while the sensitivity (δ) and304
mode-specific costs (βm) are estimated by minimizing the difference between the model’s predicted PMI and the305
empirically observed values during the peak hour. Detailed calibration procedures and performance validation306
are provided in Supplementary Note 4.2.307

We then utilize the calibrated model to evaluate the distributional effects of three common transport policy308
archetypes. These policies are simulated by systematically modifying the relevant mode-specific cost parameters309
(βm). For each policy scenario, we recalculate individual mode choices and analyze the resulting changes in310
encounter diversity (PMI ), mode shares, and average travel costs across income groups to assess the trade-offs311
between policy goals and social equity. Detailed simulation setups and results are provided in Supplementary312
Notes 4.3–4.5.313

Data availability314

The source data supporting the findings of this study are available online (https://github.com/315
UrbanMobility-y/multimodal-segregation/tree/main/Source%20data). The raw mobile phone mobility data are316
not publicly available to preserve individual privacy and user confidentiality. The datasets of transport facil-317
ities and public transport networks are commercially available and may be requested for research use (https:318
//lbs.amap.com/). Road networks were from OpenStreetMap (https://www.openstreetmap.org/). LianJia hous-319
ing transaction data (https://bj.lianjia.com/xiaoqu/), China National Population Census 2020 data (https:320
//www.stats.gov.cn/english/PressRelease/202105/t20210510 1817185.html), Geolife trajectory data (https://321
www.microsoft.com/en-us/download/details.aspx?id=52367) and MemDA traffic speed data (https://github.322
com/deepkashiwa20/Urban Concept Drift) are available online.323
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Code availability324

All analysis was conducted using Python. Code is publicly available at GitHub (https://github.com/325
UrbanMobility-y/multimodal-segregation).326
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