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Supplementary Information81

1 Mobility data treatment82

1.1 Home and workplace identification83

In this study, we utilize an anonymized mobile phone dataset provided by a telecommunications company84
in China, covering one month (June 2023) of GPS “pings” from users who gave explicit consent. The dataset,85
which complies with China’s Personal Information Protection Law, includes de-identified user IDs, latitudes,86
longitudes, and timestamps, ensuring privacy and preventing re-identification attempts. After removing dupli-87
cates and excluding users with fewer than 300 pings, our final dataset comprises 7.56 million users and roughly88
4.82 billion pings.89

To ensure robust inference of home and workplace locations from trajectory data, we implement a multi-stage90
methodology with rigorous validation. For each individual, we first detect significant stays using the DBSCAN91
algorithm [1]. We set the tuning parameters carefully for spatial distance of 50 meters and minimum 10 points to92
identify high-density clusters of trajectory points, representing visited places or stays. Once clusters are formed,93
we assign each cluster to the nearest Point of Interest (POI) within a predefined radius of 100 meters, ensuring94
that each significant stay is contextually anchored to a known venue. Clusters that are too small (fewer than 1095
points) or that do not correspond to any recognized venue are discarded to minimize noise and improve data96
reliability. Next, we refine these significant stays by applying temporal filters to capture meaningful activities.97
Specifically, we exclude any stays with durations of less than 15 minutes, as such brief stops are unlikely to98
represent significant activities, and we also filter out stays exceeding 24 hours, which may indicate data errors.99
We have extracted 241 million trips for 7.56 million users. The trip characteristics in Beijing metropolitan area100
are shown in Supplementary Fig. 1.101

a b c

38 min 560 min

Supplementary Figure 1 | Trip characteristics in Beijing metropolitan area. a Distribution of trip distance d,

which follows an exponential decay p(d) ∼ e−d/27.9. b Distribution of travel duration τ , with most trips lasting around 38
minutes. c Distribution of dwell time at stays δ, capturing that residents tend to remain at home for around 560 minutes.

To infer home locations, we analyze the refined stays by examining both their temporal patterns and visit102
frequencies. We focus on locations visited most frequently during nighttime hours (i.e., 21:00 to 6:00) across103
multiple days. The location with the highest cumulative duration during these nighttime periods is designated as104
the likely home location for an individual, provided that it meets a minimum threshold of 25 visits over the 30-105
day observation period. Additionally, we validate these candidates by comparing weekend visit durations, under106
the assumption that true home locations typically exhibit higher activity during weekends. Amap residential107
POIs are leveraged to ensure that the identified candidate is situated within a residential area. If multiple108
locations meet these criteria, the candidate with the longest total nighttime duration is selected as the home109
location. For workplace detection, we apply a similar approach by focusing on significant stays during typical110
working hours (i.e., 9:00 to 17:00) on workdays. We identify locations that exhibit both high frequency and long111
cumulative durations of stays during these hours, setting a threshold of at least 4 visits per 5 workdays to qualify112
as potential workplace candidates. Amap commercial POIs are used to validate these candidates, ensuring that113
the identified location is consistent with common workplace settings. Among the candidates, the location with114
the longest total working-hour duration is selected as the workplace for each individual. We successfully infer115
home locations and workplaces of 6.05 million individuals, ensuring that only users with robust and consistent116
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activity patterns are included in the final dataset. Unidentified users, for whom home or workplace cannot be117
reliably determined, are excluded to maintain the accuracy and reliability of our analysis.118

Distributions of home locations and workplaces of individuals (Supplementary Fig. 2) suggest that both119
residential and employment densities are higher in the city center, while commuting flows tend to be more120
localized within nearby neighborhoods. Daily movements between homes and workplaces show predictable time121
patterns. People’s time spent at home and workplaces follows opposite daily rhythms—home presence typically122
peaks overnight particularly on weekends, whereas workplace presence peaks during daytime hours and on123
workdays (Supplementary Fig. 3).124

a b c

10 km 10 km 10 km

Supplementary Figure 2 | Jobs-housing structure of Beijing metropolitan area. a Spatial clusters of home
locations. Individuals’ home-based trips are aggregated to township administrative boundaries, and the mobility counts
are normalized by jurisdictional area (km²). b Spatial clusters of workplaces. c Spatial distribution of commuting flows.

a b

Supplementary Figure 3 | Daily patterns of time spent at homes and workplaces. a Home presence proba-
bilities across hours of day. b Workplace presence probabilities across hours of day.

1.2 Population representativeness125

We validate the population representativeness of mobile phone data through cross-validation with China’s126
Seventh National Population Census [2]. This nationwide census, conducted by the National Bureau of Statistics127
(NBS), provides comprehensive demographic data across 41,636 township-level administrative units encom-128
passing all 31 provincial divisions. To address temporal discrepancies between the decennial census (2020)129
and our mobility dataset (2023), we incorporate annual population growth estimates (0.87% average increase)130
derived from Beijing Municipal Statistical Yearbooks (2020-2023) [3–6]. The population distribution in Beijing’s131
metropolitan region is visually summarized in Supplementary Fig. 4a. Our validation strategy involves examin-132
ing the correlation between census-recorded resident populations and home-based trip frequencies derived from133
mobility data at matched township units. This approach is grounded on the inherent stability of residential134
behavior [7], hypothesizing that home-based trip frequencies constitute reliable proxies for static population dis-135
tributions. Across all township units, we compute Pearson’s correlation coefficient (r) between the two datasets.136
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A robust coefficient of r = 0.8426 (***p < 0.001; 95% CI [0.7943, 0.8804]) indicates a statistically significant137
positive association, explaining 71.0% of shared variance (r2 = 0.710) (Supplementary Fig. 4b). This strong138
correspondence confirms the capacity of mobile phone data to reliably approximate population distribution139
patterns at fine spatial scales.140

a b

r = 0.8426***

10 km

Supplementary Figure 4 | Population representativeness validation. a Census population distribution in Beijing
metropolitan region. b Scatter plot illustrating correlation between census population and home-based trip frequency
indicated by Pearson’s correlation coefficient r, with the diagonal line providing the reference. Point represents a township-
level administrative unit. *** indicates statistical significancep < 0.001.

1.3 Socioeconomic status inference141

To infer the income levels of individuals, we establish a connection between the individuals’ inferred home142
locations and the LianJia property database—China’s largest real-time property transaction platform covering143
97.3% of residential markets. This database provides detailed, geotagged records of residential communities,144
including information such as community name, average transaction price (in RMB per square meter), architec-145
tural type (high-rise towers, slab complexes, bungalows), number of households and buildings in the community,146
and exact location (precise latitude and longitude coordinates). It is important to note that housing in China147
is typically organized into well-defined residential communities. Unlike many Western settings where neigh-148
borhoods might comprise a mix of varied housing styles and unplanned developments, these communities are149
generally gated, uniformly managed, and offer shared amenities such as green spaces and retail facilities. This150
structured arrangement not only standardizes property types within a community but also results in more151
homogenous pricing and quality measures across the board. Therefore, platforms like LianJia can efficiently152
capture a near-complete snapshot of the housing market, thereby serving as a reliable proxy for inferring the153
socioeconomic status of residents based on their home locations.154

In the Beijing metropolitan area, the database lists 9,501 communities with price data as of June 2023, as155
illustrated in Supplementary Fig. 5a. We perform a spatial query to match the individual’s home coordinates156
(latitude and longitude) with communities listed in the LianJia database. Specifically, we construct Voronoi157
polygon around each community, creating non-overlapping zones where all points within a polygon are geo-158
graphically closer to its central community than to others (Supplementary Fig. 5b). These Voronoi polygons159
effectively capture localized market conditions, as residents within the same polygon are likely to experience160
similar socioeconomic environments. For every individual, we identify the polygon containing the inferred home161
location and assign the associated community transaction price as an approximate measure of that individual’s162
income level. To ensure reliability, we compute the geographic distance between each individual’s home and the163
matched community. Our analysis reveals that 80% of home locations are within 250 meters of a community,164
and 90% are within 500 meters (Supplementary Fig. 5c). These findings confirm that the majority of individu-165
als reside in close proximity to the communities used in our analysis, thereby demonstrating the robustness of166
income inference.167
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a b c

10 km

Supplementary Figure 5 | Spatial matching analysis based on LianJia property data. a Geospatial visual-
ization of 9,501 communities listed on the LianJia platform, with color coding indicating average transaction prices as of
June 2023. b Construction of Voronoi polygons around each community. Individual’s home location within a polygon is
assigned the transaction price of the corresponding community, establishing localized socioeconomic proxies. c Distance
distribution between residences and matched communities.

Individuals are divided into four equal groups based on the 25th, 50th, and 75th percentiles of the inferred168
income levels derived from the matched community transaction prices. Each quartile corresponds to a distinct169
income group. For instance, the first quartile, which contains individuals with property transaction prices at or170
below the 25th percentile, is assumed to represent the lower-income group. The second quartile (between the171
25th and 50th percentiles) represents the lower-middle-income group, the third quartile (between the 50th and172
75th percentiles) represents the upper-middle-income group, and the fourth quartile (above the 75th percentile)173
represents the higher-income group. The spatial distributions of home and workplace locations for these four174
income groups are shown in Supplementary Fig. 6.175

10 km

10 km

10 km

10 km

10 km

10 km

10 km

10 km

Supplementary Figure 6 | Spatial distributions of residential locations and workplaces for four income
groups. Top row: Residential distributions reveal strong income stratification, with higher-income groups concentrated
within city core area, transitioning to lower-income groups in peripheral districts. Bottom row: Workplace distributions
display more evenly spatial patterns, maintaining partial concentration in central business districts across all income
groups.

1.4 Travel mode choices176

For each individual trip, we compute the probabilities that an individual travels through particular transport177
mode (active, private or public) using a pre-trained random forest model calibrated on the publicly available178
Geolife dataset [8]. The Geolife dataset, collected by Microsoft Research Asia, comprises GPS trajectories of179
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over 180 users in a range of cities, primarily in Beijing, China, over several years. We segment each trajectory180
into multiple contiguous trips, defined by a minimum dwell time of 15 minutes between trips. Each trip is labeled181
with ground-truth transport modes (one or more) used, including walking, cycling, car, taxi, bus, railway. We182
consolidate similar modes (e.g., walking and cycling into ”active”; car and taxi into ”private”; bus, railway into183
”public”) to align with our defined categories. Trips involving a combination of private and public modes are184
excluded from the analysis to ensure unambiguous mode classification. Only trips exclusively involving active185
modes are labeled as ”active”; all other trips are categorized as either ”private” or ”private” based on their186
dominant mode. In Beijing metropolitan area, this process yields 1,819 active trips, 881 private trips, and 1,725187
public trips.188

To train the random forest model, we extract five features relevant to transport mode identification, including:189
’Route length’ (total distance traveled during the trip), ’OD distance’ (Euclidean distance between origin and190
destination), ’O pubstation dist’ (distance from the origin to the nearest public transportation station obtained191
from Amap POIs), ’D pubstation dist’ (distance from the destination to the nearest public transportation192
station), and ’Travel time’ (duration of the trip). The model is trained using a subset of the Geolife data (80% for193
training, 20% for validation) and optimized for classification accuracy. To mitigate potential sample imbalance,194
the model is configured to automatically adjust the weights assigned to each class based on their prevalence in195
the data, ensuring that classes with fewer samples are given more importance during training. The contribution196
of each feature to the model’s predictions is shown in Supplementary Fig. 7. Rather than assigning a single,197
definitive mode for each trip, the model generates probabilistic mode assignments, reflecting pre-trip decision198
uncertainty. For instance, a particular trip might be assigned probabilities of 0.1 for ”active”, 0.6 for ”private”,199
and 0.3 for ”public”. This suggests that while private mode is the most probable, there’s still a non-negligible200
chance of choosing public transport. Such probability vectors capture travelers’ latent preference influenced by201
contextual factors prior to a trip.202

Supplementary Figure 7 | Overall feature importance based on SHAP (SHapley Additive exPlanations)
values for the travel mode inference model. Features are listed on the vertical axis, ordered from most to least
important. The horizontal axis represents the mean absolute SHAP value for each feature. A longer bar indicates a
greater overall impact of that feature on the model’s predictions across the entire dataset.

The model’s performance is evaluated through metrics appropriate for both classification and probability203
estimation. Specifically, Receiver Operating Characteristic (ROC) curves [9] (Supplementary Fig. 8a), which204
assess the model’s ability to discriminate between classes, yield high Area Under the Curve (AUC) scores: 0.9575205
for active mode, 0.9242 for private mode, and 0.9213 for public mode, indicating strong discriminatory capacity206
across all modes. Furthermore, the calibration of the probability estimates is assessed using the Brier score [10],207
which measures the mean squared difference between predicted probabilities and actual outcomes. The Brier208
scores are also favorable (Supplementary Fig. 8b): 0.073 for active mode, 0.076 for private mode, and 0.109 for209
public mode, demonstrating well-calibrated probability predictions.210

This pre-trained random forest model is then applied to our mobile phone dataset. For each trip211
in this dataset, we calculate the same five features: ’Route length’, ’OD distance’, ’O pubstation dist’,212
’D pubstation dist’, and ’Travel time’. By inputting these features into the trained model, we estimate the prob-213
ability distribution across active, private, and public transport modes for each trip. These probability estimates214
are then used for further mobility analysis.215
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a b

Supplementary Figure 8 | Model performance evaluation. a Receiver Operating Characteristic (ROC) curves.
Each curve plots the True Positive Rate against the False Positive Rate at various threshold settings. The Area Under
the Curve (AUC) for each mode is indicated in the legend. High AUC values (close to 1) demonstrate the model’s
excellent ability to distinguish between each transport mode and the others. b Calibration curves assess the reliability
of the predicted probabilities by plotting the observed fraction of positives against the predicted probabilities. Ideally,
the calibration curves should closely follow the diagonal (dashed line), indicating well-calibrated probabilities where
predicted probabilities align with actual event frequencies. Lower Brier scores (close to 0) indicate better calibration.

1.5 Travel route generation216

For each trip of an individual, we generate a most probable travel route for active, private, and public modes217
respectively using Amap navigation API [11], a sophisticated service renowned for its routing capabilities in218
China. The Amap API is configured to generate routes by considering a range of input parameters including219
the trip origin and destination coordinates (latitude and longitude), waypoints, departure time and desired220
travel modes. Critically, the API computes the most time-efficient route for the specified mode, dynamically221
factoring in real-time traffic conditions, public transit schedules, estimated costs, and general traveler preferences222
as modeled within its algorithms. To enhance the realism of these generated routes, we incorporate all GPS223
trajectory points from each original trip record as intermediate waypoints when querying the API. This strategy224
allows the navigation system to compute routes that more accurately capture potential deviations, detours,225
and individual preferences that may have influenced the observed travel behavior. The resulting output from226
the Amap API delivers comprehensive navigation information. For active and private modes, this includes a227
breakdown of route details by road segment, specifying the roads to be taken and the estimated travel duration228
for each segment, accounting for real-time traffic where applicable. For public mode routes, the API details229
the specific transit lines to utilize, the sequence of stations, the estimated travel time between stations, and230
any necessary transfer points. The use of Amap API allows for privacy-preserving travel planning by inferring231
potential routes without directly accessing sensitive location data from the individual’s mobile device.232

To validate the accuracy of route generation process, we leverage the high-resolution GPS trajectories pro-233
vided in the Geolife dataset as ground truth. Notably, the majority of these trajectories (91.5%) are recorded234
at a dense sampling rate, typically every 1–5 seconds, ensuring a detailed and accurate representation of travel235
paths. For each trip, we generate a route between its origin and destination using the Amap API corresponding236
to the actual travel mode recorded in Geolife data. To quantitatively assess the spatial similarity between the237
generated route and the actual GPS trajectory, we create a buffer around both the generated route Bgenerated238
and the original GPS trajectory Breal, and calculate the Jaccard index, representing the ratio of the intersection239
area to the union area of the two buffers240

J =
Area(Bgenerated ∩Breal)

Area(Bgenerated ∪Breal)
(S1)

This index provides a measure of overlap, with higher values (close to 1) indicating greater agreement between241
the generated route and the real-world trajectory. For 4,425 mode-labeled trips in Geolife dataset, we test a242
range of buffer distances—30 meters, 50 meters, 70 meters, and 90 meters—around both the Amap-generated243
routes and the corresponding real GPS trajectories. We observe that even under a stringent 30-meter buffer,244
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over 70% of generated routes achieve a Jaccard index greater than 0.5 (Supplementary Fig. 9). This threshold of245
0.5 signifies a substantial level of overlap, suggesting that the generated routes closely align with the real-world246
trajectories in a majority of cases. When examining the results across different modes, we observe no significant247
differences in performance. This validation demonstrates the Amap API’s effectiveness in generating realistic248
routes.249

Individual #i Individual #i

Buffer 30 m

J =  0.5468

a b c

Supplementary Figure 9 | Validation of Amap route generation against Geolife GPS trajectories. a An
example of an Amap-generated route overlaid with the corresponding real GPS trajectory from Geolife for a single trip. b
Buffered representation (30-meter buffer) of the generated and real routes. c Cumulative distribution of Jaccard Index J
across 4,425 mode-labeled trips from the Geolife dataset, shown for different buffer distances (30m, 50m, 70m, and 90m).

1.6 Cross-data validation250

To further validate the reliability of travel mode inference and route generation processes, we leverage an251
additional independent dataset to compare the consistency of mobility flow distributions in urban spaces. We252
use the open-sourced MemDA data [12], which comprise traffic speeds from major roads in Beijing collected in a253
period of 75 days (from May 12, 2022, to July 25, 2022). In urban road traffic, the average speed of a road segment254
is typically negatively correlated with traffic volume under most normal conditions, as higher vehicle densities255
tend to reduce speeds due to congestion. We process the traffic speed data by aggregating measurements into256
hourly intervals for each major road segment over the 75-day period. The average speed per segment per hour257
is computed as the mean of all recorded speeds within that time window, providing a proxy for potential traffic258
condition. For the mobile phone dataset, we calculate the expected traffic volume for each road segment in a259
given hourly interval by summing the estimated private mode probabilities of all trips whose Amap-generated260
routes include that segment during that time period. For example, a trip with a 0.7 probability of private mode261
contributes 0.7 vehicle units to the traffic volume of each segment along its route. This probabilistic aggregation262
reflects the uncertainty in mode choice predictions and provides a robust estimate of traffic flow. To compare263
the two datasets, we normalize the MemDA-derived average speeds and the mobile phone-derived expected264
traffic volumes for matching road segments and hourly intervals. The spatial distributions of these normalized265
values during the morning peak hour (9:00-10:00) is visualized in Supplementary Fig. 10, revealing a notable266
spatial consistency, which is supported by a significant negative Pearson correlation coefficient of r = -0.3191267
(p < 0.001; 95% CI [-0.3504, -0.2871]) (Supplementary Fig. 11a). We also observe similarly significant negative268
correlations during the midday (13:00-14:00, r = -0.3521; 95% CI [-0.3826, -0.3209]) and evening peak (17:00-269
18:00, r = -0.3513; 95% CI [-0.3819, -0.3201]) hours (Supplementary Fig. 11bc). This temporal and spatial270
consistency across the MemDA and mobile phone datasets underscores the method reliability in capturing road271
traffic patterns.272

2 Measuring encounter opportunities in interconnected urban spaces273

We develop two measures to quantify the opportunities for social encounters created by multimodal mobility274
at the city scale. The first one is the mode-specific Probabilistic Mixing Index (PMI), which is designed to275
capture the diversity of potential encounters experienced by individuals when using a particular transport mode.276
The second one is the Multimodal Uniformity Index (MUI), which builds upon the PMI to assess the consistency277
of these encounter opportunities across different travel modes within a geographical region.278
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a b09:00--10:00 09:00--10:00

Supplementary Figure 10 | Spatial consistency of mobility flow distributions across datasets in Beijing
metropolitan area. a, Spatial distribution of normalized road average speed from MemDA data during the morning
peak hour (9:00-10:00). b, Spatial distribution of normalized expected road traffic volumes inferred from mobile phone
data for private mode during the morning peak hour.

a b c

09:00--10:00 (r = -0.3191***) 13:00--14:00 (r = -0.3521***) 17:00--18:00 (r = -0.3513***)

Supplementary Figure 11 | Cross-data validation performance. Correlation between normalized average traffic
speeds from MemDA data and normalized expected traffic volumes inferred from mobile phone data for private modes
during the morning peak (9:00-10:00; panel a), midday (13:00-14:00; panel b) and evening peak (17:00-18:00; panel
c) hours. Pearson correlation coefficient of r is marked on the title, with *** indicating statistical significance p <
0.001. In all panels, grey points represent road segments, plotted according to their values from the two datasets being
compared. Boxplots are grouped by bins of values from the reference dataset on the x-axis, and show the distribution of
the corresponding values from mobile phone data on the y-axis within each bin. Blue points represent the average value
within each bin, summarizing the overall trend.

2.1 Probabilistic Mixing Index279

The mode-specific Probabilistic Mixing Index (PMI) is calculated based on the probabilities of individuals’280
paths overlapping in multilayered urban spaces while traveling via a specific mode. After data fusion processing,281
we have estimated the probabilities that an individual travels through different transport modes (active, private,282
or public) (Supplementary Section 1.4), and generated a most probable travel route corresponding to each mode283
(Supplementary Section 1.5). For road transportation (active and private), the generated route specifies the road284
segments to be taken and the estimated duration. For public transportation (bus and railway), the generated285
route provides the station-by-station trajectories within transit systems, including the specific sequence of286
stations, along with the estimated travel times between them. For a given departure time, the geographical287
location at any moment along the route of a specific mode can be determined, as shown in Supplementary288
Fig. 12a.289

For simplicity, we assume that encounter opportunities arise from transient co-presence in time and space290
with others traveling via the same mode. These co-locations represent moments when two or more individuals291
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are present in the same spatial unit simultaneously while using the same mode. To capture these potential292
encounters, the urban space is partitioned into mode-specific spatial units, reflecting the distinct ways individuals293
perceive and interact with their surroundings. The spatial scales for active and private modes are defined as294
1 km × 1 km grids. For active (or private) mode, two individuals’ routes are mapped onto the 1 km × 1 km295
grids over time. A co-location occurs when they occupy the same grid within a specific time frame, indicating a296
potential encounter. For bus and railway modes, the spatial units are the transit segments between stations. In297
this context, co-locations occur within the confined spaces of transit vehicles or at stations, capturing the shared298
experience inherent to public transit. These spatial units are analyzed within 1-hour time frames, a temporal299
resolution chosen to balance computational feasibility with the need to capture significant social interactions.300

To calculate the PMI for each spatial unit, mode, and 1-hour time frame, the expected number of individuals301
from each income group is computed by summing the product of their mode-choice probability and an indicator302
of their presence in that spatial unit. Mathematically, for a spatial unit s, time frame t, and income group q,303
the expected population can be expressed as:304

Es,t,q =
∑
i∈q

pi,m · Ii,s,t (S2)

where pi,m is the probability that individual i travels via mode m, and Ii,s,t is an indicator variable equal to 1305
if individual i’s route using mode m passes through spatial unit s during time frame t, and 0 otherwise. Each306
individual contributes a fractional value—reflecting their partial likelihood of being present—to the expected307
population. This expected value accounts for the inherent uncertainty in individual travel behavior, providing a308
more dynamic and realistic estimate of population distribution. For example, if an individual from group q has309
a 0.9 probability of choosing to drive and their driving route passes through spatial unit s between 8 and 9 AM,310
their contribution to Es,t,q for driving would be 0.9×1 = 0.9. A schematic illustration of the calculations is shown311
in Supplementary Fig. 12bc. After computing the expected population Es,t,q for each of the four income groups,312
the PMI is derived using an entropy metric to quantify the diversity of the potential encounters, calculated as:313

PMIs,t,m = − 1

log(4)

4∑
q=1

τs,t,q · log(τs,t,q) (S3)

where τs,t,q =
Es,t,q∑4

q=1 Es,t,q
denotes the proportion of the total expected population in spatial unit s, time frame314

t, and mode m that belongs to income group q. The normalization factor 1
log(4) scales the entropy to a range315

between 0 and 1. A PMIs,t,m value of 0 indicates minimal mixing potential (i.e., only one income group316
is present), while a value of 1 indicates maximum mixing potential (i.e., all four income groups are equally317
represented).318
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Supplementary Figure 12 | Illustration of the calculation of the Probabilistic Mixing Index (PMI). a
Individual mode choice probabilities and time-stamped paths for active, private, and public modes. b Example of PMI
calculation for a single spatial unit (transit segment) for a railway line. Assuming four individuals from four income groups
are co-located at this segment between 8–9 AM, their contributions to the expected population Es,t,q equal their mode
choice probabilities. c Example of PMI calculation for a single spatial unit (1 km × 1 km grid) for individuals driving.
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2.2 Multimodal Uniformity Index319

The Multimodal Uniformity Index (MUI) is introduced to evaluate how consistently encounter opportunities320
are distributed across different travel modes within the same geographical region. For a specific region A and321
time frame t, we first calculate the average mixing level PMIA,t,m for a given mode m across all relevant spatial322
units s in region A during period t :323

PMIA,t,m =
1

|SA|
∑
s∈SA

PMIs,t,m (S4)

where SA is the set of spatial units (grids for active and private modes, transit segments for bus and railway324
modes) associated with region A, and |SA| is the number of such units. The spatial units in SA are defined325
based on the characteristics of each travel mode. For active and private modes, a spatial unit s (1 km × 1 km326
grid) is included in SA if any portion of it overlaps with the region. For public transportation, a spatial unit327
(transit segment) is included in SA if at least one of its endpoint stations is located within this region, reflecting328
the service provision within the defined geographical area (Supplementary Fig. 13). With PMIA,t,m computed329
for each mode—active, private, bus, and railway—we then normalize these values into proportions rA,t,m =330
PMIA,t,m/

∑
m PMIA,t,m, where the sum is taken over the four modes. The MUI for region A at time t, denoted331

MUIA,t, is then calculated using the entropy formula:332

MUIA,t = − 1

log(4)

∑
m

rA,t,m log(rA,t,m), (S5)

An MUIA,t value close to 1 indicates high uniformity, meaning mixing opportunities are similar across all modes333
in region A. A value near 0 suggests that encounter opportunities are highly stratified by mode choice, with334
significant variation in mixing levels between modes. This index thus provides a time-specific measure of how335
equitably transportation modes contribute to social encounter patterns within a region.336

= 0.8675

= 0.6521

= 0.2104

= 0.9232

Region 

= 0.9224

08:00-09:00

Supplementary Figure 13 | Illustration of the calculation of the Multimodal Uniformity Index (MUI).
The region-level mixing potential PMIA,t,m for each mode m is first calculated by aggregating all relevant spatial units
in region A. MUIA,t is then computed by normalizing these PMIA,t,m values into proportions and applying the entropy
formula, indicating the uniformity of encounter opportunities across modes in region A during time t.
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2.3 Sensitivity analysis of spatiotemporal scales337

In this study, the primary results are presented using spatiotemporal scales that balance computational338
efficiency with the ability to capture meaningful social interactions, specifically a temporal resolution of 1339
hour and spatial scales of 1 km × 1 km grids for active and private modes, and transit segments for public340
transportation modes. To evaluate the robustness of the Probabilistic Mixing Index (PMI) and the Multimodal341
Uniformity Index (MUI) to variations in these scales, we conduct a sensitivity analysis by systematically testing342
alternative temporal and spatial resolutions.343

For temporal scales, we examine window sizes ranging from 3 to 60 minutes. For spatial scales, we test344
grid resolutions from 250 m to 2 km for active and private modes, while keeping the transit segment definition345
unchanged for public transportation.346

Figure 14 presents the cumulative distributions of PMI for each of the four travel modes across the range347
of temporal scales. As the temporal scale increases, the cumulative distribution curves generally shift upwards,348
indicating a tendency towards higher PMI (greater mixing potential) with longer periods. This effect is most349
pronounced for the bus mode, as evidenced by the Kolmogorov-Smirnov (K-S) statistic [13] comparing 3-minute350
and 60-minute windows: bus mode exhibits the largest distributional divergence (K-S = 0.3566, p < 0.001),351
followed by private (K-S = 0.1874), railway (K-S = 0.1825), and active modes (K-S = 0.1257; all p < 0.001).352
The heightened sensitivity of bus systems likely stems from their variable ridership patterns and frequent stops,353
which amplify transient co-location noise in short time frames.354

Figure 15 presents spatial scale sensitivity by comparing cumulative PMI distributions for active and private355
modes across grid resolutions from 250 m to 2 km. Larger spatial scales produce upward-shifted distribution356
curves, reflecting higher PMI values at coarser resolutions. The K-S statistic quantifies this divergence, with357
private modes exhibiting greater sensitivity (K-S = 0.1976, p < 0.001) compared to active modes (K-S = 0.1560,358
p < 0.001). The relatively low magnitude of the K-S statistics suggests that PMI distributions for both modes359
remain reasonably stable across the tested range of spatial scales.360

Figure 16 presents the sensitivity of the Multimodal Uniformity Index (MUI) to spatiotemporal variations.361
In Supplementary Fig. 16a, comparing temporal scales from 3 to 60 minutes yields a K-S statistic of 0.4329362
(p < 0.001), indicating a notable shift in uniformity. In Supplementary Fig. 16b, varying the spatial scale from363
250 m to 2 km yields a much larger K-S statistic of 0.7580 (p < 0.001). A key observation is the presence of two364
significant phase transitions in the MUI distribution, at approximately 0.5 and 0.8. These transitions correspond365
to distinct grid characteristics related to transit availability. The phase transition at MUI ≈ 0.5 captures grids366
that lack both bus and railway stations, leaving only two modes (active and private) contributing to the MUI367

calculation (approximating log(2)
log(4) = 0.5). The second transition at MUI ≈ 0.8 corresponds to grids without368

railway stations but with bus stations, meaning three modes contribute (approximating log(3)
log(4) ≈ 0.7925). These369

transitions reflect discrete drops in the number of available travel modes, which directly impacts the uniformity370
of encounter opportunities.371

Despite the influence of scale on the metric distributions, universal patterns are captured across different372
spatial resolutions (Supplementary Fig. 17). Specifically, the spatial distributions of PMI and MUI in the Beijing373
metropolitan area reveal consistent trends, such as lower mixing potential in peripheral regions and greater374
uniformity in central urban cores, regardless of whether the grid size is 250 m or 2 km. These findings suggest that375
while the absolute values of the metrics may shift with scale, the underlying spatial organization of encounter376
opportunities exhibits robust, scale-invariant characteristics.377

3 OLS models explaining spatiotemporal patterns of encounter378

opportunities379

We use ordinary least squares (OLS) regression models to explain how transport infrastructure influences the380
patterns of encounter opportunities observed through the Probabilistic Mixing Index (PMI) and the Multimodal381
Uniformity Index (MUI). The form of the OLS regression model is:382

Mt = β0 +
∑
i

βTiTi + ϵt, (S6)

where:383
• Mt is the dependent variable, representing either the observed regional-level mixing index (PMIA,t,m, Eq. S4)384
for a specific travel mode m (active/private/bus/railway) or the MUIA,t (Eq. S5) across four modes within385
region A at a specific period t. The analysis is conducted at a spatial scale of 1 km × 1 km grids, which386
define the regions A.387
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Supplementary Figure 14 | Cumulative distributions of PMI for four travel modes across different tem-
poral scales under fixed 1 km × 1 km grids. The Kolmogorov-Smirnov (K-S) statistics (*** indicates p-value
< 0.001) quantify the distributional divergence between the 3-minute and 60-minute temporal scales.

• {Ti} denotes the set of transport infrastructure-related explanatory variables. These include lengths of388
different road types (Motorway, Primary, Secondary, Tertiary, Pedestrian roads), road diversity (calculated389
using the entropy of road types within a grid), and counts of transport facilities (e.g., Bus Stations, Subway390
Stations), reflecting the transportation and built environment features of the grids. Grid-level statistics for391
these variables are detailed in Supplementary Table 1.392

• β0 is the intercept of the regression model.393
• βTi are the regression coefficients corresponding to the transport infrastructure variables, quantifying their394
individual contributions to Mt.395

• ϵt is the error term, capturing unexplained variation in the model.396

To capture temporal heterogeneity in the dynamics of encounter opportunities, we design two model variants397
with distinct temporal granularity. (1) Daily granularity model: Separate models are estimated for workdays398
and weekends. For a specific day type d, the dependent variable Mt for each grid A is calculated as the average399
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Supplementary Figure 15 | Cumulative distributions of PMI for active (panel a) and private (panel b)
modes across spatial scales under a fixed 60-minute temporal scale. The Kolmogorov-Smirnov (K-S) statistics
(*** indicates p-value < 0.001) quantify the distributional divergence between the 250 m and 2 km grid scales.
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Supplementary Figure 16 | Cumulative distributions of MUI for urban grids across different spatiotem-
poral scales. a Temporal sensitivity analysis. b Spatial sensitivity analysis. The Kolmogorov-Smirnov (K-S) statistic
(*** indicates p-value < 0.001) quantifies the distributional divergence between the minimum and maximum scales tested
in each panel.

value of the mixing index (PMIA,t′,m or MUIA,t′) across all hourly periods t′ within that day. (2) Hourly400
granularity model: Separate models are estimated for each specific hour of the day, differentiated by day401
type. For a specific hour h and day type d, the dependent variable Mt for each grid A is the observed value of402
the mixing index (PMIA,t′,m or MUIA,t′) for that specific hour.403

Supplementary Table 1 | Summary of explanatory variables and grid-level statistics.

Primary category Subcategory Sum value Median value Max value

Transport Facility Airport 9 1 6
Transport Facility Train Station 334 1 102
Transport Facility Port 63 1 7
Transport Facility Intercity Bus Station 40 1 3

Continued on next page
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Supplementary Table 1 | Summary of explanatory variables and grid-level statistics (Continued).

Primary category Subcategory Sum value Median value Max value

Transport Facility Subway Station 1489 4 17
Transport Facility Bus Station 6098 3 17
Transport Facility Parking Lot 56628 13 278
Transport Facility Toll Station 125 2 6
Transport Facility Highway Service 19 2 2

Transport networks (km) Motorway 2242.997 0 12.949
Transport networks (km) Primary roads 1770.722 0 8.366
Transport networks (km) Secondary roads 2222.137 0.3885 6.451
Transport networks (km) Tertiary roads 4199.528 1.5375 11.193
Transport networks (km) Pedestrian roads 6867.383 2.5405 18.555

Roads diversity Roads diversity 0.6276 0.9909

Supplementary Table 2 | Regression coefficients explaining Probabilistic Mixing Index (PMI) and Mul-
timodal Uniformity Index (MUI). Columns 2-9 represent PMI models (PMIA,t,m); Columns 10-11 represent MUI

models (MUIA,t). Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.001. R2 is the coefficient of determination, and
MSE is the Mean Squared Error. Observations represent the number of grids included. Only significant variables are
shown.

Models for PMIA,t,m Models for MUIA,t

Variable Active Mode Private Mode Bus Mode Railway Mode
Workday Weekend

Workday Weekend Workday Weekend Workday Weekend Workday Weekend

Motorway 0.083∗∗∗ 0.071∗∗ 0.306∗∗∗ 0.319∗∗∗ 0.11∗∗∗ 0.1∗∗∗ -0.006 -0.002 -0.048∗∗ -0.058∗∗

Primary roads 0.178∗∗∗ 0.173∗∗∗ 0.069∗∗ 0.058∗∗ 0.07∗∗∗ 0.074∗∗∗ -0.047∗∗ -0.036∗ 0.062∗∗∗ 0.06∗∗

Secondary roads 0.13∗∗∗ 0.115∗∗∗ 0.037∗ 0.017 0.012 0.003 -0.02 -0.012 0.046∗∗∗ 0.046∗∗∗

Tertiary roads 0.309∗∗∗ 0.258∗∗∗ 0.211∗∗∗ 0.148∗∗∗ 0.157∗∗∗ 0.082∗∗∗ 0.079∗∗∗ 0.058∗∗ 0.107∗∗∗ 0.108∗∗∗

Pedestrian roads -0.028 -0.036 -0.016 -0.041∗ -0.081∗∗∗ -0.109∗∗∗ 0.048∗ 0.03 0.078∗∗∗ 0.089∗∗∗

Roads diversity 0.059∗∗ 0.069∗∗∗ 0.17∗∗∗ 0.2∗∗∗ 0.062∗∗∗ 0.063∗∗∗ 0.119∗∗∗ 0.101∗∗∗ 0.145∗∗∗ 0.167∗∗∗

Bus Station -0.011 0.032 -0.058∗∗ -0.044∗ -0.045∗ -0.035 0.037 0.036 0.253∗∗∗ 0.262∗∗∗

Airport -0.078 -0.141 -0.084 -0.177∗∗ -0.092 -0.163∗ -0.005 -0.005 0.043 0.053
Subway Station 0.283∗∗∗ 0.262∗∗∗ 0.039 0.018 -0.003 -0.041 0.104∗∗∗ 0.087∗∗∗ 0.316∗∗∗ 0.306∗∗∗

Observations 2116 2112 2114 2108 1687 1684 334 334 2116 2115
R2 0.229 0.227 0.219 0.249 0.081 0.067 0.15 0.129 0.423 0.412
MSE 0.03 0.028 0.028 0.024 0.018 0.016 0.007 0.005 0.015 0.017

Prior to finalizing each OLS model, a systematic feature selection process is employed. We begin with the404
set of candidate transport infrastructure explanatory variables listed in Supplementary Table 1. The Variance405
Inflation Factor (VIF) is calculated for each variable to detect multicollinearity. Variables with a VIF ¿ 10 are406
iteratively removed until all remaining variables have acceptable VIFs (≤ 10), ensuring the robustness of the407
model estimates. The statistical results for the daily granularity models explaining both PMI and MUI are408
presented in Table 2. The results detailing the hourly variations in the influence of these transport variables on409
the mode-specific PMI are shown in Figs. 18–21, and those for the MUI are presented in Supplementary Fig. 22.410

4 Agent-based model of individual mobility411

This section provides detailed information about the agent-based mobility model used to simulate travel412
mode choices and their impact on the structure of social encounter opportunities. The model is grounded in413
discrete choice theory [14] and simulates the behavior of individuals commuting from home to work during414
morning peak hours (9:00-10:00 AM).415

4.1 Model specification416

The model considers a population of individuals, each belonging to a specific income group g ∈ G (where417
|G| = 4). Each individual i needs to make a trip from their home location to their workplace. For this commute,418
they choose a travel mode m from a set of available modes M = {active, private, railway}. The choice is419
probabilistic and assumes individuals aim to minimize their perceived travel cost Cgm. The probability pgm that420
an individual from group g chooses mode m is given by the multinomial logit formula:421

pgm =
exp(−δCgm)∑

m′∈M exp(−δCgm′)
, (S7)
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Supplementary Figure 17 | Illustration of PMI and MUI distributions at different spatial scales in the
Beijing metropolitan area.

where δ is the sensitivity parameter, reflecting how strongly cost differences influence mode choice. The perceived422
travel cost Cgm is defined as:423

Cgm = (αg + βm)Tm, (S8)

where:424
• Tm is the estimated travel time for mode m. This is calculated as the duration of the shortest path Rm from425
an individual’s home to workplace using the real-world transport networks in the Beijing metropolitan area.426

• αg represents the monetary value of time for income group g.427
• βm represents other mode-specific cost components (monetary and non-monetary) per unit of travel time.428

The model assumes that individuals have perfect information about travel times and costs. It also inherently429
includes the Independence of Irrelevant Alternatives (IIA) property common to logit models [15]. The model430
output consists of the mode choice probabilities pgm. These probabilities, combined with the shortest travel431
paths Rm, are used as inputs to calculate the mode-specific Probabilistic Mixing Index (PMI), as described in432
the main text.433

4.2 Parameter calibration434

The model parameters include the sensitivity parameter δ, the group-specific value of time parameters αg,435
and the mode-specific cost factors βm. The relative values of αg are determined a priori based on the average436
income of each group, following the economic principle that the value of time correlates with income [16]. This437
yields α1 = 0.203, α2 = 0.349, α3 = 0.596, and α4 = 1. The main calibration process then focuses on estimating438
the remaining four parameters: δ, βactive, βprivate, and βrailway. The objective is to minimize the discrepancy439
between model-predicted mode-specific mixing index (PMI) values and empirically observed PMI values from440
mobile phone data during workday morning peak hours (9:00-10:00 AM).441
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Supplementary Figure 18 | Hourly PMI dynamics for active mode across workdays and weekends. Each
panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically
significant variables are displayed.

To perform this calibration, we define an objective function L(Θ′) that quantifies the goodness-of-fit. We442
use the sum of squared errors (SSE) across all relevant spatial units s for each mode m:443

L(δ, βactive, βprivate, βrailway) =
∑

m∈M

∑
s∈Sm

(
P̂MIs,t,m(Θ′)− PMIobss,t,m

)2

, (S9)

where P̂MIs,t,m(Θ′) is the model-predicted mixing index value and PMIobss,t,m is the corresponding empirically444
observed value. We employ a Grid Search approach to find the parameter set that minimizes this objective445
function.446

The model simulation is executed for each combination of parameter values in the grid. The parameter447
combination yielding the minimum value of the objective function is selected as the optimal calibrated parameter448
set. The resulting calibrated parameter values are: δ∗ = 3 × 10−4, β∗

active = 0.22, β∗
private = 2.1, and β∗

railway =449
0.07.450
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Supplementary Figure 19 | Hourly PMI dynamics for private mode across workdays and weekends. Each
panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically
significant variables are displayed.

To assess the model’s performance, we compare the model-predicted PMI values with the empirically451
observed PMI values for each spatial unit. A strong positive correlation, quantified by Pearson correlation coef-452
ficients (active: r = 0.9327***; private: r = 0.9613***; railway: r = 0.9551***; see Supplementary Fig. 23),453
demonstrates a good fit of the model to the observed patterns of encounter diversity.454

4.3 Simulation for private car use control policies455

A central challenge in urban transport planning is designing policies that achieve collective goals without456
exacerbating existing social inequalities [17]. The distributional effects of transport policies are a critical con-457
sideration [18]. This study investigates these effects by simulating the impacts of urban transport policies on458
patterns of encounter diversity and social equity. Measures controlling private car usage, such as congestion459
pricing [19, 20], fuel taxes [21, 22], or parking regulations [23], are prominent tools for managing urban mobility.460
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Supplementary Figure 20 | Hourly PMI dynamics for bus mode across workdays and weekends. Each
panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically
significant variables are displayed.

We operationalize these policies by systematically increasing the mode-specific cost parameter βprivate, rep-461
resenting a higher generalized cost of driving. We explore the sensitivity of travel behavior and patterns of462
encounter diversity to such interventions. We implement two simulation scenarios: (1) Uniform citywide cost463
increase (β′

private = β∗
private+∆βprivate for all trips) and (2)Downtown-targeted cost increase (cost increase464

only for trips with an origin or destination downtown). For both scenarios, we vary the cost increment, ∆βprivate,465
from 0 to 15. For each value, we recalculate perceived travel costs, mode choice probabilities, and the resultant466
mode-specific mixing potential (PMI), changes in mode shares, and average travel costs per income group.467

For the first scenario, increasing the citywide cost of driving reduces private car use and shifts commuters468
to other modes, leading to complex changes in mixing potential across modes. To illustrate the spatial impact,469
we select ∆βprivate = 5. The spatial distribution of changes is visualized in Supplementary Fig. 24. The policy470
reduces the overall mixing potential among private car users. Conversely, for active and railway travel, mixing471
potential increases in the suburbs and decreases in the downtown core.472
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Supplementary Figure 21 | Hourly PMI dynamics for railway mode across workdays and weekends. Each
panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically
significant variables are displayed.

For the second scenario (downtown-targeted), the policy has a smaller impact on lower-income groups, as473
fewer of them commute to the restricted zone (Supplementary Fig. 25 and Fig. 26). This leads to a higher overall474
PMI for private car travel citywide, indicating increased mixing potential among remaining users (Supplementary475
Fig. 27). Conversely, for active and railway modes, the overall citywide PMI decreases, signaling reduced mixing476
potential.477

In summary, the spatial design of private car control policies fundamentally alters their distributional effects.478
A uniform policy spreads the burden broadly but yields mixed results on mixing potential. A downtown-targeted479
policy concentrates costs but paradoxically increases mixing potential for private cars while reducing it for other480
modes. These outcomes highlight critical trade-offs between travel costs and social mixing. Policymakers must481
consider both cost burdens and impacts on encounter diversity across all modes.482

4.4 Simulation for public transport subsidy policies483

Promoting public transport through subsidies is a common strategy for influencing travel behavior and484
addressing equity concerns [24, 25]. We simulate this by reducing the railway cost parameter βrailway. We485
introduce a subsidy factor ∆βpublic and modify the cost parameter as β′

railway = β∗
railway + ∆βpublic, varying486

∆βpublic from 0 to -0.07. For each subsidy level, we recalculate mode choice probabilities, average travel costs,487
and mode-specific mixing potential (PMI).488

The results confirm a shift towards railway usage, with lower-income individuals exhibiting a larger response489
(Supplementary Fig. 28a-c). This translates into greater travel cost savings for them (Supplementary Fig. 29).490
However, the impact on mode-specific mixing potential is complex. The influx of predominantly lower-income491
users onto the railway reduces mixing potential within that mode (lower PMI, Supplementary Fig. 28f). Simi-492
larly, as users shift from private cars, the remaining pool of drivers becomes less diverse, also reducing mixing493
potential (lower PMI, Supplementary Fig. 28e). Conversely, the active travel mode experiences increased mixing494
potential (higher PMI, Supplementary Fig. 28d). The magnitude of these changes is relatively small, suggesting495
diminishing returns from further fare-based subsidies.496
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Supplementary Figure 22 | Hourly MUI dynamics across workdays and weekends. Each panel visualizes the
hourly variation of the regression coefficients for a specific explanatory variable. Only statistically significant variables
are displayed.

The spatial analysis (Supplementary Fig. 30) shows that for the private mode, the policy tends to reduce497
mixing potential in downtown areas. For active travel, mixing potential increases in the suburbs but decreases498
downtown. The railway mode exhibits complex spatial effects without a clear regional pattern. These findings499
suggest that while subsidies reduce travel costs, they can inadvertently reduce mixing potential within the500
subsidized mode and among users of other modes.501

4.5 Simulation for promoting active travel policies502

We explore the distributional impacts of policies promoting active travel, which can yield co-benefits like503
improved health and reduced emissions. Strategies often involve improving infrastructure [26], traffic calming504
[27], or public campaigns [28]. We model these policies by reducing the cost parameter βactive. We introduce a505
policy variable ∆βactive and vary it from 0 to -0.44. As before, we recalculate the mixing potential (PMI), mode506
usage shifts, and average travel costs.507
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Supplementary Figure 23 | Comparison of model-predicted and observed PMI values. Scatter plots showing
the relationship between predicted PMI (using calibrated parameters) and observed PMI for spatial units during the
9:00-10:00 AM peak hour, for (a) Active, (b) Private, and (c) Railway modes. Pearson correlation coefficients (r) are
indicated (***p < 0.001).
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Supplementary Figure 24 | Spatial distribution of changes in the Probabilistic Mixing Index (PMI) for
three transport modes under a uniform private car cost increase policy. The figure compares the policy scenario
(∆βprivate = 5) to the baseline. Panels show spatial units where PMI increased (indicating increased mixing potential) or
decreased (indicating reduced mixing potential). Other panels illustrate policy-induced shifts in mode usage by income
group.

Promoting active travel shows progressive distributional effects, disproportionately benefiting lower-income508
groups with the largest travel cost savings (Supplementary Fig. 31a-c and Fig. 32). However, the impacts on509
encounter diversity are multifaceted. While citywide mixing potential generally increases for active and private510
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Supplementary Figure 25 | Proportional changes in mode usage by income groups under two private car
policy scenarios.

modes (Supplementary Fig. 31d-f), the spatial effects diverge significantly (Supplementary Fig. 33). Active travel511
promotes income mixing downtown but reduces it in suburbs. Conversely, private and railway modes see their512
mixing potential decrease downtown while it improves in suburbs. This highlights a key trade-off: promoting513
active travel reshapes patterns of encounter diversity in complex, spatially dependent ways. Policymakers should514
consider complementary measures to ensure fairer social outcomes across all modes and areas.515

24



Citywide

Downtown-targeted

Citywide

Downtown-targeted

Citywide

Downtown-targeted

Citywide

Downtown-targeted

a b

c d

Supplementary Figure 26 | Impact of two private car policies on average travel costs by income group.
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Supplementary Figure 27 | Impact of two private car policies on citywide mixing potential by mode. Under
the downtown-targeted policy, overall mixing potential increases for private car users (higher PMI) while it decreases for
both active and railway users (lower PMI).
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Supplementary Figure 28 | Impact of public transport subsidies on mode usage and citywide mixing
potential. a–c Proportional changes in mode usage by income group. d–f Overall citywide mixing potential (PMI) for
each mode. Results indicate increased mixing potential (increasing PMI) for active travel, but reduced mixing potential
(decreasing PMI) for both private and railway travel.

Supplementary Figure 29 | Impact of public transport subsidies on average travel costs by income group.
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Supplementary Figure 30 | Spatial distribution of changes in the Probabilistic Mixing Index (PMI) for
three transport modes under public transport subsidy policies. The figure compares the maximum subsidy
scenario to the baseline. Panels show where PMI increased (increased mixing potential) or decreased (reduced mixing
potential), with illustrations of mode shifts.
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Supplementary Figure 31 | Impact of promoting active travel policies on mode usage and citywide mixing
potential. a–c Proportional changes in mode usage by income group. d–f Overall citywide mixing potential (PMI) for
each mode.

Supplementary Figure 32 | Impact of promoting active travel policies on average travel costs by income
group.
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Supplementary Figure 33 | Spatial distribution of changes in the Probabilistic Mixing Index (PMI) for
three transport modes under active travel policies. The figure compares the maximum promotion scenario to the
baseline. Panels show where PMI increased (increased mixing potential) or decreased (reduced mixing potential), with
illustrations of mode shifts.
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