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Supplementary Information

1 Mobility data treatment

1.1 Home and workplace identification

In this study, we utilize an anonymized mobile phone dataset provided by a telecommunications company
in China, covering one month (June 2023) of GPS “pings” from users who gave explicit consent. The dataset,
which complies with China’s Personal Information Protection Law, includes de-identified user IDs, latitudes,
longitudes, and timestamps, ensuring privacy and preventing re-identification attempts. After removing dupli-
cates and excluding users with fewer than 300 pings, our final dataset comprises 7.56 million users and roughly
4.82 billion pings.

To ensure robust inference of home and workplace locations from trajectory data, we implement a multi-stage
methodology with rigorous validation. For each individual, we first detect significant stays using the DBSCAN
algorithm [1]. We set the tuning parameters carefully for spatial distance of 50 meters and minimum 10 points to
identify high-density clusters of trajectory points, representing visited places or stays. Once clusters are formed,
we assign each cluster to the nearest Point of Interest (POI) within a predefined radius of 100 meters, ensuring
that each significant stay is contextually anchored to a known venue. Clusters that are too small (fewer than 10
points) or that do not correspond to any recognized venue are discarded to minimize noise and improve data
reliability. Next, we refine these significant stays by applying temporal filters to capture meaningful activities.
Specifically, we exclude any stays with durations of less than 15 minutes, as such brief stops are unlikely to
represent significant activities, and we also filter out stays exceeding 24 hours, which may indicate data errors.
We have extracted 241 million trips for 7.56 million users. The trip characteristics in Beijing metropolitan area
are shown in Supplementary Fig. 1.
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Supplementary Figure 1 | Trip characteristics in Beijing metropolitan area. a Distribution of trip distance d,

which follows an exponential decay p(d) ~ e~%/279 b Distribution of travel duration 7, with most trips lasting around 38
minutes. ¢ Distribution of dwell time at stays J, capturing that residents tend to remain at home for around 560 minutes.

To infer home locations, we analyze the refined stays by examining both their temporal patterns and visit
frequencies. We focus on locations visited most frequently during nighttime hours (i.e., 21:00 to 6:00) across
multiple days. The location with the highest cumulative duration during these nighttime periods is designated as
the likely home location for an individual, provided that it meets a minimum threshold of 25 visits over the 30-
day observation period. Additionally, we validate these candidates by comparing weekend visit durations, under
the assumption that true home locations typically exhibit higher activity during weekends. Amap residential
POIs are leveraged to ensure that the identified candidate is situated within a residential area. If multiple
locations meet these criteria, the candidate with the longest total nighttime duration is selected as the home
location. For workplace detection, we apply a similar approach by focusing on significant stays during typical
working hours (i.e., 9:00 to 17:00) on workdays. We identify locations that exhibit both high frequency and long
cumulative durations of stays during these hours, setting a threshold of at least 4 visits per 5 workdays to qualify
as potential workplace candidates. Amap commercial POIs are used to validate these candidates, ensuring that
the identified location is consistent with common workplace settings. Among the candidates, the location with
the longest total working-hour duration is selected as the workplace for each individual. We successfully infer
home locations and workplaces of 6.05 million individuals, ensuring that only users with robust and consistent
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activity patterns are included in the final dataset. Unidentified users, for whom home or workplace cannot be
reliably determined, are excluded to maintain the accuracy and reliability of our analysis.

Distributions of home locations and workplaces of individuals (Supplementary Fig. 2) suggest that both
residential and employment densities are higher in the city center, while commuting flows tend to be more
localized within nearby neighborhoods. Daily movements between homes and workplaces show predictable time
patterns. People’s time spent at home and workplaces follows opposite daily rhythms—home presence typically
peaks overnight particularly on weekends, whereas workplace presence peaks during daytime hours and on
workdays (Supplementary Fig. 3).
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Supplementary Figure 2 | Jobs-housing structure of Beijing metropolitan area. a Spatial clusters of home
locations. Individuals’ home-based trips are aggregated to township administrative boundaries, and the mobility counts
are normalized by jurisdictional area (km?). b Spatial clusters of workplaces. ¢ Spatial distribution of commuting flows.
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Supplementary Figure 3 | Daily patterns of time spent at homes and workplaces. a Home presence proba-
bilities across hours of day. b Workplace presence probabilities across hours of day.

1.2 Population representativeness

We validate the population representativeness of mobile phone data through cross-validation with China’s
Seventh National Population Census [2]. This nationwide census, conducted by the National Bureau of Statistics
(NBS), provides comprehensive demographic data across 41,636 township-level administrative units encom-
passing all 31 provincial divisions. To address temporal discrepancies between the decennial census (2020)
and our mobility dataset (2023), we incorporate annual population growth estimates (0.87% average increase)
derived from Beijing Municipal Statistical Yearbooks (2020-2023) [3-6]. The population distribution in Beijing’s
metropolitan region is visually summarized in Supplementary Fig. 4a. Our validation strategy involves examin-
ing the correlation between census-recorded resident populations and home-based trip frequencies derived from
mobility data at matched township units. This approach is grounded on the inherent stability of residential
behavior [7], hypothesizing that home-based trip frequencies constitute reliable proxies for static population dis-
tributions. Across all township units, we compute Pearson’s correlation coefficient (r) between the two datasets.
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A robust coefficient of r = 0.8426 (***p < 0.001; 95% CI [0.7943, 0.8804]) indicates a statistically significant
positive association, explaining 71.0% of shared variance (r? = 0.710) (Supplementary Fig. 4b). This strong
correspondence confirms the capacity of mobile phone data to reliably approximate population distribution
patterns at fine spatial scales.
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Supplementary Figure 4 | Population representativeness validation. a Census population distribution in Beijing
metropolitan region. b Scatter plot illustrating correlation between census population and home-based trip frequency
indicated by Pearson’s correlation coefficient 7, with the diagonal line providing the reference. Point represents a township-
level administrative unit. *** indicates statistical significancep < 0.001.

1.3 Socioeconomic status inference

To infer the income levels of individuals, we establish a connection between the individuals’ inferred home
locations and the LianJia property database—China’s largest real-time property transaction platform covering
97.3% of residential markets. This database provides detailed, geotagged records of residential communities,
including information such as community name, average transaction price (in RMB per square meter), architec-
tural type (high-rise towers, slab complexes, bungalows), number of households and buildings in the community,
and exact location (precise latitude and longitude coordinates). It is important to note that housing in China
is typically organized into well-defined residential communities. Unlike many Western settings where neigh-
borhoods might comprise a mix of varied housing styles and unplanned developments, these communities are
generally gated, uniformly managed, and offer shared amenities such as green spaces and retail facilities. This
structured arrangement not only standardizes property types within a community but also results in more
homogenous pricing and quality measures across the board. Therefore, platforms like LianJia can efficiently
capture a near-complete snapshot of the housing market, thereby serving as a reliable proxy for inferring the
socioeconomic status of residents based on their home locations.

In the Beijing metropolitan area, the database lists 9,501 communities with price data as of June 2023, as
illustrated in Supplementary Fig. 5a. We perform a spatial query to match the individual’s home coordinates
(latitude and longitude) with communities listed in the LianJia database. Specifically, we construct Voronoi
polygon around each community, creating non-overlapping zones where all points within a polygon are geo-
graphically closer to its central community than to others (Supplementary Fig. 5b). These Voronoi polygons
effectively capture localized market conditions, as residents within the same polygon are likely to experience
similar socioeconomic environments. For every individual, we identify the polygon containing the inferred home
location and assign the associated community transaction price as an approximate measure of that individual’s
income level. To ensure reliability, we compute the geographic distance between each individual’s home and the
matched community. Our analysis reveals that 80% of home locations are within 250 meters of a community,
and 90% are within 500 meters (Supplementary Fig. 5¢). These findings confirm that the majority of individu-
als reside in close proximity to the communities used in our analysis, thereby demonstrating the robustness of
income inference.
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Supplementary Figure 5 | Spatial matching analysis based on LianJia property data. a Geospatial visual-
ization of 9,501 communities listed on the LianJia platform, with color coding indicating average transaction prices as of
June 2023. b Construction of Voronoi polygons around each community. Individual’s home location within a polygon is
assigned the transaction price of the corresponding community, establishing localized socioeconomic proxies. ¢ Distance
distribution between residences and matched communities.

Individuals are divided into four equal groups based on the 25th, 50th, and 75th percentiles of the inferred
income levels derived from the matched community transaction prices. Each quartile corresponds to a distinct
income group. For instance, the first quartile, which contains individuals with property transaction prices at or
below the 25th percentile, is assumed to represent the lower-income group. The second quartile (between the
25th and 50th percentiles) represents the lower-middle-income group, the third quartile (between the 50th and
75th percentiles) represents the upper-middle-income group, and the fourth quartile (above the 75th percentile)
represents the higher-income group. The spatial distributions of home and workplace locations for these four
income groups are shown in Supplementary Fig. 6.
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Supplementary Figure 6 | Spatial distributions of residential locations and workplaces for four income
groups. Top row: Residential distributions reveal strong income stratification, with higher-income groups concentrated
within city core area, transitioning to lower-income groups in peripheral districts. Bottom row: Workplace distributions
display more evenly spatial patterns, maintaining partial concentration in central business districts across all income
groups.

1.4 Travel mode choices

For each individual trip, we compute the probabilities that an individual travels through particular transport
mode (active, private or public) using a pre-trained random forest model calibrated on the publicly available
Geolife dataset [8]. The Geolife dataset, collected by Microsoft Research Asia, comprises GPS trajectories of
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over 180 users in a range of cities, primarily in Beijing, China, over several years. We segment each trajectory
into multiple contiguous trips, defined by a minimum dwell time of 15 minutes between trips. Each trip is labeled
with ground-truth transport modes (one or more) used, including walking, cycling, car, taxi, bus, railway. We
consolidate similar modes (e.g., walking and cycling into ”active”; car and taxi into ”private”; bus, railway into
"public”) to align with our defined categories. Trips involving a combination of private and public modes are
excluded from the analysis to ensure unambiguous mode classification. Only trips exclusively involving active
modes are labeled as "active”; all other trips are categorized as either ”private” or ”private” based on their
dominant mode. In Beijing metropolitan area, this process yields 1,819 active trips, 881 private trips, and 1,725
public trips.

To train the random forest model, we extract five features relevant to transport mode identification, including:
"Route length’ (total distance traveled during the trip), ’OD distance’ (Euclidean distance between origin and
destination), ’O_pubstation_dist’ (distance from the origin to the nearest public transportation station obtained
from Amap POIs), 'D_pubstation_dist’ (distance from the destination to the nearest public transportation
station), and "Travel time’ (duration of the trip). The model is trained using a subset of the Geolife data (80% for
training, 20% for validation) and optimized for classification accuracy. To mitigate potential sample imbalance,
the model is configured to automatically adjust the weights assigned to each class based on their prevalence in
the data, ensuring that classes with fewer samples are given more importance during training. The contribution
of each feature to the model’s predictions is shown in Supplementary Fig. 7. Rather than assigning a single,
definitive mode for each trip, the model generates probabilistic mode assignments, reflecting pre-trip decision
uncertainty. For instance, a particular trip might be assigned probabilities of 0.1 for ”active”, 0.6 for ”private”,
and 0.3 for "public”. This suggests that while private mode is the most probable, there’s still a non-negligible
chance of choosing public transport. Such probability vectors capture travelers’ latent preference influenced by
contextual factors prior to a trip.

OD distance
Route length

Travel time

D_pubstation_dist
B Active

O_pubstation_dist I Private
B Public
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

mean(|SHAP value|) (average impact on model output magnitude)

Supplementary Figure 7 | Overall feature importance based on SHAP (SHapley Additive exPlanations)
values for the travel mode inference model. Features are listed on the vertical axis, ordered from most to least
important. The horizontal axis represents the mean absolute SHAP value for each feature. A longer bar indicates a
greater overall impact of that feature on the model’s predictions across the entire dataset.

The model’s performance is evaluated through metrics appropriate for both classification and probability
estimation. Specifically, Receiver Operating Characteristic (ROC) curves [9] (Supplementary Fig. 8a), which
assess the model’s ability to discriminate between classes, yield high Area Under the Curve (AUC) scores: 0.9575
for active mode, 0.9242 for private mode, and 0.9213 for public mode, indicating strong discriminatory capacity
across all modes. Furthermore, the calibration of the probability estimates is assessed using the Brier score [10],
which measures the mean squared difference between predicted probabilities and actual outcomes. The Brier
scores are also favorable (Supplementary Fig. 8b): 0.073 for active mode, 0.076 for private mode, and 0.109 for
public mode, demonstrating well-calibrated probability predictions.

This pre-trained random forest model is then applied to our mobile phone dataset. For each trip
in this dataset, we calculate the same five features: 'Route length’, ’OD distance’, 'O_pubstation_dist’,
"D_pubstation_dist’, and *Travel time’. By inputting these features into the trained model, we estimate the prob-
ability distribution across active, private, and public transport modes for each trip. These probability estimates
are then used for further mobility analysis.
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Supplementary Figure 8 | Model performance evaluation. a Receiver Operating Characteristic (ROC) curves.
Each curve plots the True Positive Rate against the False Positive Rate at various threshold settings. The Area Under
the Curve (AUC) for each mode is indicated in the legend. High AUC values (close to 1) demonstrate the model’s
excellent ability to distinguish between each transport mode and the others. b Calibration curves assess the reliability
of the predicted probabilities by plotting the observed fraction of positives against the predicted probabilities. Ideally,
the calibration curves should closely follow the diagonal (dashed line), indicating well-calibrated probabilities where
predicted probabilities align with actual event frequencies. Lower Brier scores (close to 0) indicate better calibration.

1.5 Travel route generation

For each trip of an individual, we generate a most probable travel route for active, private, and public modes
respectively using Amap navigation API [11], a sophisticated service renowned for its routing capabilities in
China. The Amap API is configured to generate routes by considering a range of input parameters including
the trip origin and destination coordinates (latitude and longitude), waypoints, departure time and desired
travel modes. Critically, the API computes the most time-efficient route for the specified mode, dynamically
factoring in real-time traffic conditions, public transit schedules, estimated costs, and general traveler preferences
as modeled within its algorithms. To enhance the realism of these generated routes, we incorporate all GPS
trajectory points from each original trip record as intermediate waypoints when querying the API. This strategy
allows the navigation system to compute routes that more accurately capture potential deviations, detours,
and individual preferences that may have influenced the observed travel behavior. The resulting output from
the Amap API delivers comprehensive navigation information. For active and private modes, this includes a
breakdown of route details by road segment, specifying the roads to be taken and the estimated travel duration
for each segment, accounting for real-time traffic where applicable. For public mode routes, the API details
the specific transit lines to utilize, the sequence of stations, the estimated travel time between stations, and
any necessary transfer points. The use of Amap API allows for privacy-preserving travel planning by inferring
potential routes without directly accessing sensitive location data from the individual’s mobile device.

To validate the accuracy of route generation process, we leverage the high-resolution GPS trajectories pro-
vided in the Geolife dataset as ground truth. Notably, the majority of these trajectories (91.5%) are recorded
at a dense sampling rate, typically every 1-5 seconds, ensuring a detailed and accurate representation of travel
paths. For each trip, we generate a route between its origin and destination using the Amap API corresponding
to the actual travel mode recorded in Geolife data. To quantitatively assess the spatial similarity between the
generated route and the actual GPS trajectory, we create a buffer around both the generated route Byenerated
and the original GPS trajectory B,..,;, and calculate the Jaccard index, representing the ratio of the intersection
area to the union area of the two buffers

o A’rea(Bgenerated N B’real)

Area'(BgeneT'ated U Breal)

This index provides a measure of overlap, with higher values (close to 1) indicating greater agreement between
the generated route and the real-world trajectory. For 4,425 mode-labeled trips in Geolife dataset, we test a
range of buffer distances—30 meters, 50 meters, 70 meters, and 90 meters—around both the Amap-generated
routes and the corresponding real GPS trajectories. We observe that even under a stringent 30-meter buffer,
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over 70% of generated routes achieve a Jaccard index greater than 0.5 (Supplementary Fig. 9). This threshold of
0.5 signifies a substantial level of overlap, suggesting that the generated routes closely align with the real-world
trajectories in a majority of cases. When examining the results across different modes, we observe no significant
differences in performance. This validation demonstrates the Amap API’s effectiveness in generating realistic
routes.

1.0 { Individual #i a 1.0 | Individual #i b 10 c
0.8
E g 06
o b n
g 0 e 0 N
i 8 Buffer 30 m Q
a 2 0.4
e a J= 0.5468
Buffer 30 m
—— Buffer 50 m
0.2
= Amap route Amap route —— Buffer70m
Real trajectories Real route —— Buffer90m
-1.0 -1.0 0.0
1.0 0 1.0 -1.0 0 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance (km) Distance (km) Jaccard index J

Supplementary Figure 9 | Validation of Amap route generation against Geolife GPS trajectories. a An
example of an Amap-generated route overlaid with the corresponding real GPS trajectory from Geolife for a single trip. b
Buffered representation (30-meter buffer) of the generated and real routes. ¢ Cumulative distribution of Jaccard Index J
across 4,425 mode-labeled trips from the Geolife dataset, shown for different buffer distances (30m, 50m, 70m, and 90m).

1.6 Cross-data validation

To further validate the reliability of travel mode inference and route generation processes, we leverage an
additional independent dataset to compare the consistency of mobility flow distributions in urban spaces. We
use the open-sourced MemDA data [12], which comprise traffic speeds from major roads in Beijing collected in a
period of 75 days (from May 12, 2022, to July 25, 2022). In urban road traffic, the average speed of a road segment
is typically negatively correlated with traffic volume under most normal conditions, as higher vehicle densities
tend to reduce speeds due to congestion. We process the traffic speed data by aggregating measurements into
hourly intervals for each major road segment over the 75-day period. The average speed per segment per hour
is computed as the mean of all recorded speeds within that time window, providing a proxy for potential traffic
condition. For the mobile phone dataset, we calculate the expected traffic volume for each road segment in a
given hourly interval by summing the estimated private mode probabilities of all trips whose Amap-generated
routes include that segment during that time period. For example, a trip with a 0.7 probability of private mode
contributes 0.7 vehicle units to the traffic volume of each segment along its route. This probabilistic aggregation
reflects the uncertainty in mode choice predictions and provides a robust estimate of traffic flow. To compare
the two datasets, we normalize the MemDA-derived average speeds and the mobile phone-derived expected
traffic volumes for matching road segments and hourly intervals. The spatial distributions of these normalized
values during the morning peak hour (9:00-10:00) is visualized in Supplementary Fig. 10, revealing a notable
spatial consistency, which is supported by a significant negative Pearson correlation coefficient of r = -0.3191
(p < 0.001; 95% CI [-0.3504, -0.2871]) (Supplementary Fig. 11a). We also observe similarly significant negative
correlations during the midday (13:00-14:00, r = -0.3521; 95% CI [-0.3826, -0.3209]) and evening peak (17:00-
18:00, r = -0.3513; 95% CI [-0.3819, -0.3201]) hours (Supplementary Fig. 11bc). This temporal and spatial
consistency across the MemDA and mobile phone datasets underscores the method reliability in capturing road
traffic patterns.

2 Measuring encounter opportunities in interconnected urban spaces

We develop two measures to quantify the opportunities for social encounters created by multimodal mobility
at the city scale. The first one is the mode-specific Probabilistic Mixing Index (PMI), which is designed to
capture the diversity of potential encounters experienced by individuals when using a particular transport mode.
The second one is the Multimodal Uniformity Index (MUT), which builds upon the PMI to assess the consistency
of these encounter opportunities across different travel modes within a geographical region.
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Supplementary Figure 10 | Spatial consistency of mobility flow distributions across datasets in Beijing
metropolitan area. a, Spatial distribution of normalized road average speed from MemDA data during the morning
peak hour (9:00-10:00). b, Spatial distribution of normalized expected road traffic volumes inferred from mobile phone
data for private mode during the morning peak hour.
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Supplementary Figure 11 | Cross-data validation performance. Correlation between normalized average traffic
speeds from MemDA data and normalized expected traffic volumes inferred from mobile phone data for private modes
during the morning peak (9:00-10:00; panel a), midday (13:00-14:00; panel b) and evening peak (17:00-18:00; panel
c) hours. Pearson correlation coefficient of r is marked on the title, with *** indicating statistical significance p <
0.001. In all panels, grey points represent road segments, plotted according to their values from the two datasets being
compared. Boxplots are grouped by bins of values from the reference dataset on the x-axis, and show the distribution of
the corresponding values from mobile phone data on the y-axis within each bin. Blue points represent the average value
within each bin, summarizing the overall trend.

2.1 Probabilistic Mixing Index

The mode-specific Probabilistic Mixing Index (PMI) is calculated based on the probabilities of individuals’
paths overlapping in multilayered urban spaces while traveling via a specific mode. After data fusion processing,
we have estimated the probabilities that an individual travels through different transport modes (active, private,
or public) (Supplementary Section 1.4), and generated a most probable travel route corresponding to each mode
(Supplementary Section 1.5). For road transportation (active and private), the generated route specifies the road
segments to be taken and the estimated duration. For public transportation (bus and railway), the generated
route provides the station-by-station trajectories within transit systems, including the specific sequence of
stations, along with the estimated travel times between them. For a given departure time, the geographical
location at any moment along the route of a specific mode can be determined, as shown in Supplementary
Fig. 12a.

For simplicity, we assume that encounter opportunities arise from transient co-presence in time and space
with others traveling via the same mode. These co-locations represent moments when two or more individuals
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are present in the same spatial unit simultaneously while using the same mode. To capture these potential
encounters, the urban space is partitioned into mode-specific spatial units, reflecting the distinct ways individuals
perceive and interact with their surroundings. The spatial scales for active and private modes are defined as
1 km x 1 km grids. For active (or private) mode, two individuals’ routes are mapped onto the 1 km x 1 km
grids over time. A co-location occurs when they occupy the same grid within a specific time frame, indicating a
potential encounter. For bus and railway modes, the spatial units are the transit segments between stations. In
this context, co-locations occur within the confined spaces of transit vehicles or at stations, capturing the shared
experience inherent to public transit. These spatial units are analyzed within 1-hour time frames, a temporal
resolution chosen to balance computational feasibility with the need to capture significant social interactions.

To calculate the PMI for each spatial unit, mode, and 1-hour time frame, the expected number of individuals
from each income group is computed by summing the product of their mode-choice probability and an indicator
of their presence in that spatial unit. Mathematically, for a spatial unit s, time frame ¢, and income group gq,
the expected population can be expressed as:

stq szm zst (82)
i€q

where p; ,, is the probability that individual 7 travels via mode m, and I; ;¢ is an indicator variable equal to 1
if individual ¢’s route using mode m passes through spatial unit s during time frame ¢, and 0 otherwise. Each
individual contributes a fractional value—reflecting their partial likelihood of being present—to the expected
population. This expected value accounts for the inherent uncertainty in individual travel behavior, providing a
more dynamic and realistic estimate of population distribution. For example, if an individual from group ¢ has
a 0.9 probability of choosing to drive and their driving route passes through spatial unit s between 8 and 9 AM,
their contribution to Ej ; 4 for driving would be 0.9x1 = 0.9. A schematic illustration of the calculations is shown
in Supplementary Fig. 12bc. After computing the expected population Fj ; 4 for each of the four income groups,
the PMI is derived using an entropy metric to quantify the diversity of the potential encounters, calculated as:

PMIs,t,m = ZTS tq " IOg 7-s,t,q) (SS)

log

Est.q
23:1 Esmq
t, and mode m that belongs to income group ¢. The normalization factor @ scales the entropy to a range

where 71 4 = denotes the proportion of the total expected population in spatial unit s, time frame

between 0 and 1. A PM I, ., value of 0 indicates minimal mixing potential (i.e., only one income group
is present), while a value of 1 indicates maximum mixing potential (i.e., all four income groups are equally
represented).
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e
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Supplementary Figure 12 | Illustration of the calculation of the Probabilistic Mixing Index (PMI). a
Individual mode choice probabilities and time-stamped paths for active, private, and public modes. b Example of PMI
calculation for a single spatial unit (transit segment) for a railway line. Assuming four individuals from four income groups
are co-located at this segment between 8-9 AM, their contributions to the expected population Es; 4 equal their mode
choice probabilities. ¢ Example of PMI calculation for a single spatial unit (1 km X 1 km grid) for individuals driving.
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2.2 Multimodal Uniformity Index

The Multimodal Uniformity Index (MUT) is introduced to evaluate how consistently encounter opportunities
are distributed across different travel modes within the same geographical region. For a specific region A and
time frame ¢, we first calculate the average mixing level PM 14 ; ,,, for a given mode m across all relevant spatial
units s in region A during period t:

1

PMIA’t’m == W

> PMIym (S4)
s€ESa

where S, is the set of spatial units (grids for active and private modes, transit segments for bus and railway
modes) associated with region A, and |S4| is the number of such units. The spatial units in S4 are defined
based on the characteristics of each travel mode. For active and private modes, a spatial unit s (1 km x 1 km
grid) is included in S, if any portion of it overlaps with the region. For public transportation, a spatial unit
(transit segment) is included in S, if at least one of its endpoint stations is located within this region, reflecting
the service provision within the defined geographical area (Supplementary Fig. 13). With PM I, ,, computed
for each mode—active, private, bus, and railway—we then normalize these values into proportions r4 ¢m =
PMIgtm/ >, PMI4tm, where the sum is taken over the four modes. The MUI for region A at time ¢, denoted
MUI 44, is then calculated using the entropy formula:

1
MUIA,t = —@ %:TA7t,m10g(7"A,t,m)a (85)

An MU 4+ value close to 1 indicates high uniformity, meaning mixing opportunities are similar across all modes
in region A. A value near 0 suggests that encounter opportunities are highly stratified by mode choice, with
significant variation in mixing levels between modes. This index thus provides a time-specific measure of how
equitably transportation modes contribute to social encounter patterns within a region.

MUI, .= 0.9224

08:00-09:00

B PMlyprivate = 0.8675 Region

(J
k PMIA,t,active =0.6521

E PMIy ¢ subway = 0.9232

Supplementary Figure 13 | Illustration of the calculation of the Multimodal Uniformity Index (MUI).
The region-level mixing potential PM14 ; ,, for each mode m is first calculated by aggregating all relevant spatial units
in region A. MUI 4 ; is then computed by normalizing these PM I 4 ¢ ,, values into proportions and applying the entropy
formula, indicating the uniformity of encounter opportunities across modes in region A during time t.

12



337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

368

369
370
371
372
373
374
375
376
377

378
379

380
381
382

383
384
385
386
387

2.3 Sensitivity analysis of spatiotemporal scales

In this study, the primary results are presented using spatiotemporal scales that balance computational
efficiency with the ability to capture meaningful social interactions, specifically a temporal resolution of 1
hour and spatial scales of 1 km x 1 km grids for active and private modes, and transit segments for public
transportation modes. To evaluate the robustness of the Probabilistic Mixing Index (PMI) and the Multimodal
Uniformity Index (MUI) to variations in these scales, we conduct a sensitivity analysis by systematically testing
alternative temporal and spatial resolutions.

For temporal scales, we examine window sizes ranging from 3 to 60 minutes. For spatial scales, we test
grid resolutions from 250 m to 2 km for active and private modes, while keeping the transit segment definition
unchanged for public transportation.

Figure 14 presents the cumulative distributions of PMI for each of the four travel modes across the range
of temporal scales. As the temporal scale increases, the cumulative distribution curves generally shift upwards,
indicating a tendency towards higher PMI (greater mixing potential) with longer periods. This effect is most
pronounced for the bus mode, as evidenced by the Kolmogorov-Smirnov (K-S) statistic [13] comparing 3-minute
and 60-minute windows: bus mode exhibits the largest distributional divergence (K-S = 0.3566, p < 0.001),
followed by private (K-S = 0.1874), railway (K-S = 0.1825), and active modes (K-S = 0.1257; all p < 0.001).
The heightened sensitivity of bus systems likely stems from their variable ridership patterns and frequent stops,
which amplify transient co-location noise in short time frames.

Figure 15 presents spatial scale sensitivity by comparing cumulative PMI distributions for active and private
modes across grid resolutions from 250 m to 2 km. Larger spatial scales produce upward-shifted distribution
curves, reflecting higher PMI values at coarser resolutions. The K-S statistic quantifies this divergence, with
private modes exhibiting greater sensitivity (K-S = 0.1976, p < 0.001) compared to active modes (K-S = 0.1560,
p < 0.001). The relatively low magnitude of the K-S statistics suggests that PMI distributions for both modes
remain reasonably stable across the tested range of spatial scales.

Figure 16 presents the sensitivity of the Multimodal Uniformity Index (MUI) to spatiotemporal variations.
In Supplementary Fig. 16a, comparing temporal scales from 3 to 60 minutes yields a K-S statistic of 0.4329
(p < 0.001), indicating a notable shift in uniformity. In Supplementary Fig. 16b, varying the spatial scale from
250 m to 2 km yields a much larger K-S statistic of 0.7580 (p < 0.001). A key observation is the presence of two
significant phase transitions in the MUI distribution, at approximately 0.5 and 0.8. These transitions correspond
to distinct grid characteristics related to transit availability. The phase transition at MUI ~ 0.5 captures grids
that lack both bus and railway stations, leaving only two modes (active and private) contributing to the MUI

calculation (approximating igigig = 0.5). The second transition at MUI ~ 0.8 corresponds to grids without
railway stations but with bus stations, meaning three modes contribute (approximating }gigig ~ 0.7925). These

transitions reflect discrete drops in the number of available travel modes, which directly impacts the uniformity
of encounter opportunities.

Despite the influence of scale on the metric distributions, universal patterns are captured across different
spatial resolutions (Supplementary Fig. 17). Specifically, the spatial distributions of PMI and MUT in the Beijing
metropolitan area reveal consistent trends, such as lower mixing potential in peripheral regions and greater
uniformity in central urban cores, regardless of whether the grid size is 250 m or 2 km. These findings suggest that
while the absolute values of the metrics may shift with scale, the underlying spatial organization of encounter
opportunities exhibits robust, scale-invariant characteristics.

3 OLS models explaining spatiotemporal patterns of encounter
opportunities

We use ordinary least squares (OLS) regression models to explain how transport infrastructure influences the
patterns of encounter opportunities observed through the Probabilistic Mixing Index (PMI) and the Multimodal
Uniformity Index (MUI). The form of the OLS regression model is:

My =Bo+ Y BT+ e, (S6)

where:

e M, is the dependent variable, representing either the observed regional-level mixing index (PMI4 ¢ m, Eq. S4)
for a specific travel mode m (active/private/bus/railway) or the MUI 4, (Eq. S5) across four modes within
region A at a specific period t. The analysis is conducted at a spatial scale of 1km x 1km grids, which
define the regions A.

13



388
389
390
391
392
393
394
395
396

397

P (= PMI)

P (= PMI)

Active (K-S =0.1257***) Private (K-S =0.1874***)

b
1.0 —— 3 min 1.0
\ —— 5min %
\ —— 10 min
08 —— 20 min 08

RIS\

30 min '

60 min

. \\ 0.6
0.4

\\
\\

P (= PMI)

0.2 w 0.2 20 min
30 min
60 min
0.0 , , , , 0.0 , , , ,
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
PMI PMI
Bus (K-S =0.3566***) Subway (K-S =0.1825***)
d
1.0 —— 3 min 1.0 —
——— 5min \
—— 10 min \
—— 20 min A
0.8 —— 30min 0.8 Q
\ —— 60 min
0.6 — 0.6
\ \ S \
o
Al
0.4 o 0.4
= 3 min
== 5min
= 10 min
0.2 \ 021 —— S0min
\ —— 30min
= 60 min
0.0 : : & 0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
PMI PMI

Supplementary Figure 14 | Cumulative distributions of PMI for four travel modes across different tem-
poral scales under fixed 1 km X 1 km grids. The Kolmogorov-Smirnov (K-S) statistics (*** indicates p-value

< 0.

001) quantify the distributional divergence between the 3-minute and 60-minute temporal scales.

{T;} denotes the set of transport infrastructure-related explanatory variables. These include lengths of
different road types (Motorway, Primary, Secondary, Tertiary, Pedestrian roads), road diversity (calculated
using the entropy of road types within a grid), and counts of transport facilities (e.g., Bus Stations, Subway
Stations), reflecting the transportation and built environment features of the grids. Grid-level statistics for
these variables are detailed in Supplementary Table 1.

® [ is the intercept of the regression model.
® (B, are the regression coeflicients corresponding to the transport infrastructure variables, quantifying their

individual contributions to M;.
€; is the error term, capturing unexplained variation in the model.

To capture temporal heterogeneity in the dynamics of encounter opportunities, we design two model variants

398 with distinct temporal granularity. (1) Daily granularity model: Separate models are estimated for workdays
399 and weekends. For a specific day type d, the dependent variable M, for each grid A is calculated as the average
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Supplementary Figure 16 | Cumulative distributions of MUI for urban grids across different spatiotem-
poral scales. a Temporal sensitivity analysis. b Spatial sensitivity analysis. The Kolmogorov-Smirnov (K-S) statistic
(*** indicates p-value < 0.001) quantifies the distributional divergence between the minimum and maximum scales tested

in each panel.

value of the mixing index (PM1I4 , or MUI4 ) across all hourly periods ¢ within that day. (2) Hourly
granularity model: Separate models are estimated for each specific hour of the day, differentiated by day
type. For a specific hour h and day type d, the dependent variable M; for each grid A is the observed value of
the mixing index (PMI4 4 or MUI4 ) for that specific hour.

Supplementary Table 1 | Summary of explanatory variables and grid-level statistics.

Primary category Subcategory Sum value Median value Max value
Transport Facility Airport 9 1 6
Transport Facility Train Station 334 1 102
Transport Facility Port 63 1 7
Transport Facility Intercity Bus Station 40 1 3

Continued on next page
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Supplementary Table 1 | Summary of explanatory variables and grid-level statistics (Continued).

Primary category Subcategory Sum value Median value Max value
Transport Facility Subway Station 1489 4 17
Transport Facility Bus Station 6098 3 17
Transport Facility Parking Lot 56628 13 278
Transport Facility Toll Station 125 2 6
Transport Facility Highway Service 19 2 2
Transport networks (km) Motorway 2242.997 0 12.949
Transport networks (km) Primary roads 1770.722 0 8.366
Transport networks (km) Secondary roads 2222.137 0.3885 6.451
Transport networks (km) Tertiary roads 4199.528 1.5375 11.193
Transport networks (km) Pedestrian roads 6867.383 2.5405 18.555
Roads diversity Roads diversity 0.6276 0.9909

Supplementary Table 2 | Regression coefficients explaining Probabilistic Mixing Index (PMI) and Mul-
timodal Uniformity Index (MUI). Columns 2-9 represent PMI models (PM1I4 4 y,); Columns 10-11 represent MUI
models (MU 4 ). Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.001. R? is the coefficient of determination, and
MSE is the Mean Squared Error. Observations represent the number of grids included. Only significant variables are
shown.

Models for PM I t,m Models for MUI 4 ¢

Variable Active Mode Private Mode Bus Mode Railway Mode Workday ~ Weckend
Workday  Weekend  Workday  Weekend ‘Workday ‘Weekend Workday  Weekend

Motorway 0.083*** 0.071** 0.306"** 0.319*** 0.11%** 0.17%%* -0.006 -0.002 -0.048"* -0.058**
Primary roads 0.178"** 0.173*** 0.069** 0.058"* 0.07*** 0.074*** -0.047** -0.036" 0.062*** 0.06™*
Secondary roads 0.13*** 0.115*** 0.037* 0.017 0.012 0.003 -0.02 -0.012 0.046*** 0.046***
Tertiary roads 0.309*** 0.258*** 0.211*** 0.148*** 0.157*** 0.082*** 0.079*** 0.058** 0.107*** 0.108***
Pedestrian roads -0.028 -0.036 -0.016 -0.041" -0.081*** -0.109*** 0.048™ 0.03 0.078*** 0.089***
Roads diversity 0.059** 0.069*** 0.17%** 0.2%** 0.062*** 0.063*** 0.119*** 0.101*** 0.145"** 0.167***
Bus Station -0.011 0.032 -0.058"* -0.044* -0.045" -0.035 0.037 0.036 0.253*** 0.262***
Airport -0.078 -0.141 -0.084 -0.177** -0.092 -0.163" -0.005 -0.005 0.043 0.053
Subway Station 0.283*** 0.262*** 0.039 0.018 -0.003 -0.041 0.104*** 0.087*** 0.316*** 0.306***
Observations 2116 2112 2114 2108 1687 1684 334 334 2116 2115
R? 0.229 0.227 0.219 0.249 0.081 0.067 0.15 0.129 0.423 0.412
MSE 0.03 0.028 0.028 0.024 0.018 0.016 0.007 0.005 0.015 0.017

Prior to finalizing each OLS model, a systematic feature selection process is employed. We begin with the
set of candidate transport infrastructure explanatory variables listed in Supplementary Table 1. The Variance
Inflation Factor (VIF) is calculated for each variable to detect multicollinearity. Variables with a VIF ; 10 are
iteratively removed until all remaining variables have acceptable VIFs (< 10), ensuring the robustness of the
model estimates. The statistical results for the daily granularity models explaining both PMI and MUI are
presented in Table 2. The results detailing the hourly variations in the influence of these transport variables on
the mode-specific PMI are shown in Figs. 18-21, and those for the MUT are presented in Supplementary Fig. 22.

4 Agent-based model of individual mobility

This section provides detailed information about the agent-based mobility model used to simulate travel
mode choices and their impact on the structure of social encounter opportunities. The model is grounded in
discrete choice theory [14] and simulates the behavior of individuals commuting from home to work during
morning peak hours (9:00-10:00 AM).

4.1 Model specification

The model considers a population of individuals, each belonging to a specific income group g € G (where
|G| = 4). Each individual ¢ needs to make a trip from their home location to their workplace. For this commute,
they choose a travel mode m from a set of available modes M = {active, private, railway}. The choice is
probabilistic and assumes individuals aim to minimize their perceived travel cost Cgy,. The probability pgy,, that
an individual from group g chooses mode m is given by the multinomial logit formula:

Do = exp(—0Cym)
" D omieM exp(—0Cqm+)’

(S7)
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Supplementary Figure 17 | Illustration of PMI and MUI distributions at different spatial scales in the
Beijing metropolitan area.

where J is the sensitivity parameter, reflecting how strongly cost differences influence mode choice. The perceived
travel cost Cyy, is defined as:

Com = (g + Bm)Tm, (S8)
where:
e T, is the estimated travel time for mode m. This is calculated as the duration of the shortest path R, from
an individual’s home to workplace using the real-world transport networks in the Beijing metropolitan area.
® a, represents the monetary value of time for income group g.
® f,, represents other mode-specific cost components (monetary and non-monetary) per unit of travel time.
The model assumes that individuals have perfect information about travel times and costs. It also inherently
includes the Independence of Irrelevant Alternatives (ITA) property common to logit models [15]. The model
output consists of the mode choice probabilities pgy,,. These probabilities, combined with the shortest travel
paths R,,, are used as inputs to calculate the mode-specific Probabilistic Mixing Index (PMI), as described in
the main text.

4.2 Parameter calibration

The model parameters include the sensitivity parameter d, the group-specific value of time parameters oy,
and the mode-specific cost factors 3,,. The relative values of o, are determined a priori based on the average
income of each group, following the economic principle that the value of time correlates with income [16]. This
yields a; = 0.203, ap = 0.349, g = 0.596, and ay = 1. The main calibration process then focuses on estimating
the remaining four parameters: J, Bactive, Bprivate; a0d Brailway. The objective is to minimize the discrepancy
between model-predicted mode-specific mixing index (PMI) values and empirically observed PMI values from
mobile phone data during workday morning peak hours (9:00-10:00 AM).
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Supplementary Figure 18 | Hourly PMI dynamics for active mode across workdays and weekends. Each
panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically
significant variables are displayed.

To perform this calibration, we define an objective function L(©’) that quantifies the goodness-of-fit. We
use the sum of squared errors (SSE) across all relevant spatial units s for each mode m:

L((5, 6activea Bprivatea Brailway) - Z Z (P/ms,t,m(@/) - PMIS};?m)Q ’ (Sg)

meM s€S,,

where P/m&t’m(@/ ) is the model-predicted mixing index value and PM T ;ﬂzsm is the corresponding empirically
observed value. We employ a Grid Search approach to find the parameter set that minimizes this objective
function.

The model simulation is executed for each combination of parameter values in the grid. The parameter
combination yielding the minimum value of the objective function is selected as the optimal calibrated parameter

set. The resulting calibrated parameter values are: §* = 3 x 1074, 37 =0.22, g =21, and B

* —
active private railway
0.07.
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Supplementary Figure 19 | Hourly PMI dynamics for private mode across workdays and weekends. Each
panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically
significant variables are displayed.

To assess the model’s performance, we compare the model-predicted PMI values with the empirically
observed PMI values for each spatial unit. A strong positive correlation, quantified by Pearson correlation coef-
ficients (active: r = 0.9327***; private: r = 0.9613***; railway: r = 0.9551***; see Supplementary Fig. 23),

demonstrates a good fit of the model to the observed patterns of encounter diversity.

4.3 Simulation for private car use control policies

A central challenge in urban transport planning is designing policies that achieve collective goals without
exacerbating existing social inequalities [17]. The distributional effects of transport policies are a critical con-
sideration [18]. This study investigates these effects by simulating the impacts of urban transport policies on
patterns of encounter diversity and social equity. Measures controlling private car usage, such as congestion
pricing [19, 20], fuel taxes [21, 22], or parking regulations [23], are prominent tools for managing urban mobility.
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Supplementary Figure 20 | Hourly PMI dynamics for bus mode across workdays and weekends. Each
panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically
significant variables are displayed.

We operationalize these policies by systematically increasing the mode-specific cost parameter Bprivate, rep-
resenting a higher generalized cost of driving. We explore the sensitivity of travel behavior and patterns of
encounter diversity to such interventions. We implement two simulation scenarios: (1) Uniform citywide cost
increase (B,,ivate = Bprivate T ABprivate for all trips) and (2) Downtown-targeted cost increase (cost increase
only for trips with an origin or destination downtown). For both scenarios, we vary the cost increment, AfBprivate,
from 0 to 15. For each value, we recalculate perceived travel costs, mode choice probabilities, and the resultant
mode-specific mixing potential (PMI), changes in mode shares, and average travel costs per income group.

For the first scenario, increasing the citywide cost of driving reduces private car use and shifts commuters
to other modes, leading to complex changes in mixing potential across modes. To illustrate the spatial impact,
we select Afprivate = 5. The spatial distribution of changes is visualized in Supplementary Fig. 24. The policy
reduces the overall mixing potential among private car users. Conversely, for active and railway travel, mixing
potential increases in the suburbs and decreases in the downtown core.
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Supplementary Figure 21 | Hourly PMI dynamics for railway mode across workdays and weekends. Each
panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically
significant variables are displayed.

For the second scenario (downtown-targeted), the policy has a smaller impact on lower-income groups, as
fewer of them commute to the restricted zone (Supplementary Fig. 25 and Fig. 26). This leads to a higher overall
PMI for private car travel citywide, indicating increased mixing potential among remaining users (Supplementary
Fig. 27). Conversely, for active and railway modes, the overall citywide PMI decreases, signaling reduced mixing
potential.

In summary, the spatial design of private car control policies fundamentally alters their distributional effects.
A uniform policy spreads the burden broadly but yields mixed results on mixing potential. A downtown-targeted
policy concentrates costs but paradoxically increases mixing potential for private cars while reducing it for other
modes. These outcomes highlight critical trade-offs between travel costs and social mixing. Policymakers must
consider both cost burdens and impacts on encounter diversity across all modes.

4.4 Simulation for public transport subsidy policies

Promoting public transport through subsidies is a common strategy for influencing travel behavior and
addressing equity concerns [24, 25]. We simulate this by reducing the railway cost parameter Brailway. We
introduce a subsidy factor AfBpubiic and modify the cost parameter as ,B;aﬂway = Blaitway T ABpublic, varying
ABpublic from 0 to -0.07. For each subsidy level, we recalculate mode choice probabilities, average travel costs,
and mode-specific mixing potential (PMI).

The results confirm a shift towards railway usage, with lower-income individuals exhibiting a larger response
(Supplementary Fig. 28a-c). This translates into greater travel cost savings for them (Supplementary Fig. 29).
However, the impact on mode-specific mixing potential is complex. The influx of predominantly lower-income
users onto the railway reduces mixing potential within that mode (lower PMI, Supplementary Fig. 28f). Simi-
larly, as users shift from private cars, the remaining pool of drivers becomes less diverse, also reducing mixing
potential (lower PMI, Supplementary Fig. 28¢). Conversely, the active travel mode experiences increased mixing
potential (higher PMI, Supplementary Fig. 28d). The magnitude of these changes is relatively small, suggesting
diminishing returns from further fare-based subsidies.
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Supplementary Figure 22 | Hourly MUI dynamics across workdays and weekends. Each panel visualizes the
hourly variation of the regression coefficients for a specific explanatory variable. Only statistically significant variables
are displayed.

The spatial analysis (Supplementary Fig. 30) shows that for the private mode, the policy tends to reduce
mixing potential in downtown areas. For active travel, mixing potential increases in the suburbs but decreases
downtown. The railway mode exhibits complex spatial effects without a clear regional pattern. These findings
suggest that while subsidies reduce travel costs, they can inadvertently reduce mixing potential within the
subsidized mode and among users of other modes.

4.5 Simulation for promoting active travel policies

We explore the distributional impacts of policies promoting active travel, which can yield co-benefits like
improved health and reduced emissions. Strategies often involve improving infrastructure [26], traffic calming
[27], or public campaigns [28]. We model these policies by reducing the cost parameter S,ctive. We introduce a
policy variable AB,ctive and vary it from 0 to -0.44. As before, we recalculate the mixing potential (PMI), mode
usage shifts, and average travel costs.
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508

Promoting active travel shows progressive distributional effects, disproportionately benefiting lower-income

509 groups with the largest travel cost savings (Supplementary Fig. 31a-c and Fig. 32). However, the impacts on
510 encounter diversity are multifaceted. While citywide mixing potential generally increases for active and private
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Supplementary Figure 25 | Proportional changes in mode usage by income groups under two private car
policy scenarios.

modes (Supplementary Fig. 31d-f), the spatial effects diverge significantly (Supplementary Fig. 33). Active travel
promotes income mixing downtown but reduces it in suburbs. Conversely, private and railway modes see their
mixing potential decrease downtown while it improves in suburbs. This highlights a key trade-off: promoting
active travel reshapes patterns of encounter diversity in complex, spatially dependent ways. Policymakers should
consider complementary measures to ensure fairer social outcomes across all modes and areas.
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Supplementary Figure 29 | Impact of public transport subsidies on average travel costs by income group.
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