

Supplementary Information for ‘How transport systems create opportunities for social interaction’

Yitao Yang^{1†}, Erjian Liu^{2†}, Bin Jia², Ed Manley^{1*}

^{1*}School of Geography, University of Leeds, Leeds, UK.

²School of Systems Science, Beijing Jiaotong University, Beijing, 100044, China.

*Corresponding author(s). E-mail(s): e.j.manley@leeds.ac.uk;

Contributing authors: y.yang@leeds.ac.uk; 17120752@bjtu.edu.cn; bjia@bjtu.edu.cn;

[†]These authors contributed equally to this work.

9 Contents

10	1 Mobility data treatment	3
11	1.1 Home and workplace identification	3
12	1.2 Population representativeness	4
13	1.3 Socioeconomic status inference	5
14	1.4 Travel mode choices	6
15	1.5 Travel route generation	8
16	1.6 Cross-data validation	9
17	2 Measuring encounter opportunities in interconnected urban spaces	9
18	2.1 Probabilistic Mixing Index	10
19	2.2 Multimodal Uniformity Index	12
20	2.3 Sensitivity analysis of spatiotemporal scales	13
21	3 OLS models explaining spatiotemporal patterns of encounter opportunities	13
22	4 Agent-based model of individual mobility	16
23	4.1 Model specification	16
24	4.2 Parameter calibration	17
25	4.3 Simulation for private car use control policies	19
26	4.4 Simulation for public transport subsidy policies	21
27	4.5 Simulation for promoting active travel policies	22
28	Supplementary references	30

29 **List of Figures**

30	Supplementary Figure 1	Trip characteristics in Beijing metropolitan area.	3
31	Supplementary Figure 2	Jobs-housing structure of Beijing metropolitan area.	4
32	Supplementary Figure 3	Daily patterns of time spent at homes and workplaces.	4
33	Supplementary Figure 4	Population representativeness validation.	5
34	Supplementary Figure 5	Spatial matching analysis based on LianJia property data.	6
35	Supplementary Figure 6	Spatial distributions of residential locations and workplaces for four income groups.	6
36	Supplementary Figure 7	Overall feature importance based on SHAP (SHapley Additive exPlanations) values for the travel mode inference model.	7
37	Supplementary Figure 8	Model performance evaluation.	8
38	Supplementary Figure 9	Validation of Amap route generation against Geolife GPS trajectories.	9
39	Supplementary Figure 10	Spatial consistency of mobility flow distributions across datasets in Beijing metropolitan area.	10
40	Supplementary Figure 11	Cross-data validation performance.	10
41	Supplementary Figure 12	Illustration of calculation of Probabilistic Mixing Index (PMI).	11
42	Supplementary Figure 13	Illustration of calculation of multimodal uniformity index (MUI).	12
43	Supplementary Figure 14	Cumulative distributions of PMI for four travel modes across different temporal scales.	14
44	Supplementary Figure 15	Cumulative distributions of PMI for active and private modes across spatial scales.	15
45	Supplementary Figure 16	Cumulative distributions of MUI for urban grids across different spatiotemporal scales.	15
46	Supplementary Figure 17	Illustration of PMI and MUI distributions at different spatial scales.	17
47	Supplementary Figure 18	Hourly PMI dynamics for active mode across workdays and weekends.	18
48	Supplementary Figure 19	Hourly PMI dynamics for private mode across workdays and weekends.	19
49	Supplementary Figure 20	Hourly PMI dynamics for bus mode across workdays and weekends.	20
50	Supplementary Figure 21	Hourly PMI dynamics for railway mode across workdays and weekends.	21
51	Supplementary Figure 22	Hourly MUI dynamics across workdays and weekends.	22
52	Supplementary Figure 23	Comparison of model-predicted and observed PMI values.	23
53	Supplementary Figure 24	Spatial distribution of changes in PMI for three transport modes under a uniform private car cost increase policy.	23
54	Supplementary Figure 25	Proportional changes in mode usage by income groups under two private car policy scenarios.	24
55	Supplementary Figure 26	Impact of two private car policies on average travel costs by income group.	25
56	Supplementary Figure 27	Impact of two private car policies on citywide mixing potential by mode.	25
57	Supplementary Figure 28	Impact of public transport subsidies on mode usage and citywide mixing potential.	26
58	Supplementary Figure 29	Impact of public transport subsidies on average travel costs by income group.	26
59	Supplementary Figure 30	Spatial distribution of changes in PMI for three transport modes under public transport subsidy policies.	27
60	Supplementary Figure 31	Impact of promoting active travel policies on mode usage and citywide mixing potential.	28
61	Supplementary Figure 32	Impact of promoting active travel policies on average travel costs by income group.	28
62	Supplementary Figure 33	Spatial distribution of changes in PMI for three transport modes under active travel policies.	29

76 **List of Tables**

77	Supplementary Table 1	Summary of explanatory variables and grid-level statistics.	15
78	Supplementary Table 1	Summary of explanatory variables and grid-level statistics (Continued).	16
79	Supplementary Table 2	Regression coefficients explaining Probabilistic Mixing Index (PMI) and Multimodal Uniformity Index (MUI).	16

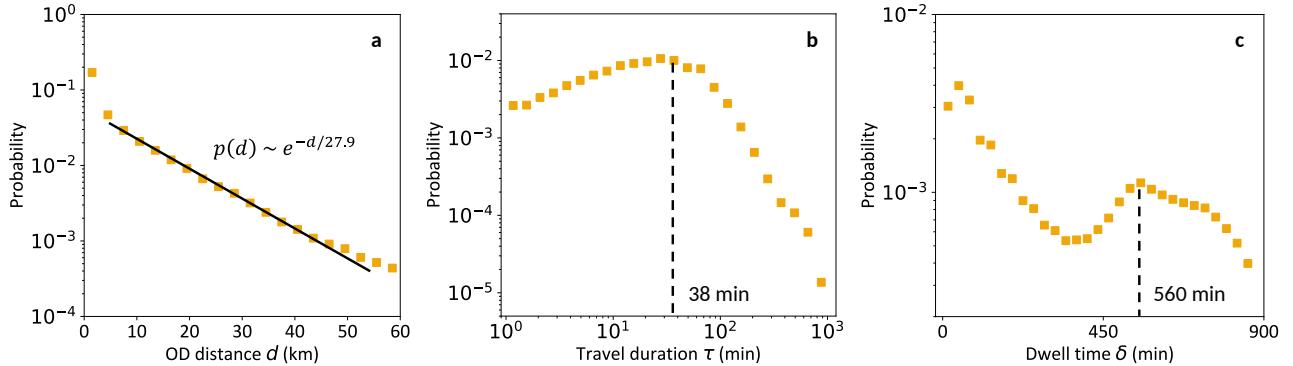
81 Supplementary Information

82 1 Mobility data treatment

83 1.1 Home and workplace identification

84 In this study, we utilize an anonymized mobile phone dataset provided by a telecommunications company
 85 in China, covering one month (June 2023) of GPS “pings” from users who gave explicit consent. The dataset,
 86 which complies with China’s Personal Information Protection Law, includes de-identified user IDs, latitudes,
 87 longitudes, and timestamps, ensuring privacy and preventing re-identification attempts. After removing dupli-
 88 cates and excluding users with fewer than 300 pings, our final dataset comprises 7.56 million users and roughly
 89 4.82 billion pings.

90 To ensure robust inference of home and workplace locations from trajectory data, we implement a multi-stage
 91 methodology with rigorous validation. For each individual, we first detect significant stays using the DBSCAN
 92 algorithm [1]. We set the tuning parameters carefully for spatial distance of 50 meters and minimum 10 points to
 93 identify high-density clusters of trajectory points, representing visited places or stays. Once clusters are formed,
 94 we assign each cluster to the nearest Point of Interest (POI) within a predefined radius of 100 meters, ensuring
 95 that each significant stay is contextually anchored to a known venue. Clusters that are too small (fewer than 10
 96 points) or that do not correspond to any recognized venue are discarded to minimize noise and improve data
 97 reliability. Next, we refine these significant stays by applying temporal filters to capture meaningful activities.
 98 Specifically, we exclude any stays with durations of less than 15 minutes, as such brief stops are unlikely to
 99 represent significant activities, and we also filter out stays exceeding 24 hours, which may indicate data errors.
 100 We have extracted 241 million trips for 7.56 million users. The trip characteristics in Beijing metropolitan area
 101 are shown in Supplementary Fig. 1.

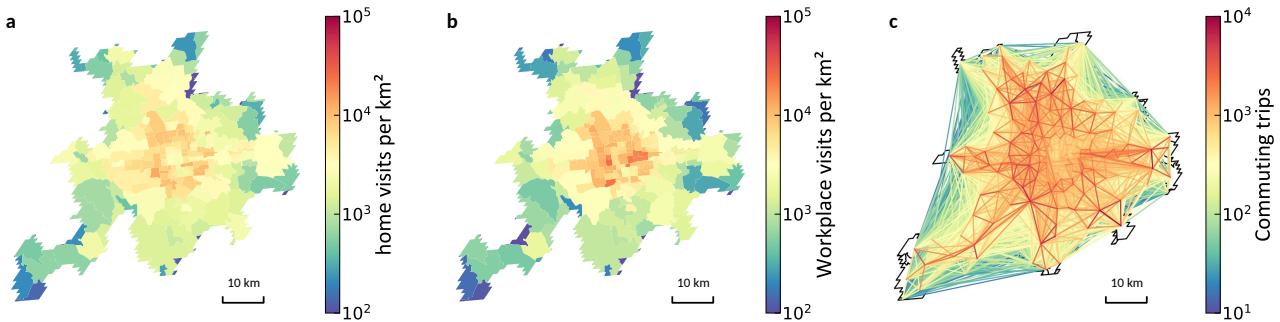


Supplementary Figure 1 | Trip characteristics in Beijing metropolitan area. **a** Distribution of trip distance d , which follows an exponential decay $p(d) \sim e^{-d/27.9}$. **b** Distribution of travel duration τ , with most trips lasting around 38 minutes. **c** Distribution of dwell time at stays δ , capturing that residents tend to remain at home for around 560 minutes.

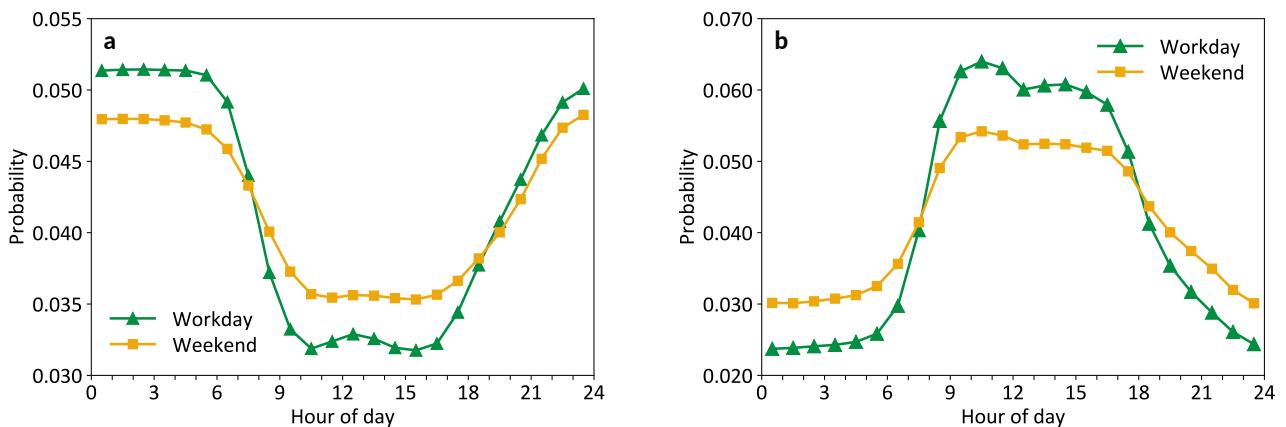
102 To infer home locations, we analyze the refined stays by examining both their temporal patterns and visit
 103 frequencies. We focus on locations visited most frequently during nighttime hours (i.e., 21:00 to 6:00) across
 104 multiple days. The location with the highest cumulative duration during these nighttime periods is designated as
 105 the likely home location for an individual, provided that it meets a minimum threshold of 25 visits over the 30-
 106 day observation period. Additionally, we validate these candidates by comparing weekend visit durations, under
 107 the assumption that true home locations typically exhibit higher activity during weekends. Amap residential
 108 POIs are leveraged to ensure that the identified candidate is situated within a residential area. If multiple
 109 locations meet these criteria, the candidate with the longest total nighttime duration is selected as the home
 110 location. For workplace detection, we apply a similar approach by focusing on significant stays during typical
 111 working hours (i.e., 9:00 to 17:00) on workdays. We identify locations that exhibit both high frequency and long
 112 cumulative durations of stays during these hours, setting a threshold of at least 4 visits per 5 workdays to qualify
 113 as potential workplace candidates. Amap commercial POIs are used to validate these candidates, ensuring that
 114 the identified location is consistent with common workplace settings. Among the candidates, the location with
 115 the longest total working-hour duration is selected as the workplace for each individual. We successfully infer
 116 home locations and workplaces of 6.05 million individuals, ensuring that only users with robust and consistent

117 activity patterns are included in the final dataset. Unidentified users, for whom home or workplace cannot be
 118 reliably determined, are excluded to maintain the accuracy and reliability of our analysis.

119 Distributions of home locations and workplaces of individuals (Supplementary Fig. 2) suggest that both
 120 residential and employment densities are higher in the city center, while commuting flows tend to be more
 121 localized within nearby neighborhoods. Daily movements between homes and workplaces show predictable time
 122 patterns. People's time spent at home and workplaces follows opposite daily rhythms—home presence typically
 123 peaks overnight particularly on weekends, whereas workplace presence peaks during daytime hours and on
 124 workdays (Supplementary Fig. 3).



Supplementary Figure 2 | Jobs-housing structure of Beijing metropolitan area. **a** Spatial clusters of home locations. Individuals' home-based trips are aggregated to township administrative boundaries, and the mobility counts are normalized by jurisdictional area (km^2). **b** Spatial clusters of workplaces. **c** Spatial distribution of commuting flows.

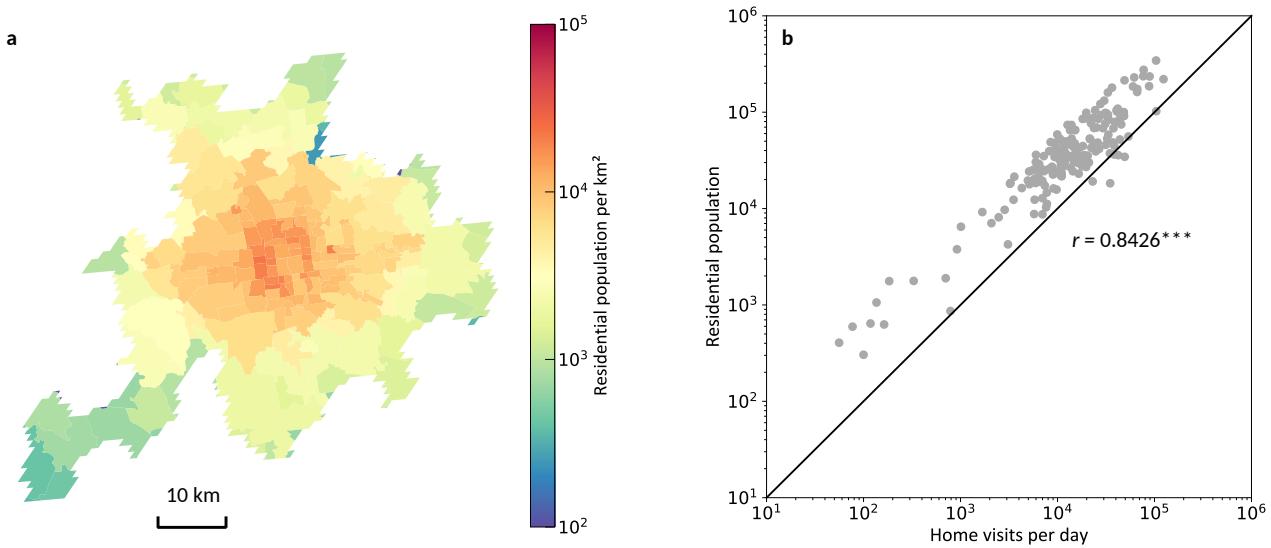


Supplementary Figure 3 | Daily patterns of time spent at homes and workplaces. **a** Home presence probabilities across hours of day. **b** Workplace presence probabilities across hours of day.

125 1.2 Population representativeness

126 We validate the population representativeness of mobile phone data through cross-validation with China's
 127 Seventh National Population Census [2]. This nationwide census, conducted by the National Bureau of Statistics
 128 (NBS), provides comprehensive demographic data across 41,636 township-level administrative units encom-
 129 passing all 31 provincial divisions. To address temporal discrepancies between the decennial census (2020)
 130 and our mobility dataset (2023), we incorporate annual population growth estimates (0.87% average increase)
 131 derived from Beijing Municipal Statistical Yearbooks (2020-2023) [3-6]. The population distribution in Beijing's
 132 metropolitan region is visually summarized in Supplementary Fig. 4a. Our validation strategy involves examin-
 133 ing the correlation between census-recorded resident populations and home-based trip frequencies derived from
 134 mobility data at matched township units. This approach is grounded on the inherent stability of residential
 135 behavior [7], hypothesizing that home-based trip frequencies constitute reliable proxies for static population dis-
 136 tributions. Across all township units, we compute Pearson's correlation coefficient (r) between the two datasets.

137 A robust coefficient of $r = 0.8426$ ($***p < 0.001$; 95% CI [0.7943, 0.8804]) indicates a statistically significant
 138 positive association, explaining 71.0% of shared variance ($r^2 = 0.710$) (Supplementary Fig. 4b). This strong
 139 correspondence confirms the capacity of mobile phone data to reliably approximate population distribution
 140 patterns at fine spatial scales.

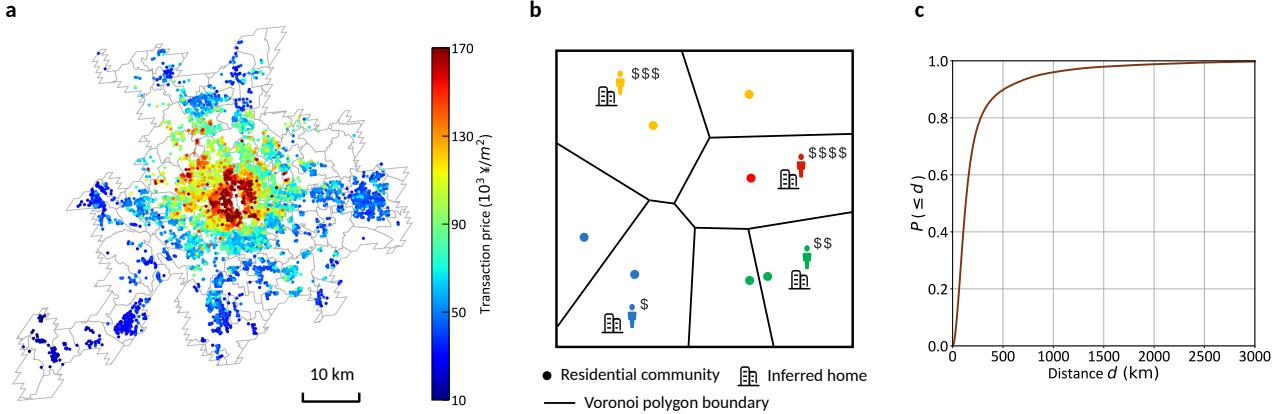


Supplementary Figure 4 | Population representativeness validation. **a** Census population distribution in Beijing metropolitan region. **b** Scatter plot illustrating correlation between census population and home-based trip frequency indicated by Pearson's correlation coefficient r , with the diagonal line providing the reference. Point represents a township-level administrative unit. *** indicates statistical significance $p < 0.001$.

141 1.3 Socioeconomic status inference

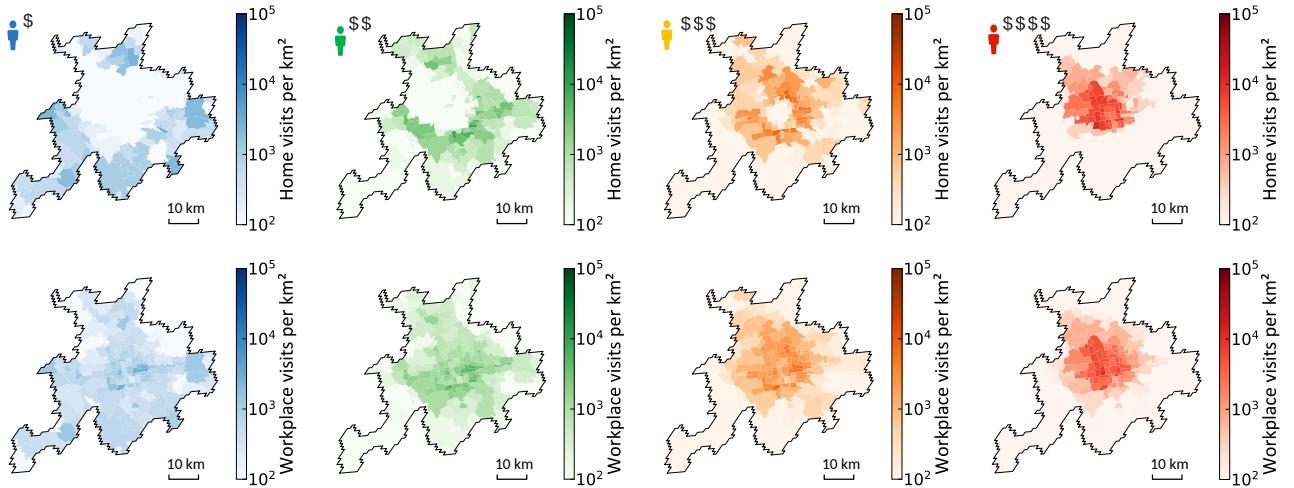
142 To infer the income levels of individuals, we establish a connection between the individuals' inferred home
 143 locations and the LianJia property database—China's largest real-time property transaction platform covering
 144 97.3% of residential markets. This database provides detailed, geotagged records of residential communities,
 145 including information such as community name, average transaction price (in RMB per square meter), architec-
 146 tural type (high-rise towers, slab complexes, bungalows), number of households and buildings in the community,
 147 and exact location (precise latitude and longitude coordinates). It is important to note that housing in China
 148 is typically organized into well-defined residential communities. Unlike many Western settings where neigh-
 149 borhoods might comprise a mix of varied housing styles and unplanned developments, these communities are
 150 generally gated, uniformly managed, and offer shared amenities such as green spaces and retail facilities. This
 151 structured arrangement not only standardizes property types within a community but also results in more
 152 homogenous pricing and quality measures across the board. Therefore, platforms like LianJia can efficiently
 153 capture a near-complete snapshot of the housing market, thereby serving as a reliable proxy for inferring the
 154 socioeconomic status of residents based on their home locations.

155 In the Beijing metropolitan area, the database lists 9,501 communities with price data as of June 2023, as
 156 illustrated in Supplementary Fig. 5a. We perform a spatial query to match the individual's home coordinates
 157 (latitude and longitude) with communities listed in the LianJia database. Specifically, we construct Voronoi
 158 polygon around each community, creating non-overlapping zones where all points within a polygon are geo-
 159 graphically closer to its central community than to others (Supplementary Fig. 5b). These Voronoi polygons
 160 effectively capture localized market conditions, as residents within the same polygon are likely to experience
 161 similar socioeconomic environments. For every individual, we identify the polygon containing the inferred home
 162 location and assign the associated community transaction price as an approximate measure of that individual's
 163 income level. To ensure reliability, we compute the geographic distance between each individual's home and the
 164 matched community. Our analysis reveals that 80% of home locations are within 250 meters of a community,
 165 and 90% are within 500 meters (Supplementary Fig. 5c). These findings confirm that the majority of individu-
 166 als reside in close proximity to the communities used in our analysis, thereby demonstrating the robustness of
 167 income inference.



Supplementary Figure 5 | Spatial matching analysis based on LianJia property data. **a** Geospatial visualization of 9,501 communities listed on the LianJia platform, with color coding indicating average transaction prices as of June 2023. **b** Construction of Voronoi polygons around each community. Individual's home location within a polygon is assigned the transaction price of the corresponding community, establishing localized socioeconomic proxies. **c** Distance distribution between residences and matched communities.

168 Individuals are divided into four equal groups based on the 25th, 50th, and 75th percentiles of the inferred
 169 income levels derived from the matched community transaction prices. Each quartile corresponds to a distinct
 170 income group. For instance, the first quartile, which contains individuals with property transaction prices at or
 171 below the 25th percentile, is assumed to represent the lower-income group. The second quartile (between the
 172 25th and 50th percentiles) represents the lower-middle-income group, the third quartile (between the 50th and
 173 75th percentiles) represents the upper-middle-income group, and the fourth quartile (above the 75th percentile)
 174 represents the higher-income group. The spatial distributions of home and workplace locations for these four
 175 income groups are shown in Supplementary Fig. 6.



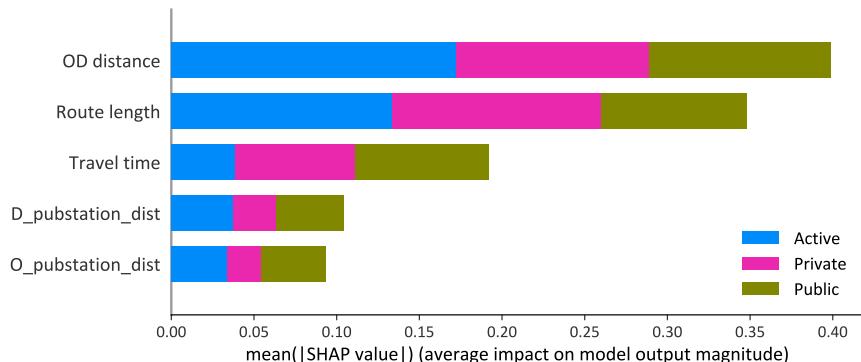
Supplementary Figure 6 | Spatial distributions of residential locations and workplaces for four income groups. Top row: Residential distributions reveal strong income stratification, with higher-income groups concentrated within city core area, transitioning to lower-income groups in peripheral districts. Bottom row: Workplace distributions display more evenly spatial patterns, maintaining partial concentration in central business districts across all income groups.

176 1.4 Travel mode choices

177 For each individual trip, we compute the probabilities that an individual travels through particular transport
 178 mode (active, private or public) using a pre-trained random forest model calibrated on the publicly available
 179 Geolife dataset [8]. The Geolife dataset, collected by Microsoft Research Asia, comprises GPS trajectories of

180 over 180 users in a range of cities, primarily in Beijing, China, over several years. We segment each trajectory
 181 into multiple contiguous trips, defined by a minimum dwell time of 15 minutes between trips. Each trip is labeled
 182 with ground-truth transport modes (one or more) used, including walking, cycling, car, taxi, bus, railway. We
 183 consolidate similar modes (e.g., walking and cycling into "active"; car and taxi into "private"; bus, railway into
 184 "public") to align with our defined categories. Trips involving a combination of private and public modes are
 185 excluded from the analysis to ensure unambiguous mode classification. Only trips exclusively involving active
 186 modes are labeled as "active"; all other trips are categorized as either "private" or "private" based on their
 187 dominant mode. In Beijing metropolitan area, this process yields 1,819 active trips, 881 private trips, and 1,725
 188 public trips.

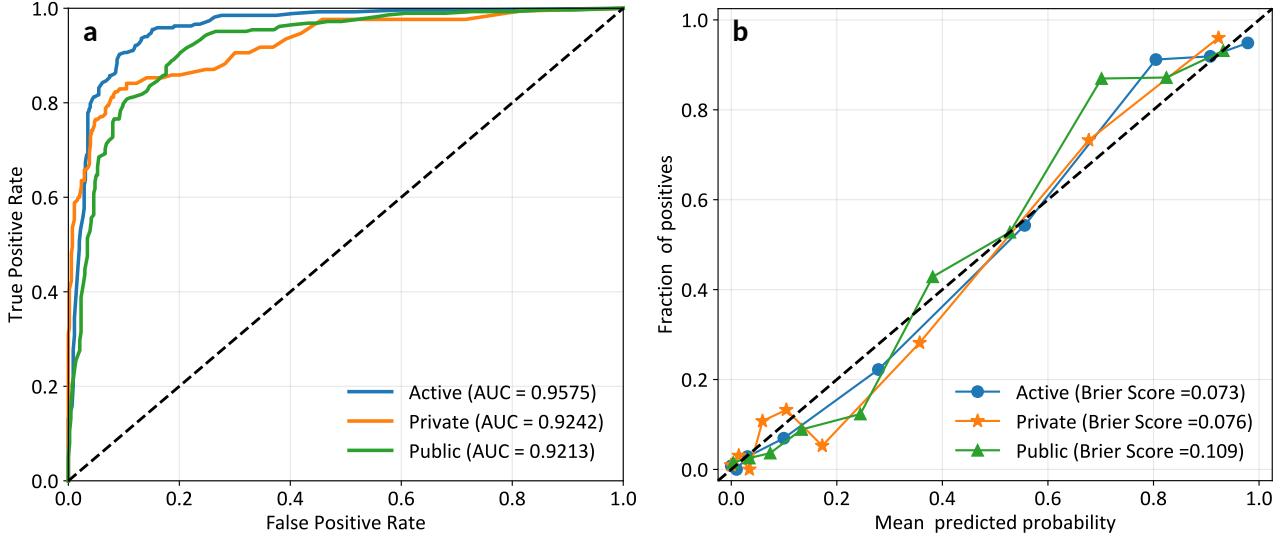
189 To train the random forest model, we extract five features relevant to transport mode identification, including:
 190 'Route length' (total distance traveled during the trip), 'OD distance' (Euclidean distance between origin and
 191 destination), 'O_pubstation_dist' (distance from the origin to the nearest public transportation station obtained
 192 from Amap POIs), 'D_pubstation_dist' (distance from the destination to the nearest public transportation
 193 station), and 'Travel time' (duration of the trip). The model is trained using a subset of the Geolife data (80% for
 194 training, 20% for validation) and optimized for classification accuracy. To mitigate potential sample imbalance,
 195 the model is configured to automatically adjust the weights assigned to each class based on their prevalence in
 196 the data, ensuring that classes with fewer samples are given more importance during training. The contribution
 197 of each feature to the model's predictions is shown in Supplementary Fig. 7. Rather than assigning a single,
 198 definitive mode for each trip, the model generates probabilistic mode assignments, reflecting pre-trip decision
 199 uncertainty. For instance, a particular trip might be assigned probabilities of 0.1 for "active", 0.6 for "private",
 200 and 0.3 for "public". This suggests that while private mode is the most probable, there's still a non-negligible
 201 chance of choosing public transport. Such probability vectors capture travelers' latent preference influenced by
 202 contextual factors prior to a trip.



Supplementary Figure 7 | Overall feature importance based on SHAP (SHapley Additive exPlanations) values for the travel mode inference model. Features are listed on the vertical axis, ordered from most to least important. The horizontal axis represents the mean absolute SHAP value for each feature. A longer bar indicates a greater overall impact of that feature on the model's predictions across the entire dataset.

203 The model's performance is evaluated through metrics appropriate for both classification and probability
 204 estimation. Specifically, Receiver Operating Characteristic (ROC) curves [9] (Supplementary Fig. 8a), which
 205 assess the model's ability to discriminate between classes, yield high Area Under the Curve (AUC) scores: 0.9575
 206 for active mode, 0.9242 for private mode, and 0.9213 for public mode, indicating strong discriminatory capacity
 207 across all modes. Furthermore, the calibration of the probability estimates is assessed using the Brier score [10],
 208 which measures the mean squared difference between predicted probabilities and actual outcomes. The Brier
 209 scores are also favorable (Supplementary Fig. 8b): 0.073 for active mode, 0.076 for private mode, and 0.109 for
 210 public mode, demonstrating well-calibrated probability predictions.

211 This pre-trained random forest model is then applied to our mobile phone dataset. For each trip
 212 in this dataset, we calculate the same five features: 'Route length', 'OD distance', 'O_pubstation_dist',
 213 'D_pubstation_dist', and 'Travel time'. By inputting these features into the trained model, we estimate the prob-
 214 ability distribution across active, private, and public transport modes for each trip. These probability estimates
 215 are then used for further mobility analysis.



Supplementary Figure 8 | Model performance evaluation. **a** Receiver Operating Characteristic (ROC) curves. Each curve plots the True Positive Rate against the False Positive Rate at various threshold settings. The Area Under the Curve (AUC) for each mode is indicated in the legend. High AUC values (close to 1) demonstrate the model's excellent ability to distinguish between each transport mode and the others. **b** Calibration curves assess the reliability of the predicted probabilities by plotting the observed fraction of positives against the predicted probabilities. Ideally, the calibration curves should closely follow the diagonal (dashed line), indicating well-calibrated probabilities where predicted probabilities align with actual event frequencies. Lower Brier scores (close to 0) indicate better calibration.

216 1.5 Travel route generation

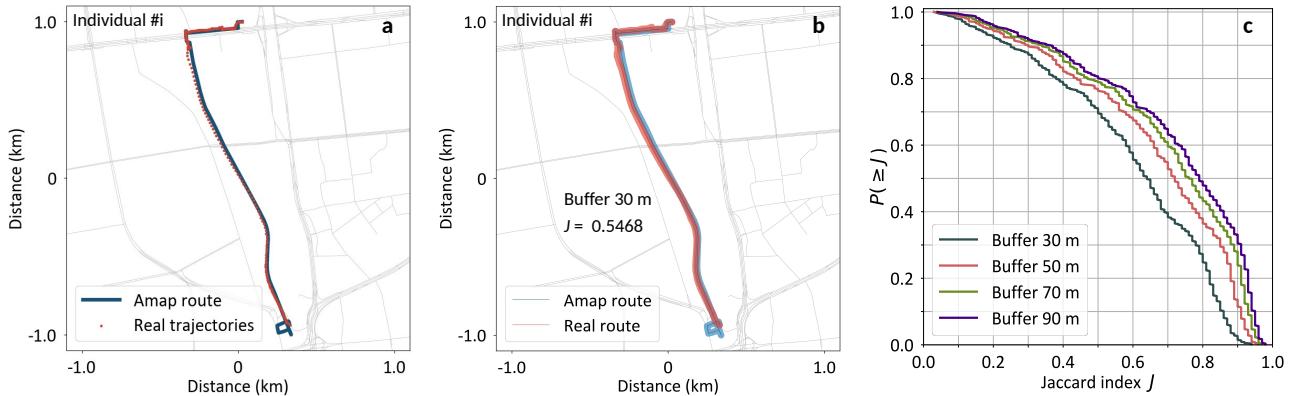
217 For each trip of an individual, we generate a most probable travel route for active, private, and public modes
 218 respectively using Amap navigation API [11], a sophisticated service renowned for its routing capabilities in
 219 China. The Amap API is configured to generate routes by considering a range of input parameters including
 220 the trip origin and destination coordinates (latitude and longitude), waypoints, departure time and desired
 221 travel modes. Critically, the API computes the most time-efficient route for the specified mode, dynamically
 222 factoring in real-time traffic conditions, public transit schedules, estimated costs, and general traveler preferences
 223 as modeled within its algorithms. To enhance the realism of these generated routes, we incorporate all GPS
 224 trajectory points from each original trip record as intermediate waypoints when querying the API. This strategy
 225 allows the navigation system to compute routes that more accurately capture potential deviations, detours,
 226 and individual preferences that may have influenced the observed travel behavior. The resulting output from
 227 the Amap API delivers comprehensive navigation information. For active and private modes, this includes a
 228 breakdown of route details by road segment, specifying the roads to be taken and the estimated travel duration
 229 for each segment, accounting for real-time traffic where applicable. For public mode routes, the API details
 230 the specific transit lines to utilize, the sequence of stations, the estimated travel time between stations, and
 231 any necessary transfer points. The use of Amap API allows for privacy-preserving travel planning by inferring
 232 potential routes without directly accessing sensitive location data from the individual's mobile device.

233 To validate the accuracy of route generation process, we leverage the high-resolution GPS trajectories pro-
 234 vided in the Geolife dataset as ground truth. Notably, the majority of these trajectories (91.5%) are recorded
 235 at a dense sampling rate, typically every 1–5 seconds, ensuring a detailed and accurate representation of travel
 236 paths. For each trip, we generate a route between its origin and destination using the Amap API corresponding
 237 to the actual travel mode recorded in Geolife data. To quantitatively assess the spatial similarity between the
 238 generated route and the actual GPS trajectory, we create a buffer around both the generated route $B_{generated}$
 239 and the original GPS trajectory B_{real} , and calculate the Jaccard index, representing the ratio of the intersection
 240 area to the union area of the two buffers

$$J = \frac{\text{Area}(B_{generated} \cap B_{real})}{\text{Area}(B_{generated} \cup B_{real})} \quad (\text{S1})$$

241 This index provides a measure of overlap, with higher values (close to 1) indicating greater agreement between
 242 the generated route and the real-world trajectory. For 4,425 mode-labeled trips in Geolife dataset, we test a
 243 range of buffer distances—30 meters, 50 meters, 70 meters, and 90 meters—around both the Amap-generated
 244 routes and the corresponding real GPS trajectories. We observe that even under a stringent 30-meter buffer,

245 over 70% of generated routes achieve a Jaccard index greater than 0.5 (Supplementary Fig. 9). This threshold of
 246 0.5 signifies a substantial level of overlap, suggesting that the generated routes closely align with the real-world
 247 trajectories in a majority of cases. When examining the results across different modes, we observe no significant
 248 differences in performance. This validation demonstrates the Amap API's effectiveness in generating realistic
 249 routes.



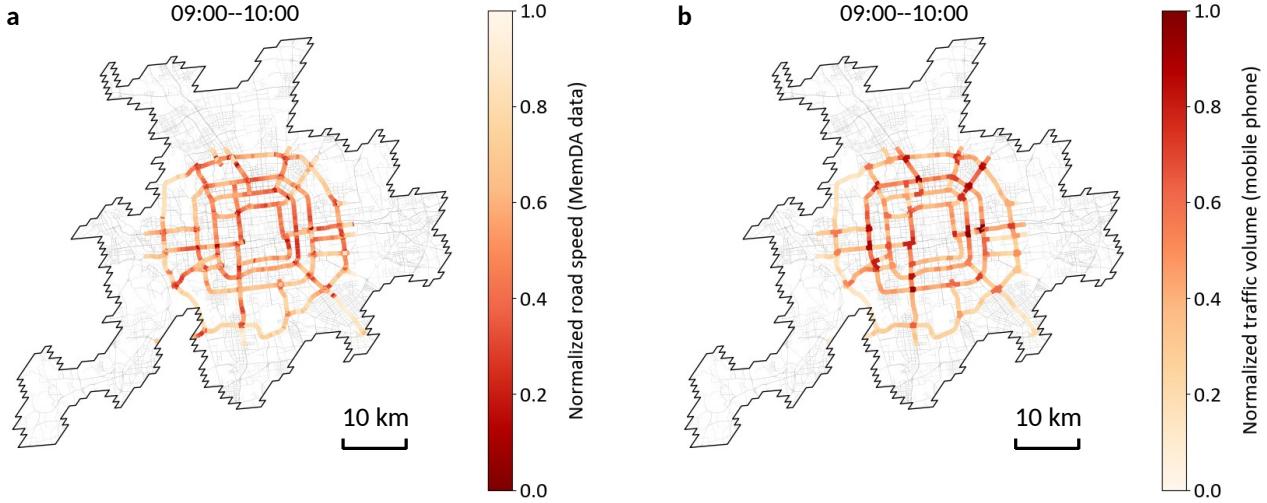
Supplementary Figure 9 | Validation of Amap route generation against Geolife GPS trajectories. **a** An example of an Amap-generated route overlaid with the corresponding real GPS trajectory from Geolife for a single trip. **b** Buffered representation (30-meter buffer) of the generated and real routes. **c** Cumulative distribution of Jaccard Index J across 4,425 mode-labeled trips from the Geolife dataset, shown for different buffer distances (30m, 50m, 70m, and 90m).

250 1.6 Cross-data validation

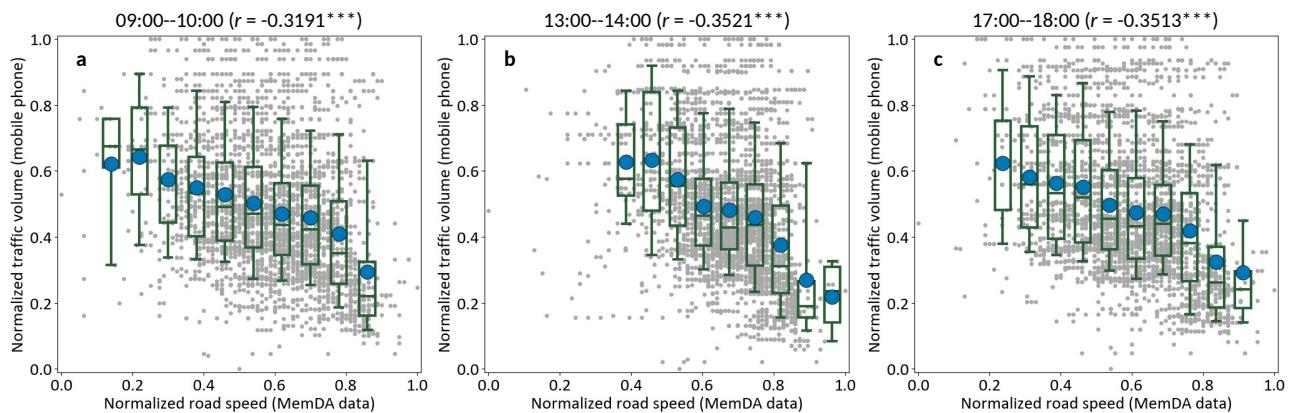
251 To further validate the reliability of travel mode inference and route generation processes, we leverage an
 252 additional independent dataset to compare the consistency of mobility flow distributions in urban spaces. We
 253 use the open-sourced MemDA data [12], which comprise traffic speeds from major roads in Beijing collected in a
 254 period of 75 days (from May 12, 2022, to July 25, 2022). In urban road traffic, the average speed of a road segment
 255 is typically negatively correlated with traffic volume under most normal conditions, as higher vehicle densities
 256 tend to reduce speeds due to congestion. We process the traffic speed data by aggregating measurements into
 257 hourly intervals for each major road segment over the 75-day period. The average speed per segment per hour
 258 is computed as the mean of all recorded speeds within that time window, providing a proxy for potential traffic
 259 condition. For the mobile phone dataset, we calculate the expected traffic volume for each road segment in a
 260 given hourly interval by summing the estimated private mode probabilities of all trips whose Amap-generated
 261 routes include that segment during that time period. For example, a trip with a 0.7 probability of private mode
 262 contributes 0.7 vehicle units to the traffic volume of each segment along its route. This probabilistic aggregation
 263 reflects the uncertainty in mode choice predictions and provides a robust estimate of traffic flow. To compare
 264 the two datasets, we normalize the MemDA-derived average speeds and the mobile phone-derived expected
 265 traffic volumes for matching road segments and hourly intervals. The spatial distributions of these normalized
 266 values during the morning peak hour (9:00-10:00) is visualized in Supplementary Fig. 10, revealing a notable
 267 spatial consistency, which is supported by a significant negative Pearson correlation coefficient of $r = -0.3191$
 268 ($p < 0.001$; 95% CI [-0.3504, -0.2871]) (Supplementary Fig. 11a). We also observe similarly significant negative
 269 correlations during the midday (13:00-14:00, $r = -0.3521$; 95% CI [-0.3826, -0.3209]) and evening peak (17:00-
 270 18:00, $r = -0.3513$; 95% CI [-0.3819, -0.3201]) hours (Supplementary Fig. 11bc). This temporal and spatial
 271 consistency across the MemDA and mobile phone datasets underscores the method reliability in capturing road
 272 traffic patterns.

273 2 Measuring encounter opportunities in interconnected urban spaces

274 We develop two measures to quantify the opportunities for social encounters created by multimodal mobility
 275 at the city scale. The first one is the mode-specific Probabilistic Mixing Index (PMI), which is designed to
 276 capture the diversity of potential encounters experienced by individuals when using a particular transport mode.
 277 The second one is the Multimodal Uniformity Index (MUI), which builds upon the PMI to assess the consistency
 278 of these encounter opportunities across different travel modes within a geographical region.



Supplementary Figure 10 | Spatial consistency of mobility flow distributions across datasets in Beijing metropolitan area. **a**, Spatial distribution of normalized road average speed from MemDA data during the morning peak hour (9:00-10:00). **b**, Spatial distribution of normalized expected road traffic volumes inferred from mobile phone data for private mode during the morning peak hour.



Supplementary Figure 11 | Cross-data validation performance. Correlation between normalized average traffic speeds from MemDA data and normalized expected traffic volumes inferred from mobile phone data for private modes during the morning peak (9:00-10:00; panel **a**), midday (13:00-14:00; panel **b**) and evening peak (17:00-18:00; panel **c**) hours. Pearson correlation coefficient of r is marked on the title, with *** indicating statistical significance $p < 0.001$. In all panels, grey points represent road segments, plotted according to their values from the two datasets being compared. Boxplots are grouped by bins of values from the reference dataset on the x-axis, and show the distribution of the corresponding values from mobile phone data on the y-axis within each bin. Blue points represent the average value within each bin, summarizing the overall trend.

279 2.1 Probabilistic Mixing Index

280 The mode-specific Probabilistic Mixing Index (PMI) is calculated based on the probabilities of individuals'
 281 paths overlapping in multilayered urban spaces while traveling via a specific mode. After data fusion processing,
 282 we have estimated the probabilities that an individual travels through different transport modes (active, private,
 283 or public) (Supplementary Section 1.4), and generated a most probable travel route corresponding to each mode
 284 (Supplementary Section 1.5). For road transportation (active and private), the generated route specifies the road
 285 segments to be taken and the estimated duration. For public transportation (bus and railway), the generated
 286 route provides the station-by-station trajectories within transit systems, including the specific sequence of
 287 stations, along with the estimated travel times between them. For a given departure time, the geographical
 288 location at any moment along the route of a specific mode can be determined, as shown in Supplementary
 289 Fig. 12a.

290 For simplicity, we assume that encounter opportunities arise from transient co-presence in time and space
 291 with others traveling via the same mode. These co-locations represent moments when two or more individuals

292 are present in the same spatial unit simultaneously while using the same mode. To capture these potential
 293 encounters, the urban space is partitioned into mode-specific spatial units, reflecting the distinct ways individuals
 294 perceive and interact with their surroundings. The spatial scales for active and private modes are defined as
 295 $1 \text{ km} \times 1 \text{ km}$ grids. For active (or private) mode, two individuals' routes are mapped onto the $1 \text{ km} \times 1 \text{ km}$
 296 grids over time. A co-location occurs when they occupy the same grid within a specific time frame, indicating a
 297 potential encounter. For bus and railway modes, the spatial units are the transit segments between stations. In
 298 this context, co-locations occur within the confined spaces of transit vehicles or at stations, capturing the shared
 299 experience inherent to public transit. These spatial units are analyzed within 1-hour time frames, a temporal
 300 resolution chosen to balance computational feasibility with the need to capture significant social interactions.

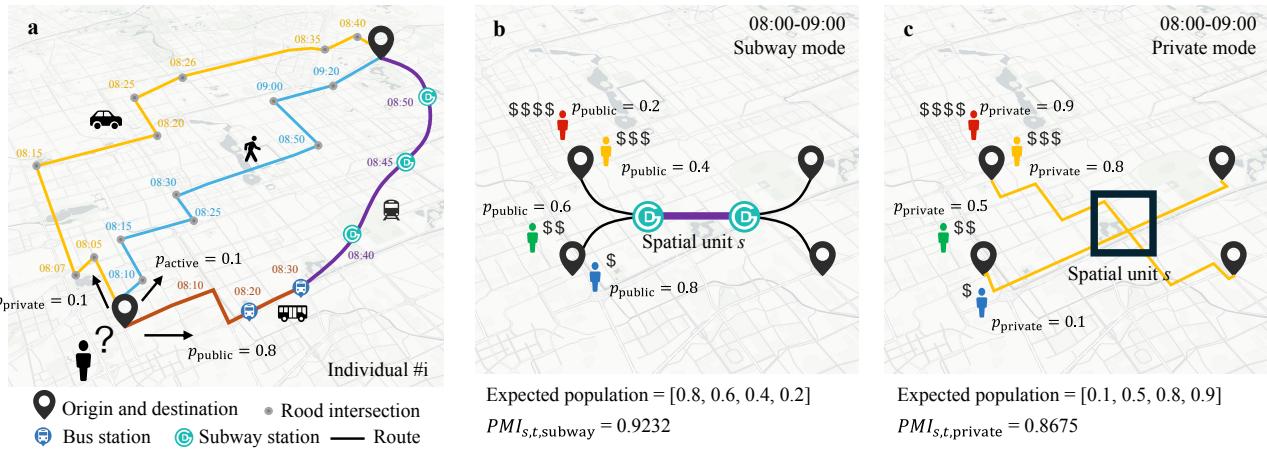
301 To calculate the PMI for each spatial unit, mode, and 1-hour time frame, the expected number of individuals
 302 from each income group is computed by summing the product of their mode-choice probability and an indicator
 303 of their presence in that spatial unit. Mathematically, for a spatial unit s , time frame t , and income group q ,
 304 the expected population can be expressed as:

$$E_{s,t,q} = \sum_{i \in q} p_{i,m} \cdot I_{i,s,t} \quad (\text{S2})$$

305 where $p_{i,m}$ is the probability that individual i travels via mode m , and $I_{i,s,t}$ is an indicator variable equal to 1
 306 if individual i 's route using mode m passes through spatial unit s during time frame t , and 0 otherwise. Each
 307 individual contributes a fractional value—reflecting their partial likelihood of being present—to the expected
 308 population. This expected value accounts for the inherent uncertainty in individual travel behavior, providing a
 309 more dynamic and realistic estimate of population distribution. For example, if an individual from group q has
 310 a 0.9 probability of choosing to drive and their driving route passes through spatial unit s between 8 and 9 AM,
 311 their contribution to $E_{s,t,q}$ for driving would be $0.9 \times 1 = 0.9$. A schematic illustration of the calculations is shown
 312 in Supplementary Fig. 12bc. After computing the expected population $E_{s,t,q}$ for each of the four income groups,
 313 the PMI is derived using an entropy metric to quantify the diversity of the potential encounters, calculated as:

$$PMI_{s,t,m} = -\frac{1}{\log(4)} \sum_{q=1}^4 \tau_{s,t,q} \cdot \log(\tau_{s,t,q}) \quad (\text{S3})$$

314 where $\tau_{s,t,q} = \frac{E_{s,t,q}}{\sum_{q=1}^4 E_{s,t,q}}$ denotes the proportion of the total expected population in spatial unit s , time frame
 315 t , and mode m that belongs to income group q . The normalization factor $\frac{1}{\log(4)}$ scales the entropy to a range
 316 between 0 and 1. A $PMI_{s,t,m}$ value of 0 indicates minimal mixing potential (i.e., only one income group
 317 is present), while a value of 1 indicates maximum mixing potential (i.e., all four income groups are equally
 318 represented).



Supplementary Figure 12 | Illustration of the calculation of the Probabilistic Mixing Index (PMI). a Individual mode choice probabilities and time-stamped paths for active, private, and public modes. b Example of PMI calculation for a single spatial unit (transit segment) for a railway line. Assuming four individuals from four income groups are co-located at this segment between 8–9 AM, their contributions to the expected population $E_{s,t,q}$ equal their mode choice probabilities. c Example of PMI calculation for a single spatial unit ($1 \text{ km} \times 1 \text{ km}$ grid) for individuals driving.

319 2.2 Multimodal Uniformity Index

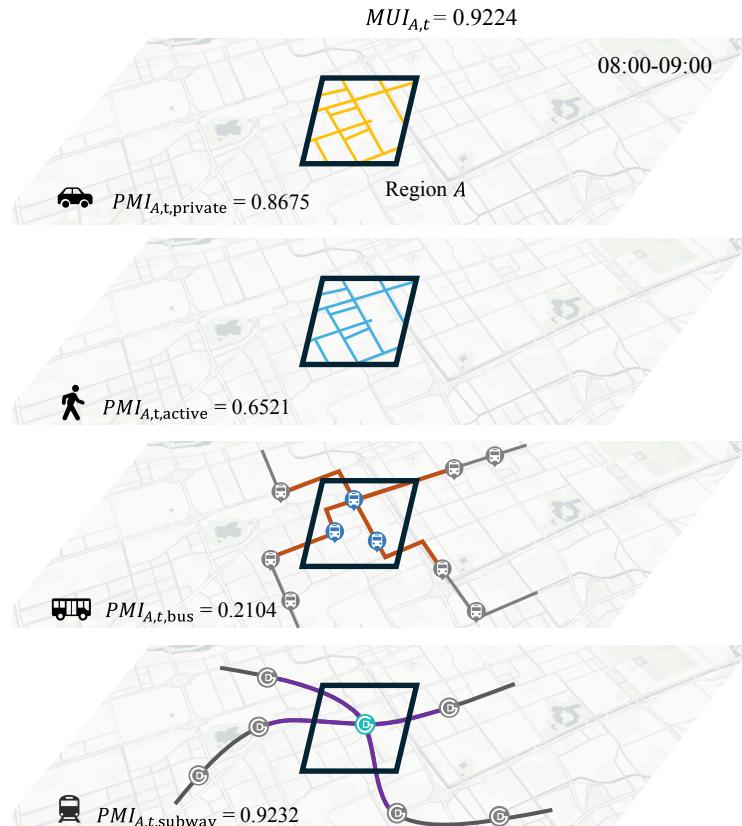
320 The Multimodal Uniformity Index (MUI) is introduced to evaluate how consistently encounter opportunities
 321 are distributed across different travel modes within the same geographical region. For a specific region A and
 322 time frame t , we first calculate the average mixing level $PMI_{A,t,m}$ for a given mode m across all relevant spatial
 323 units s in region A during period t :

$$PMI_{A,t,m} = \frac{1}{|S_A|} \sum_{s \in S_A} PMI_{s,t,m} \quad (S4)$$

324 where S_A is the set of spatial units (grids for active and private modes, transit segments for bus and railway
 325 modes) associated with region A , and $|S_A|$ is the number of such units. The spatial units in S_A are defined
 326 based on the characteristics of each travel mode. For active and private modes, a spatial unit s ($1 \text{ km} \times 1 \text{ km}$
 327 grid) is included in S_A if any portion of it overlaps with the region. For public transportation, a spatial unit
 328 (transit segment) is included in S_A if at least one of its endpoint stations is located within this region, reflecting
 329 the service provision within the defined geographical area (Supplementary Fig. 13). With $PMI_{A,t,m}$ computed
 330 for each mode—active, private, bus, and railway—we then normalize these values into proportions $r_{A,t,m} =$
 331 $PMI_{A,t,m} / \sum_m PMI_{A,t,m}$, where the sum is taken over the four modes. The MUI for region A at time t , denoted
 332 $MUI_{A,t}$, is then calculated using the entropy formula:

$$MUI_{A,t} = -\frac{1}{\log(4)} \sum_m r_{A,t,m} \log(r_{A,t,m}), \quad (S5)$$

333 An $MUI_{A,t}$ value close to 1 indicates high uniformity, meaning mixing opportunities are similar across all modes
 334 in region A . A value near 0 suggests that encounter opportunities are highly stratified by mode choice, with
 335 significant variation in mixing levels between modes. This index thus provides a time-specific measure of how
 336 equitably transportation modes contribute to social encounter patterns within a region.



Supplementary Figure 13 | Illustration of the calculation of the Multimodal Uniformity Index (MUI).
 The region-level mixing potential $PMI_{A,t,m}$ for each mode m is first calculated by aggregating all relevant spatial units
 in region A . $MUI_{A,t}$ is then computed by normalizing these $PMI_{A,t,m}$ values into proportions and applying the entropy
 formula, indicating the uniformity of encounter opportunities across modes in region A during time t .

337 **2.3 Sensitivity analysis of spatiotemporal scales**

338 In this study, the primary results are presented using spatiotemporal scales that balance computational
 339 efficiency with the ability to capture meaningful social interactions, specifically a temporal resolution of 1
 340 hour and spatial scales of $1 \text{ km} \times 1 \text{ km}$ grids for active and private modes, and transit segments for public
 341 transportation modes. To evaluate the robustness of the Probabilistic Mixing Index (PMI) and the Multimodal
 342 Uniformity Index (MUI) to variations in these scales, we conduct a sensitivity analysis by systematically testing
 343 alternative temporal and spatial resolutions.

344 For temporal scales, we examine window sizes ranging from 3 to 60 minutes. For spatial scales, we test
 345 grid resolutions from 250 m to 2 km for active and private modes, while keeping the transit segment definition
 346 unchanged for public transportation.

347 Figure 14 presents the cumulative distributions of PMI for each of the four travel modes across the range
 348 of temporal scales. As the temporal scale increases, the cumulative distribution curves generally shift upwards,
 349 indicating a tendency towards higher PMI (greater mixing potential) with longer periods. This effect is most
 350 pronounced for the bus mode, as evidenced by the Kolmogorov-Smirnov (K-S) statistic [13] comparing 3-minute
 351 and 60-minute windows: bus mode exhibits the largest distributional divergence (K-S = 0.3566, $p < 0.001$),
 352 followed by private (K-S = 0.1874), railway (K-S = 0.1825), and active modes (K-S = 0.1257; all $p < 0.001$).
 353 The heightened sensitivity of bus systems likely stems from their variable ridership patterns and frequent stops,
 354 which amplify transient co-location noise in short time frames.

355 Figure 15 presents spatial scale sensitivity by comparing cumulative PMI distributions for active and private
 356 modes across grid resolutions from 250 m to 2 km. Larger spatial scales produce upward-shifted distribution
 357 curves, reflecting higher PMI values at coarser resolutions. The K-S statistic quantifies this divergence, with
 358 private modes exhibiting greater sensitivity (K-S = 0.1976, $p < 0.001$) compared to active modes (K-S = 0.1560,
 359 $p < 0.001$). The relatively low magnitude of the K-S statistics suggests that PMI distributions for both modes
 360 remain reasonably stable across the tested range of spatial scales.

361 Figure 16 presents the sensitivity of the Multimodal Uniformity Index (MUI) to spatiotemporal variations.
 362 In Supplementary Fig. 16a, comparing temporal scales from 3 to 60 minutes yields a K-S statistic of 0.4329
 363 ($p < 0.001$), indicating a notable shift in uniformity. In Supplementary Fig. 16b, varying the spatial scale from
 364 250 m to 2 km yields a much larger K-S statistic of 0.7580 ($p < 0.001$). A key observation is the presence of two
 365 significant phase transitions in the MUI distribution, at approximately 0.5 and 0.8. These transitions correspond
 366 to distinct grid characteristics related to transit availability. The phase transition at $MUI \approx 0.5$ captures grids
 367 that lack both bus and railway stations, leaving only two modes (active and private) contributing to the MUI
 368 calculation (approximating $\frac{\log(2)}{\log(4)} = 0.5$). The second transition at $MUI \approx 0.8$ corresponds to grids without
 369 railway stations but with bus stations, meaning three modes contribute (approximating $\frac{\log(3)}{\log(4)} \approx 0.7925$). These
 370 transitions reflect discrete drops in the number of available travel modes, which directly impacts the uniformity
 371 of encounter opportunities.

372 Despite the influence of scale on the metric distributions, universal patterns are captured across different
 373 spatial resolutions (Supplementary Fig. 17). Specifically, the spatial distributions of PMI and MUI in the Beijing
 374 metropolitan area reveal consistent trends, such as lower mixing potential in peripheral regions and greater
 375 uniformity in central urban cores, regardless of whether the grid size is 250 m or 2 km. These findings suggest that
 376 while the absolute values of the metrics may shift with scale, the underlying spatial organization of encounter
 377 opportunities exhibits robust, scale-invariant characteristics.

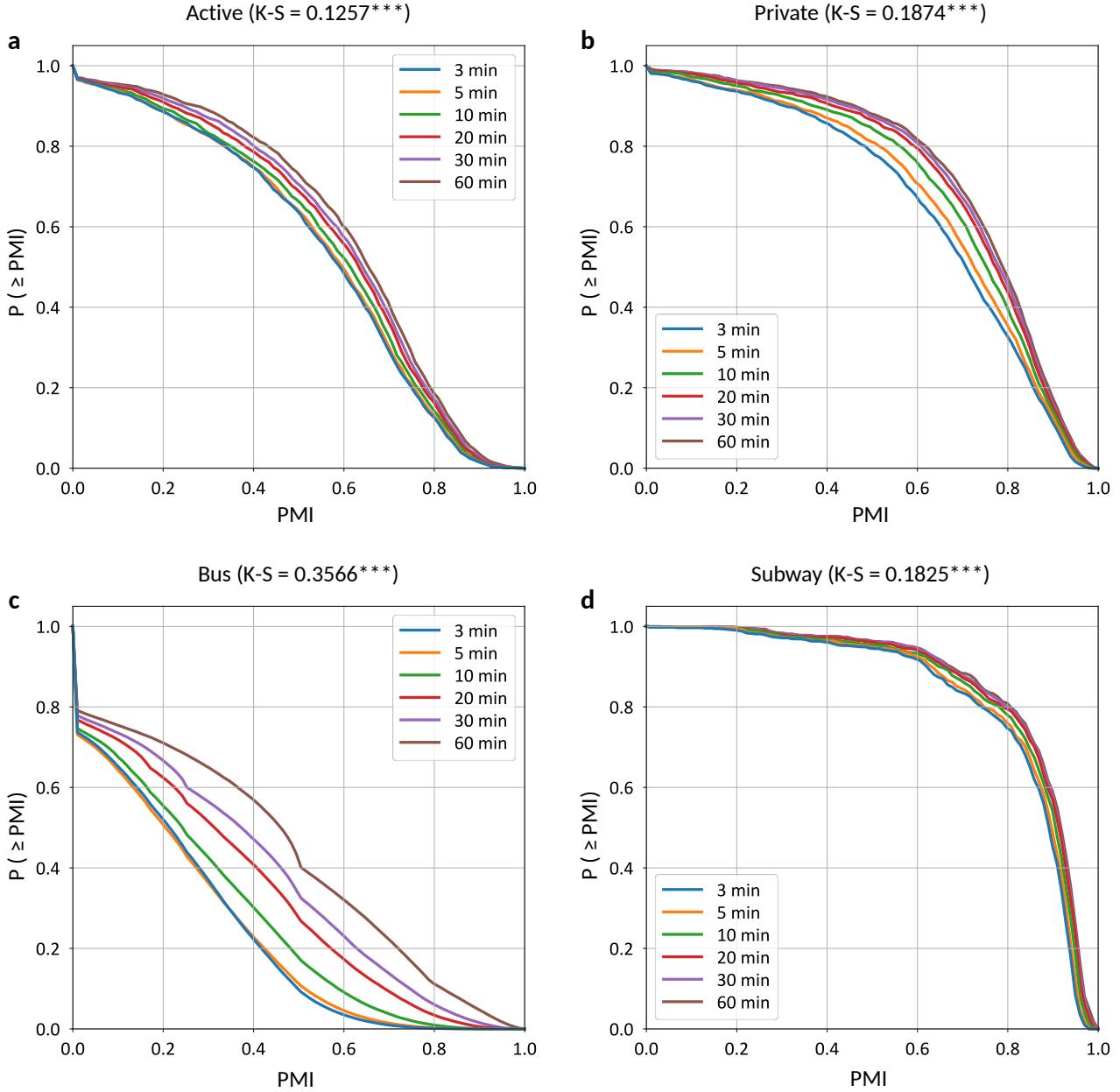
378 **3 OLS models explaining spatiotemporal patterns of encounter
 379 opportunities**

380 We use ordinary least squares (OLS) regression models to explain how transport infrastructure influences the
 381 patterns of encounter opportunities observed through the Probabilistic Mixing Index (PMI) and the Multimodal
 382 Uniformity Index (MUI). The form of the OLS regression model is:

$$M_t = \beta_0 + \sum_i \beta_{T_i} T_i + \epsilon_t, \quad (\text{S6})$$

383 where:

384 • M_t is the dependent variable, representing either the observed regional-level mixing index ($PMI_{A,t,m}$, Eq. S4)
 385 for a specific travel mode m (active/private/bus/railway) or the $MUI_{A,t}$ (Eq. S5) across four modes within
 386 region A at a specific period t . The analysis is conducted at a spatial scale of $1 \text{ km} \times 1 \text{ km}$ grids, which
 387 define the regions A .



Supplementary Figure 14 | Cumulative distributions of PMI for four travel modes across different temporal scales under fixed $1 \text{ km} \times 1 \text{ km}$ grids. The Kolmogorov-Smirnov (K-S) statistics (** indicates $p < 0.001$) quantify the distributional divergence between the 3-minute and 60-minute temporal scales.

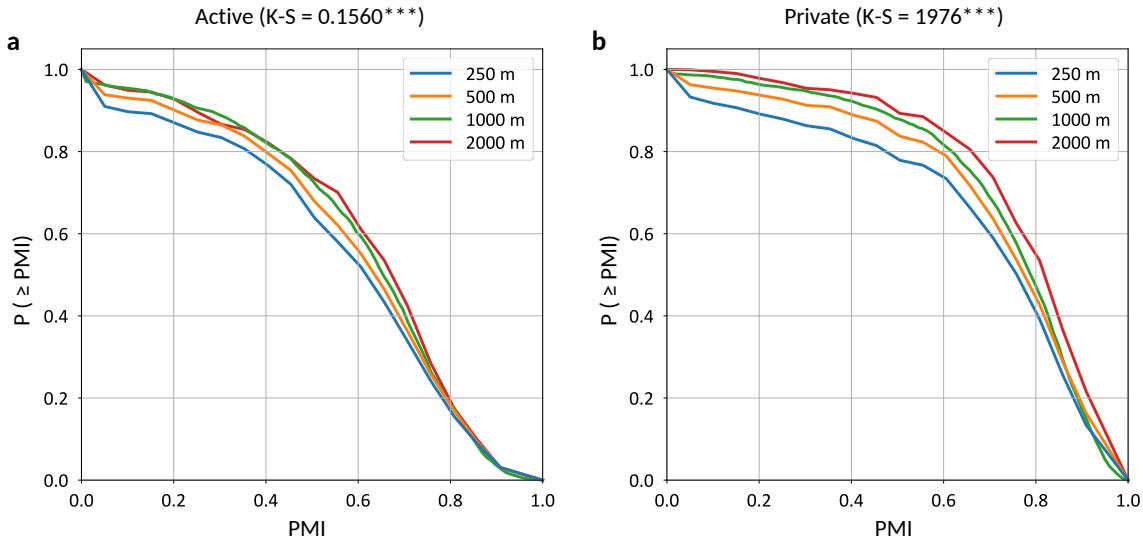
388 • $\{T_i\}$ denotes the set of transport infrastructure-related explanatory variables. These include lengths of
 389 different road types (Motorway, Primary, Secondary, Tertiary, Pedestrian roads), road diversity (calculated
 390 using the entropy of road types within a grid), and counts of transport facilities (e.g., Bus Stations, Subway
 391 Stations), reflecting the transportation and built environment features of the grids. Grid-level statistics for
 392 these variables are detailed in Supplementary Table 1.

393 • β_0 is the intercept of the regression model.

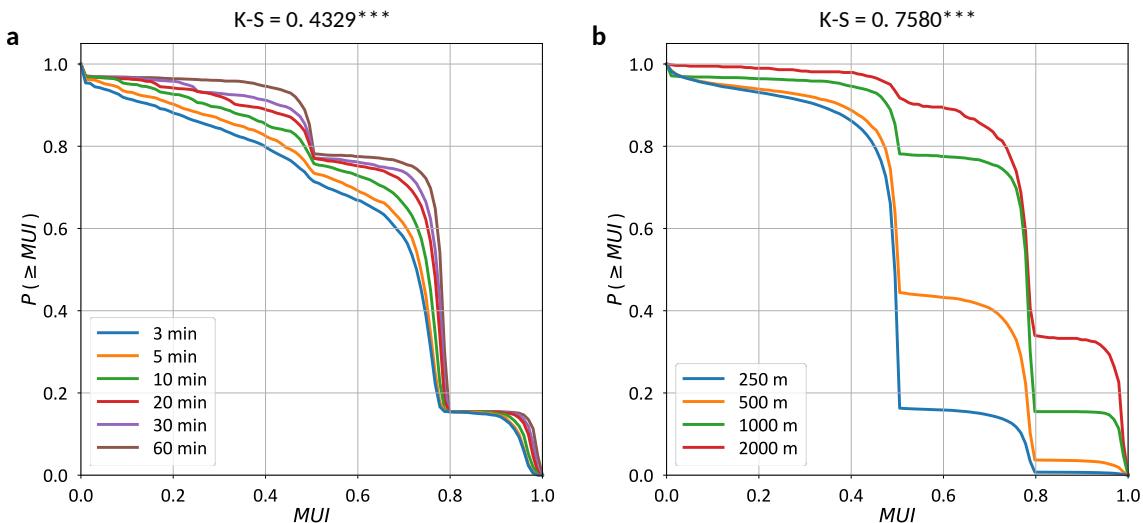
394 • β_{T_i} are the regression coefficients corresponding to the transport infrastructure variables, quantifying their
 395 individual contributions to M_t .

396 • ϵ_t is the error term, capturing unexplained variation in the model.

397 To capture temporal heterogeneity in the dynamics of encounter opportunities, we design two model variants
 398 with distinct temporal granularity. **(1) Daily granularity model:** Separate models are estimated for workdays
 399 and weekends. For a specific day type d , the dependent variable M_t for each grid A is calculated as the average



Supplementary Figure 15 | Cumulative distributions of PMI for active (panel a) and private (panel b) modes across spatial scales under a fixed 60-minute temporal scale. The Kolmogorov-Smirnov (K-S) statistics (*** indicates p -value < 0.001) quantify the distributional divergence between the 250 m and 2 km grid scales.



Supplementary Figure 16 | Cumulative distributions of MUI for urban grids across different spatiotemporal scales. **a** Temporal sensitivity analysis. **b** Spatial sensitivity analysis. The Kolmogorov-Smirnov (K-S) statistic (*** indicates p -value < 0.001) quantifies the distributional divergence between the minimum and maximum scales tested in each panel.

400 value of the mixing index ($PMI_{A,t',m}$ or $MUI_{A,t'}$) across all hourly periods t' within that day. **(2) Hourly**
 401 **granularity model:** Separate models are estimated for each specific hour of the day, differentiated by day
 402 type. For a specific hour h and day type d , the dependent variable M_t for each grid A is the observed value of
 403 the mixing index ($PMI_{A,t',m}$ or $MUI_{A,t'}$) for that specific hour.

Supplementary Table 1 | Summary of explanatory variables and grid-level statistics.

Primary category	Subcategory	Sum value	Median value	Max value
Transport Facility	Airport	9	1	6
Transport Facility	Train Station	334	1	102
Transport Facility	Port	63	1	7
Transport Facility	Intercity Bus Station	40	1	3

Continued on next page

Supplementary Table 1 | Summary of explanatory variables and grid-level statistics (Continued).

Primary category	Subcategory	Sum value	Median value	Max value
Transport Facility	Subway Station	1489	4	17
Transport Facility	Bus Station	6098	3	17
Transport Facility	Parking Lot	56628	13	278
Transport Facility	Toll Station	125	2	6
Transport Facility	Highway Service	19	2	2
Transport networks (km)	Motorway	2242.997	0	12.949
Transport networks (km)	Primary roads	1770.722	0	8.366
Transport networks (km)	Secondary roads	2222.137	0.3885	6.451
Transport networks (km)	Tertiary roads	4199.528	1.5375	11.193
Transport networks (km)	Pedestrian roads	6867.383	2.5405	18.555
Roads diversity	Roads diversity	0.6276	0.9909	

Supplementary Table 2 | Regression coefficients explaining Probabilistic Mixing Index (PMI) and Multimodal Uniformity Index (MUI). Columns 2-9 represent PMI models ($PMI_{A,t,m}$); Columns 10-11 represent MUI models ($MUI_{A,t}$). Significance levels: * $p < 0.1$, ** $p < 0.05$, *** $p < 0.001$. R^2 is the coefficient of determination, and MSE is the Mean Squared Error. Observations represent the number of grids included. Only significant variables are shown.

Variable	Models for $PMI_{A,t,m}$								Models for $MUI_{A,t}$	
	Active Mode		Private Mode		Bus Mode		Railway Mode		Workday	Weekend
	Workday	Weekend	Workday	Weekend	Workday	Weekend	Workday	Weekend		
Motorway	0.083***	0.071**	0.306***	0.319***	0.11***	0.1***	-0.006	-0.002	-0.048**	-0.058**
Primary roads	0.178***	0.173***	0.069**	0.058**	0.07***	0.074***	-0.047**	-0.036*	0.062***	0.06***
Secondary roads	0.13***	0.115***	0.037*	0.017	0.012	0.003	-0.02	-0.012	0.046***	0.046***
Tertiary roads	0.309***	0.258***	0.211***	0.148***	0.157***	0.082***	0.079***	0.058**	0.107***	0.108***
Pedestrian roads	-0.028	-0.036	-0.016	-0.041*	-0.081***	-0.109***	0.048*	0.03	0.078***	0.089***
Roads diversity	0.059**	0.069***	0.17***	0.2***	0.062***	0.063***	0.119***	0.101***	0.145***	0.167***
Bus Station	-0.011	0.032	-0.058**	-0.044*	-0.045*	-0.035	0.037	0.036	0.253***	0.262***
Airport	-0.078	-0.141	-0.084	-0.177**	-0.092	-0.163*	-0.005	-0.005	0.043	0.053
Subway Station	0.283***	0.262***	0.039	0.018	-0.003	-0.041	0.104***	0.087***	0.316***	0.306***
Observations	2116	2112	2114	2108	1687	1684	334	334	2116	2115
R^2	0.229	0.227	0.219	0.249	0.081	0.067	0.15	0.129	0.423	0.412
MSE	0.03	0.028	0.028	0.024	0.018	0.016	0.007	0.005	0.015	0.017

404 Prior to finalizing each OLS model, a systematic feature selection process is employed. We begin with the
405 set of candidate transport infrastructure explanatory variables listed in Supplementary Table 1. The Variance
406 Inflation Factor (VIF) is calculated for each variable to detect multicollinearity. Variables with a VIF ≥ 10 are
407 iteratively removed until all remaining variables have acceptable VIFs (≤ 10), ensuring the robustness of the
408 model estimates. The statistical results for the daily granularity models explaining both PMI and MUI are
409 presented in Table 2. The results detailing the hourly variations in the influence of these transport variables on
410 the mode-specific PMI are shown in Figs. 18–21, and those for the MUI are presented in Supplementary Fig. 22.

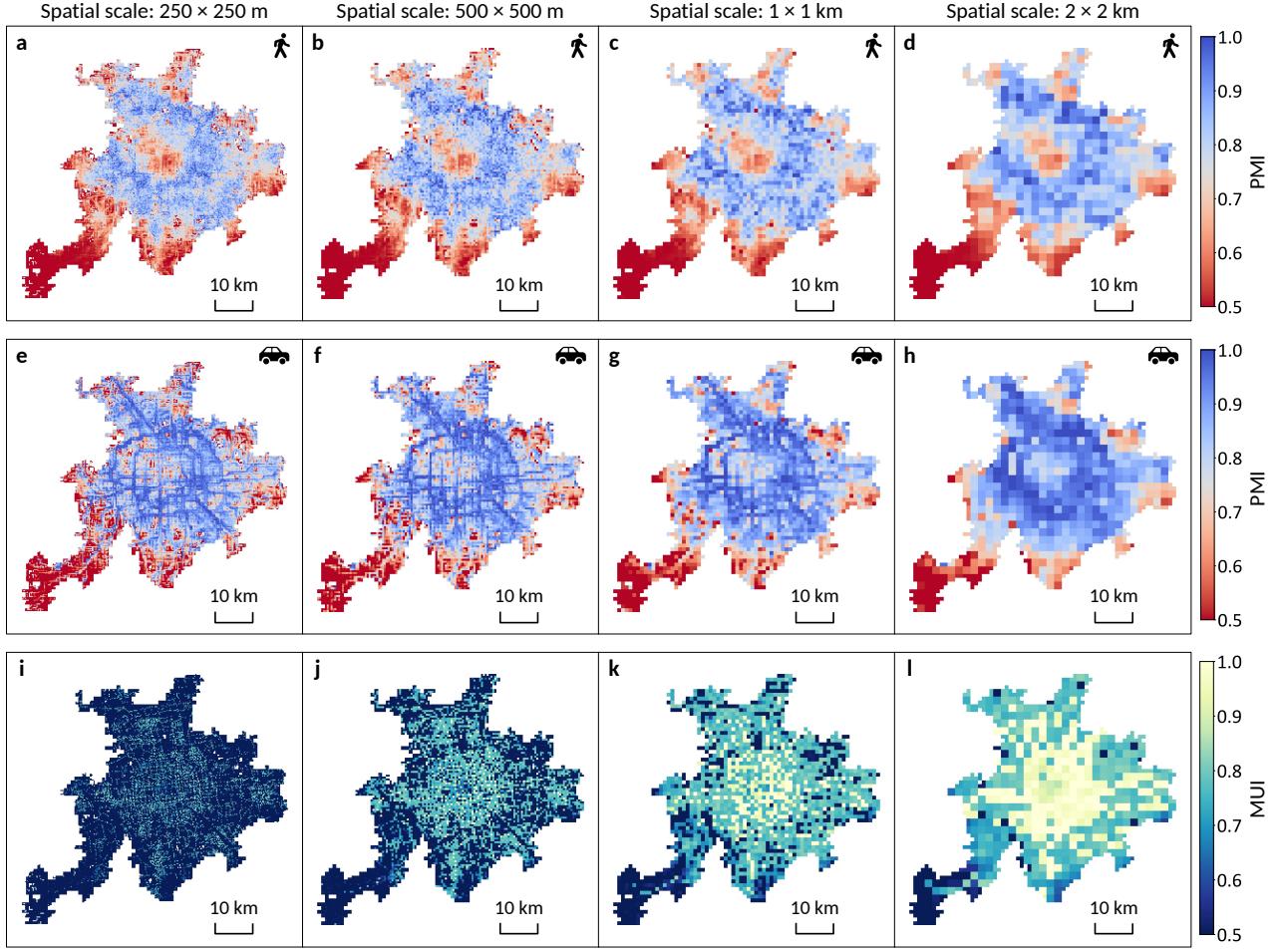
411 4 Agent-based model of individual mobility

412 This section provides detailed information about the agent-based mobility model used to simulate travel
413 mode choices and their impact on the structure of social encounter opportunities. The model is grounded in
414 discrete choice theory [14] and simulates the behavior of individuals commuting from home to work during
415 morning peak hours (9:00-10:00 AM).

416 4.1 Model specification

417 The model considers a population of individuals, each belonging to a specific income group $g \in \mathcal{G}$ (where
418 $|\mathcal{G}| = 4$). Each individual i needs to make a trip from their home location to their workplace. For this commute,
419 they choose a travel mode m from a set of available modes $\mathcal{M} = \{\text{active, private, railway}\}$. The choice is
420 probabilistic and assumes individuals aim to minimize their perceived travel cost \mathcal{C}_{gm} . The probability p_{gm} that
421 an individual from group g chooses mode m is given by the multinomial logit formula:

$$p_{gm} = \frac{\exp(-\delta\mathcal{C}_{gm})}{\sum_{m' \in \mathcal{M}} \exp(-\delta\mathcal{C}_{gm'})}, \quad (S7)$$



Supplementary Figure 17 | Illustration of PMI and MUI distributions at different spatial scales in the Beijing metropolitan area.

422 where δ is the sensitivity parameter, reflecting how strongly cost differences influence mode choice. The perceived
 423 travel cost \mathcal{C}_{gm} is defined as:

$$\mathcal{C}_{gm} = (\alpha_g + \beta_m)T_m, \quad (S8)$$

424 where:

425 • T_m is the estimated travel time for mode m . This is calculated as the duration of the shortest path \mathbf{R}_m from
 426 an individual's home to workplace using the real-world transport networks in the Beijing metropolitan area.

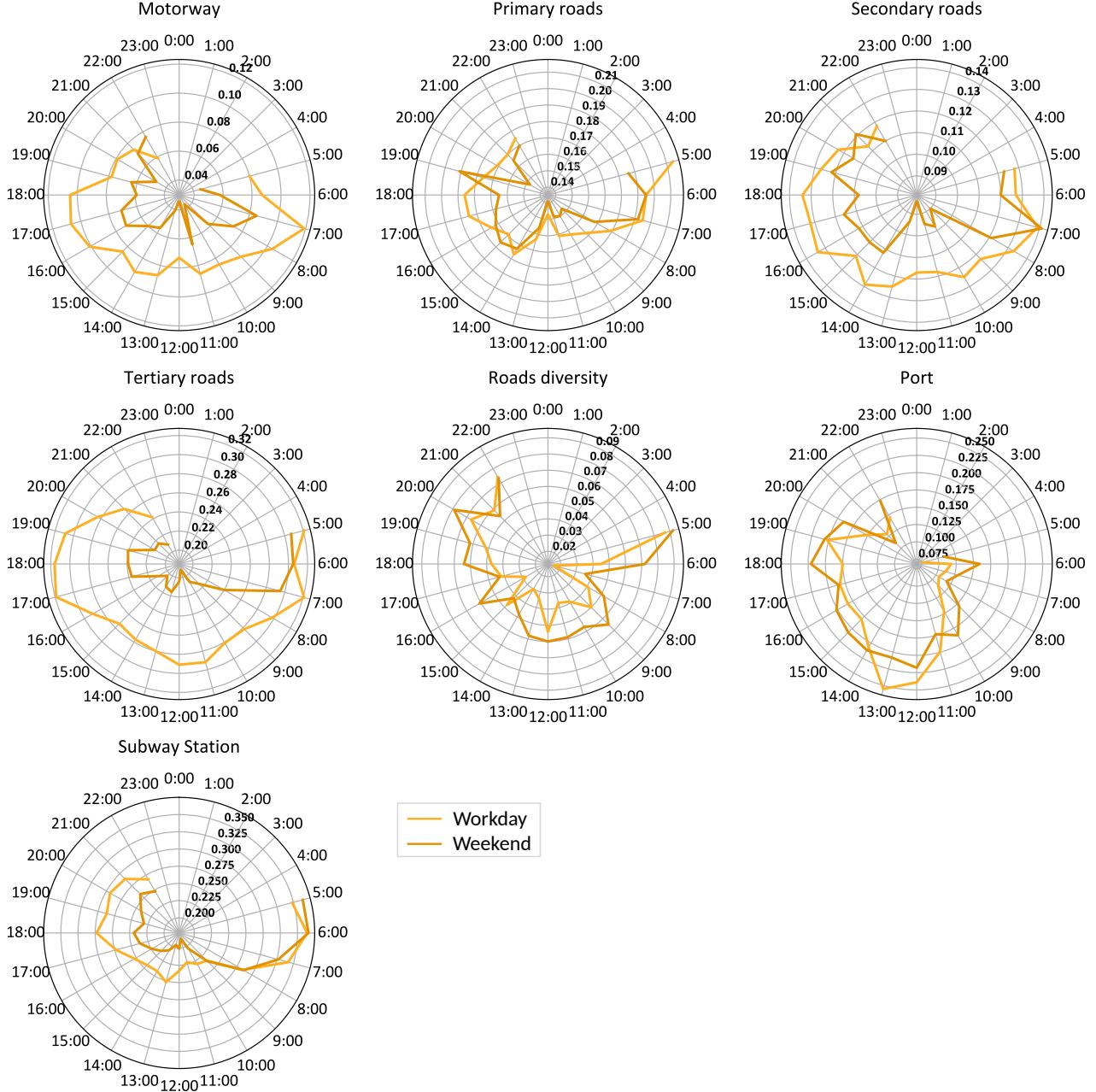
427 • α_g represents the monetary value of time for income group g .

428 • β_m represents other mode-specific cost components (monetary and non-monetary) per unit of travel time.

429 The model assumes that individuals have perfect information about travel times and costs. It also inherently
 430 includes the Independence of Irrelevant Alternatives (IIA) property common to logit models [15]. The model
 431 output consists of the mode choice probabilities p_{gm} . These probabilities, combined with the shortest travel
 432 paths \mathbf{R}_m , are used as inputs to calculate the mode-specific Probabilistic Mixing Index (PMI), as described in
 433 the main text.

434 4.2 Parameter calibration

435 The model parameters include the sensitivity parameter δ , the group-specific value of time parameters α_g ,
 436 and the mode-specific cost factors β_m . The relative values of α_g are determined a priori based on the average
 437 income of each group, following the economic principle that the value of time correlates with income [16]. This
 438 yields $\alpha_1 = 0.203$, $\alpha_2 = 0.349$, $\alpha_3 = 0.596$, and $\alpha_4 = 1$. The main calibration process then focuses on estimating
 439 the remaining four parameters: δ , β_{active} , β_{private} , and β_{railway} . The objective is to minimize the discrepancy
 440 between model-predicted mode-specific mixing index (PMI) values and empirically observed PMI values from
 441 mobile phone data during workday morning peak hours (9:00-10:00 AM).



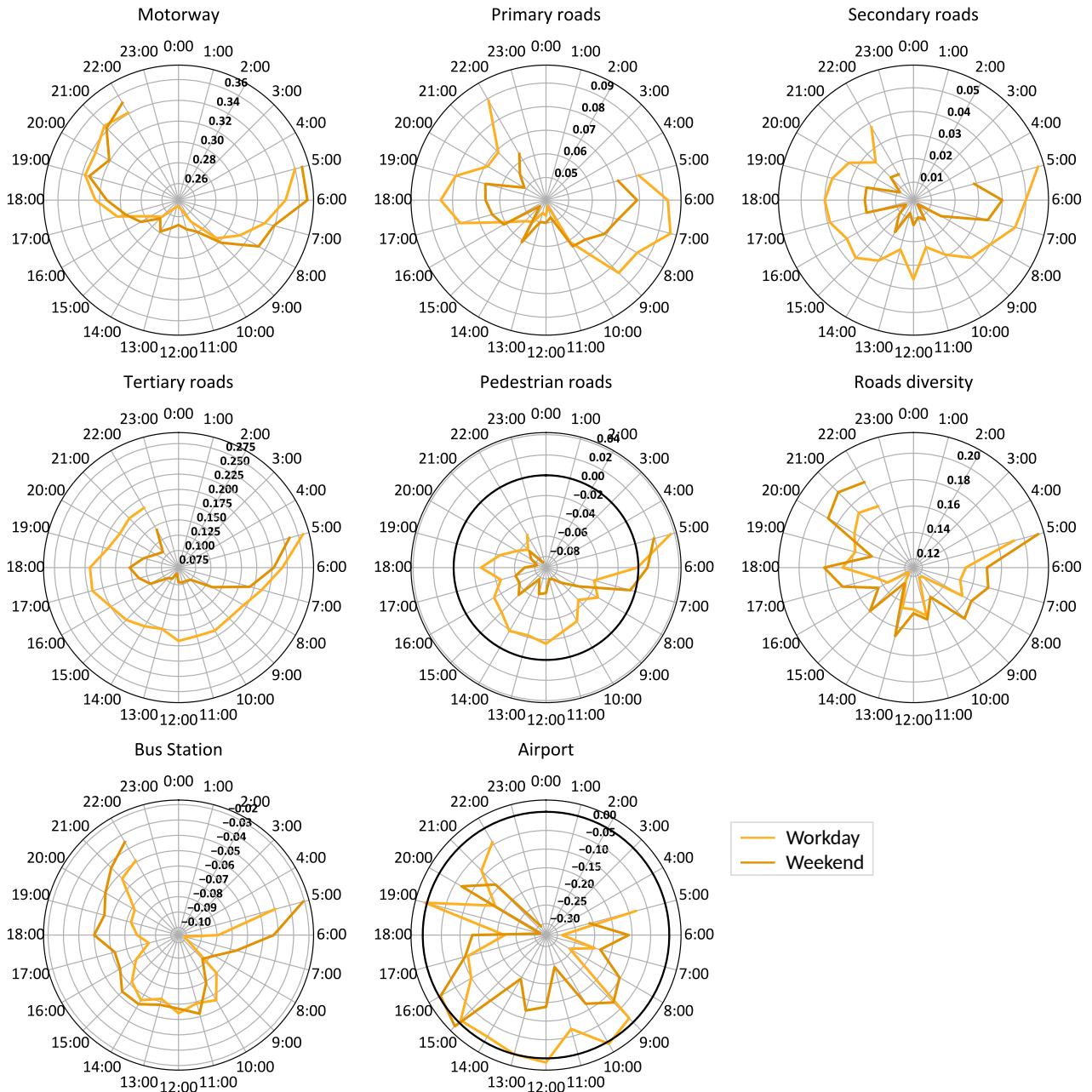
Supplementary Figure 18 | Hourly PMI dynamics for active mode across workdays and weekends. Each panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically significant variables are displayed.

442 To perform this calibration, we define an objective function $L(\Theta')$ that quantifies the goodness-of-fit. We
 443 use the sum of squared errors (SSE) across all relevant spatial units s for each mode m :

$$L(\delta, \beta_{\text{active}}, \beta_{\text{private}}, \beta_{\text{railway}}) = \sum_{m \in \mathcal{M}} \sum_{s \in S_m} \left(\widehat{PMI}_{s,t,m}(\Theta') - PMI_{s,t,m}^{\text{obs}} \right)^2, \quad (\text{S9})$$

444 where $\widehat{PMI}_{s,t,m}(\Theta')$ is the model-predicted mixing index value and $PMI_{s,t,m}^{\text{obs}}$ is the corresponding empirically
 445 observed value. We employ a Grid Search approach to find the parameter set that minimizes this objective
 446 function.

447 The model simulation is executed for each combination of parameter values in the grid. The parameter
 448 combination yielding the minimum value of the objective function is selected as the optimal calibrated parameter
 449 set. The resulting calibrated parameter values are: $\delta^* = 3 \times 10^{-4}$, $\beta_{\text{active}}^* = 0.22$, $\beta_{\text{private}}^* = 2.1$, and $\beta_{\text{railway}}^* = 0.07$.
 450

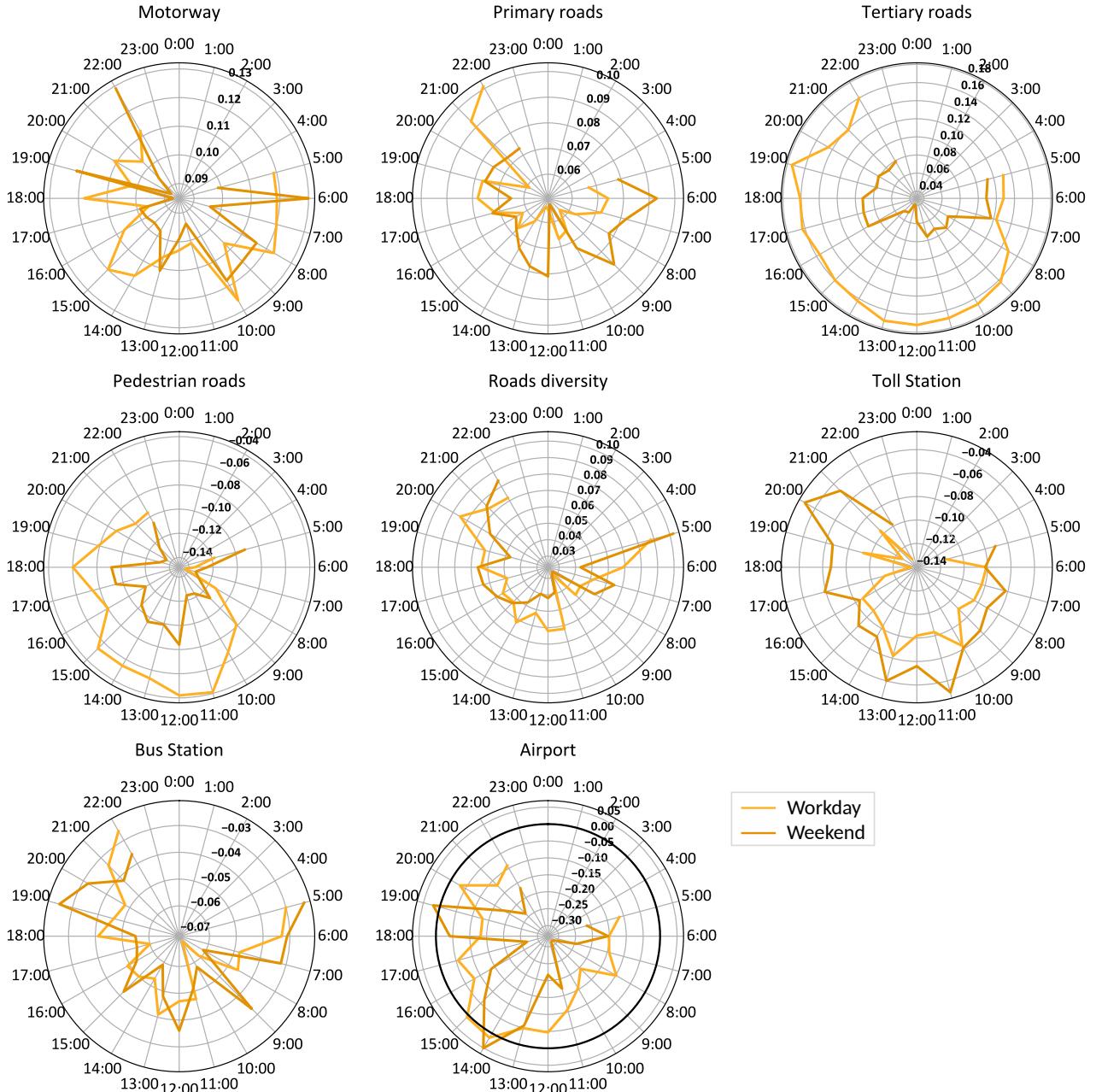


Supplementary Figure 19 | Hourly PMI dynamics for private mode across workdays and weekends. Each panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically significant variables are displayed.

451 To assess the model's performance, we compare the model-predicted PMI values with the empirically
 452 observed PMI values for each spatial unit. A strong positive correlation, quantified by Pearson correlation coef-
 453 ficients (active: $r = 0.9327^{***}$; private: $r = 0.9613^{***}$; railway: $r = 0.9551^{***}$; see Supplementary Fig. 23),
 454 demonstrates a good fit of the model to the observed patterns of encounter diversity.

455 4.3 Simulation for private car use control policies

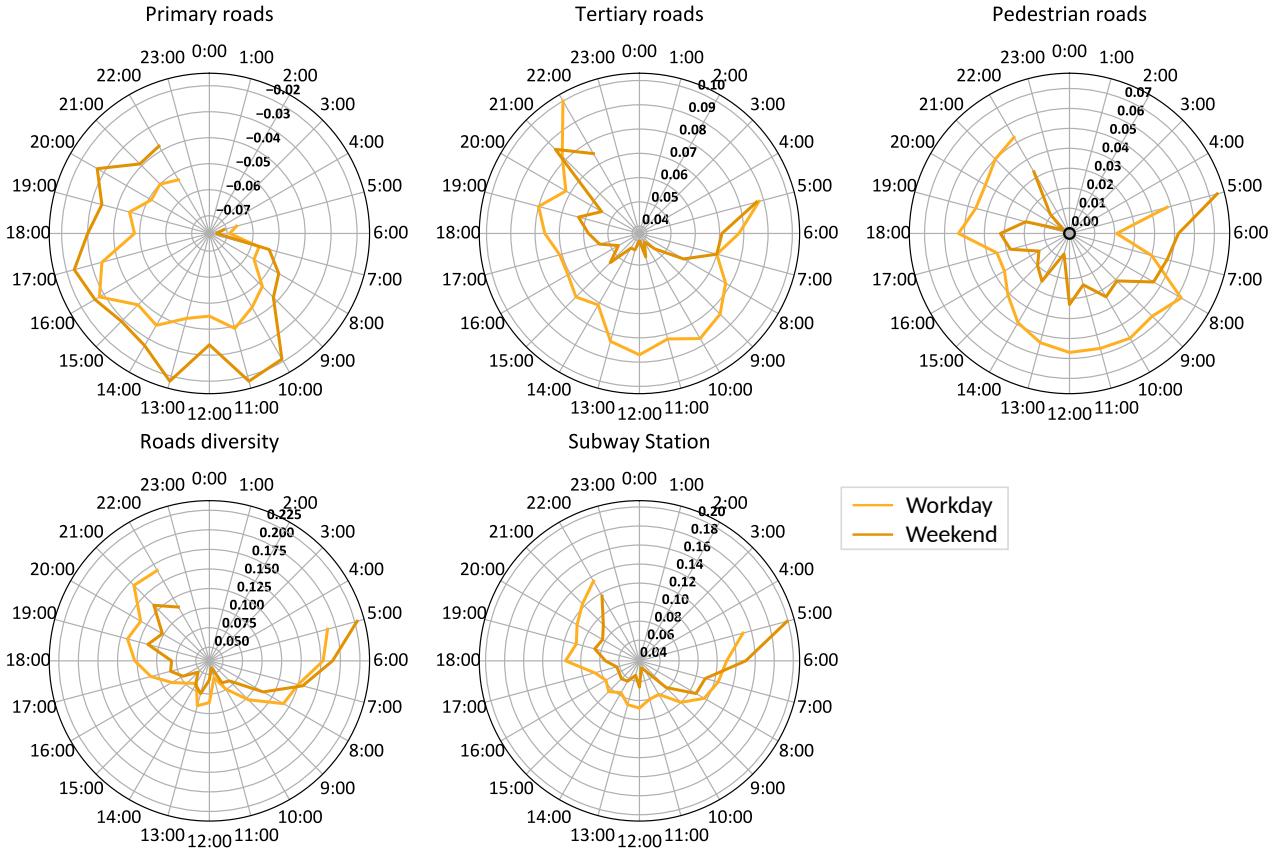
456 A central challenge in urban transport planning is designing policies that achieve collective goals without
 457 exacerbating existing social inequalities [17]. The distributional effects of transport policies are a critical con-
 458 sideration [18]. This study investigates these effects by simulating the impacts of urban transport policies on
 459 patterns of encounter diversity and social equity. Measures controlling private car usage, such as congestion
 460 pricing [19, 20], fuel taxes [21, 22], or parking regulations [23], are prominent tools for managing urban mobility.



Supplementary Figure 20 | Hourly PMI dynamics for bus mode across workdays and weekends. Each panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically significant variables are displayed.

461 We operationalize these policies by systematically increasing the mode-specific cost parameter β_{private} , representing a higher generalized cost of driving. We explore the sensitivity of travel behavior and patterns of 462 encounter diversity to such interventions. We implement two simulation scenarios: (1) **Uniform citywide cost** 463 **increase** ($\beta'_{\text{private}} = \beta^*_{\text{private}} + \Delta\beta_{\text{private}}$ for all trips) and (2) **Downtown-targeted cost increase** (cost increase 464 only for trips with an origin or destination downtown). For both scenarios, we vary the cost increment, $\Delta\beta_{\text{private}}$, 465 from 0 to 15. For each value, we recalculate perceived travel costs, mode choice probabilities, and the resultant 466 mode-specific mixing potential (PMI), changes in mode shares, and average travel costs per income group. 467

468 For the first scenario, increasing the citywide cost of driving reduces private car use and shifts commuters 469 to other modes, leading to complex changes in mixing potential across modes. To illustrate the spatial impact, 470 we select $\Delta\beta_{\text{private}} = 5$. The spatial distribution of changes is visualized in Supplementary Fig. 24. The policy 471 reduces the overall mixing potential among private car users. Conversely, for active and railway travel, mixing 472 potential increases in the suburbs and decreases in the downtown core.



Supplementary Figure 21 | Hourly PMI dynamics for railway mode across workdays and weekends. Each panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically significant variables are displayed.

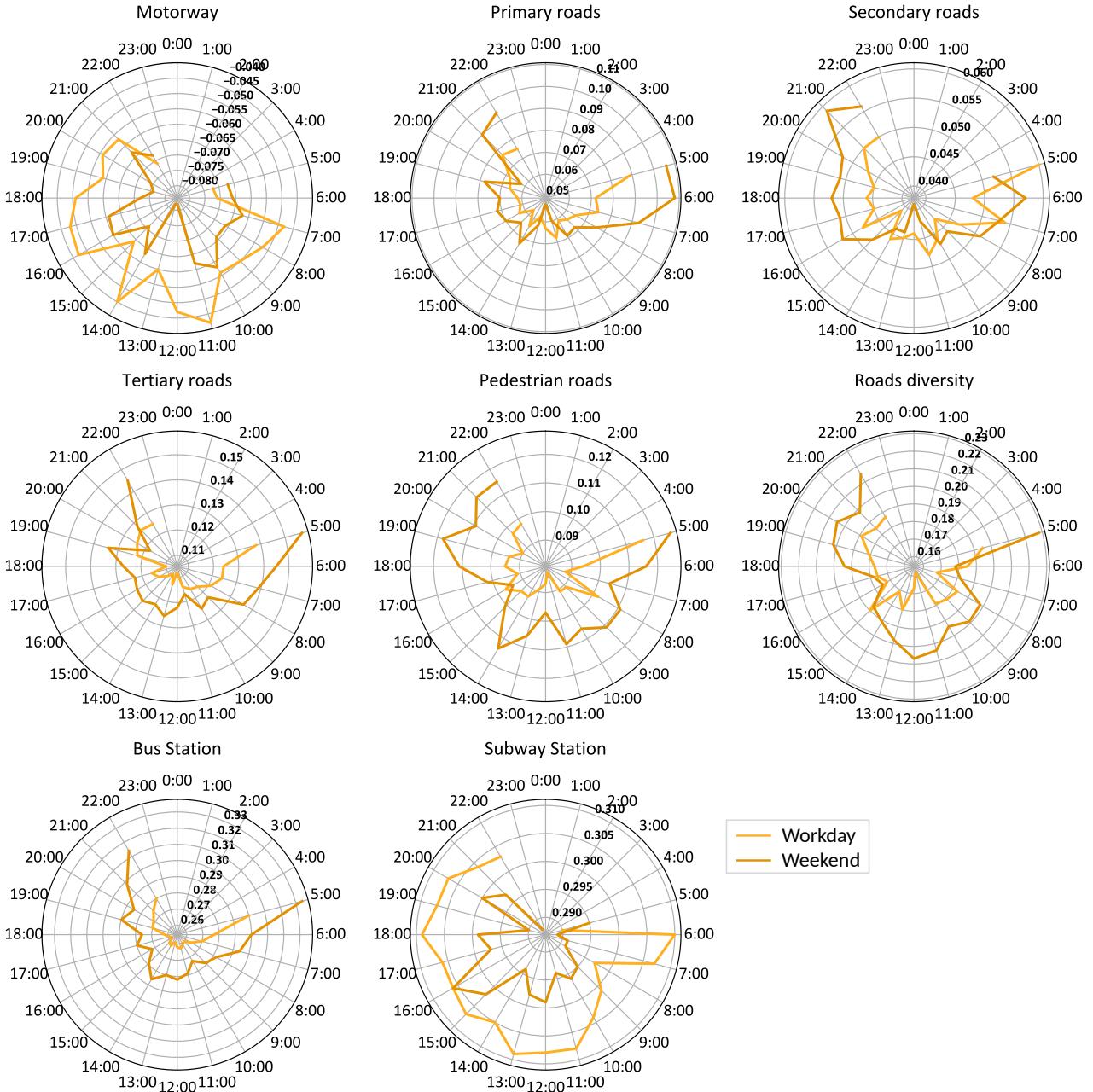
473 For the second scenario (downtown-targeted), the policy has a smaller impact on lower-income groups, as
 474 fewer of them commute to the restricted zone (Supplementary Fig. 25 and Fig. 26). This leads to a higher overall
 475 PMI for private car travel citywide, indicating increased mixing potential among remaining users (Supplementary
 476 Fig. 27). Conversely, for active and railway modes, the overall citywide PMI decreases, signaling reduced mixing
 477 potential.

478 In summary, the spatial design of private car control policies fundamentally alters their distributional effects.
 479 A uniform policy spreads the burden broadly but yields mixed results on mixing potential. A downtown-targeted
 480 policy concentrates costs but paradoxically increases mixing potential for private cars while reducing it for other
 481 modes. These outcomes highlight critical trade-offs between travel costs and social mixing. Policymakers must
 482 consider both cost burdens and impacts on encounter diversity across all modes.

483 4.4 Simulation for public transport subsidy policies

484 Promoting public transport through subsidies is a common strategy for influencing travel behavior and
 485 addressing equity concerns [24, 25]. We simulate this by reducing the railway cost parameter β_{railway} . We
 486 introduce a subsidy factor $\Delta\beta_{\text{public}}$ and modify the cost parameter as $\beta'_{\text{railway}} = \beta^*_{\text{railway}} + \Delta\beta_{\text{public}}$, varying
 487 $\Delta\beta_{\text{public}}$ from 0 to -0.07. For each subsidy level, we recalculate mode choice probabilities, average travel costs,
 488 and mode-specific mixing potential (PMI).

489 The results confirm a shift towards railway usage, with lower-income individuals exhibiting a larger response
 490 (Supplementary Fig. 28a-c). This translates into greater travel cost savings for them (Supplementary Fig. 29).
 491 However, the impact on mode-specific mixing potential is complex. The influx of predominantly lower-income
 492 users onto the railway reduces mixing potential within that mode (lower PMI, Supplementary Fig. 28f). Simi-
 493 larly, as users shift from private cars, the remaining pool of drivers becomes less diverse, also reducing mixing
 494 potential (lower PMI, Supplementary Fig. 28e). Conversely, the active travel mode experiences increased mixing
 495 potential (higher PMI, Supplementary Fig. 28d). The magnitude of these changes is relatively small, suggesting
 496 diminishing returns from further fare-based subsidies.

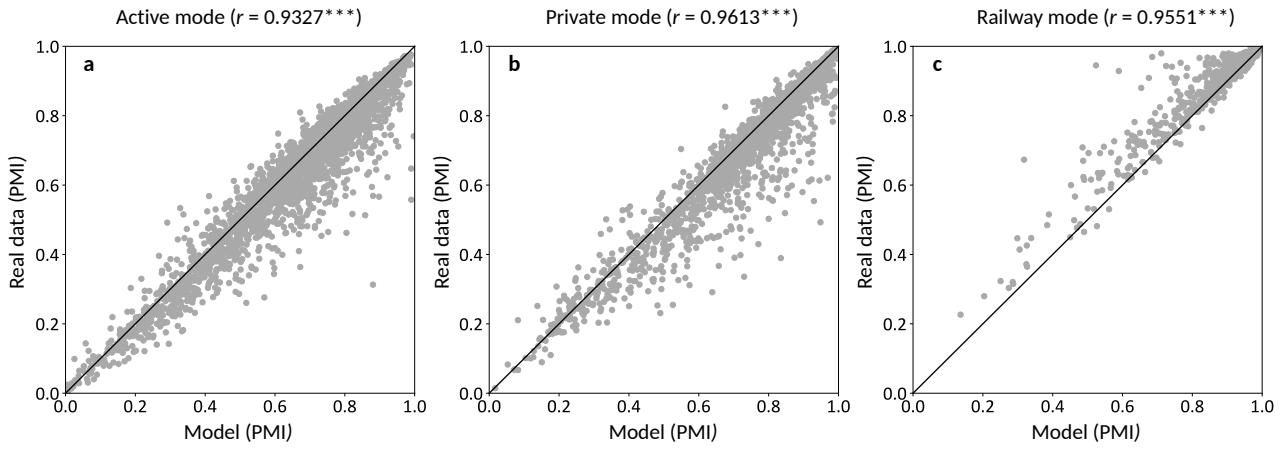


Supplementary Figure 22 | Hourly MUI dynamics across workdays and weekends. Each panel visualizes the hourly variation of the regression coefficients for a specific explanatory variable. Only statistically significant variables are displayed.

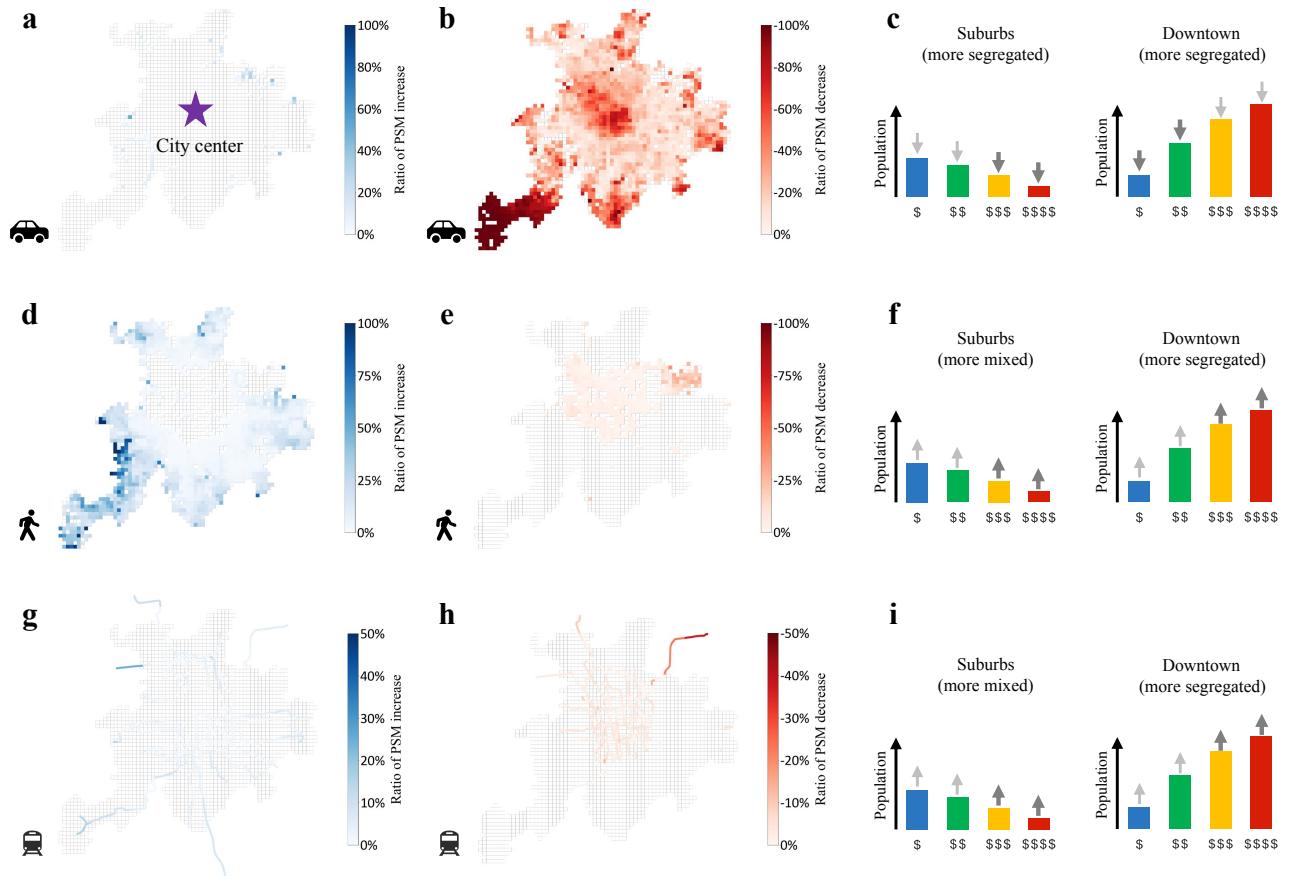
497 The spatial analysis (Supplementary Fig. 30) shows that for the private mode, the policy tends to reduce
498 mixing potential in downtown areas. For active travel, mixing potential increases in the suburbs but decreases
499 downtown. The railway mode exhibits complex spatial effects without a clear regional pattern. These findings
500 suggest that while subsidies reduce travel costs, they can inadvertently reduce mixing potential within the
501 subsidized mode and among users of other modes.

502 4.5 Simulation for promoting active travel policies

503 We explore the distributional impacts of policies promoting active travel, which can yield co-benefits like
504 improved health and reduced emissions. Strategies often involve improving infrastructure [26], traffic calming
505 [27], or public campaigns [28]. We model these policies by reducing the cost parameter β_{active} . We introduce a
506 policy variable $\Delta\beta_{active}$ and vary it from 0 to -0.44. As before, we recalculate the mixing potential (PMI), mode
507 usage shifts, and average travel costs.

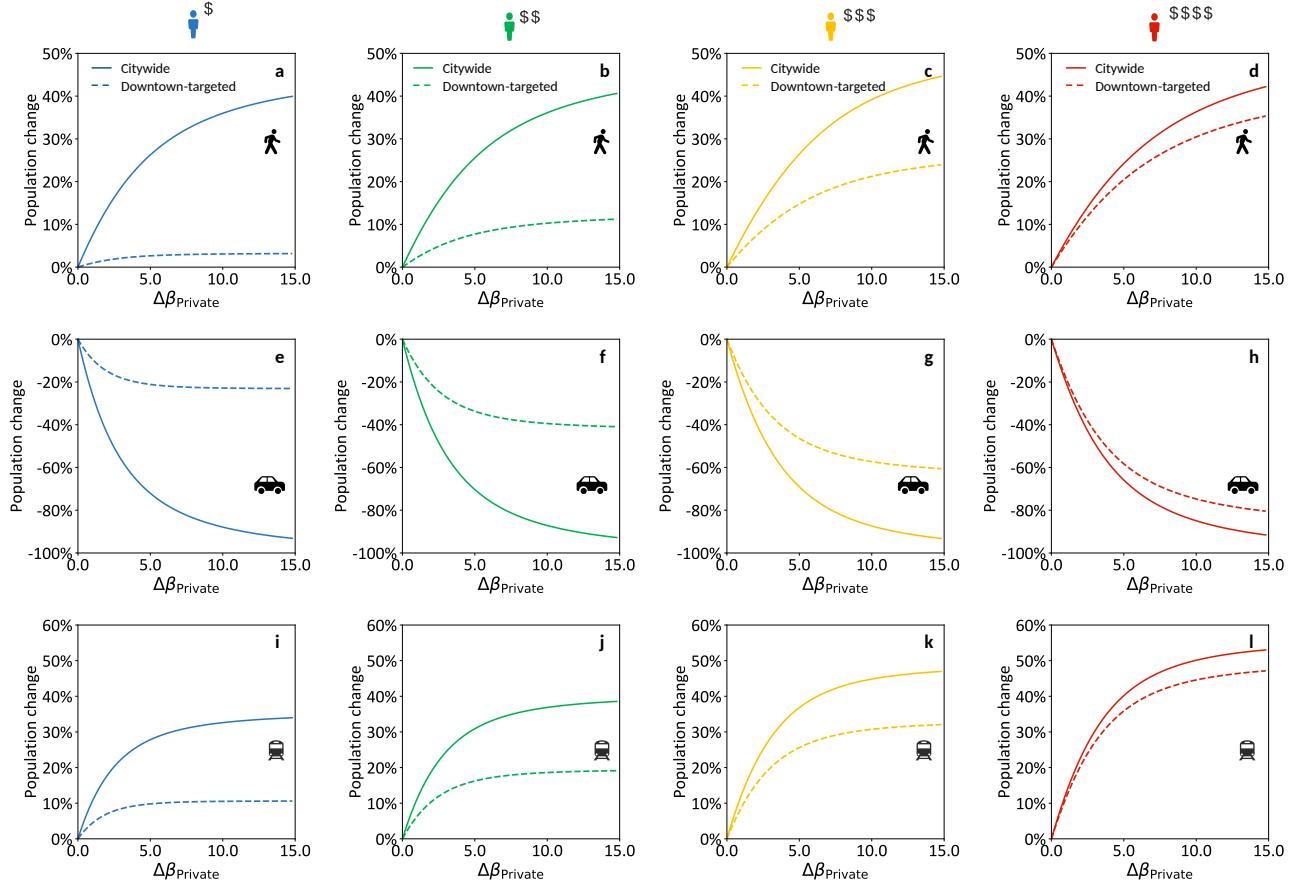


Supplementary Figure 23 | Comparison of model-predicted and observed PMI values. Scatter plots showing the relationship between predicted PMI (using calibrated parameters) and observed PMI for spatial units during the 9:00-10:00 AM peak hour, for (a) Active, (b) Private, and (c) Railway modes. Pearson correlation coefficients (r) are indicated ($^{***}p < 0.001$).



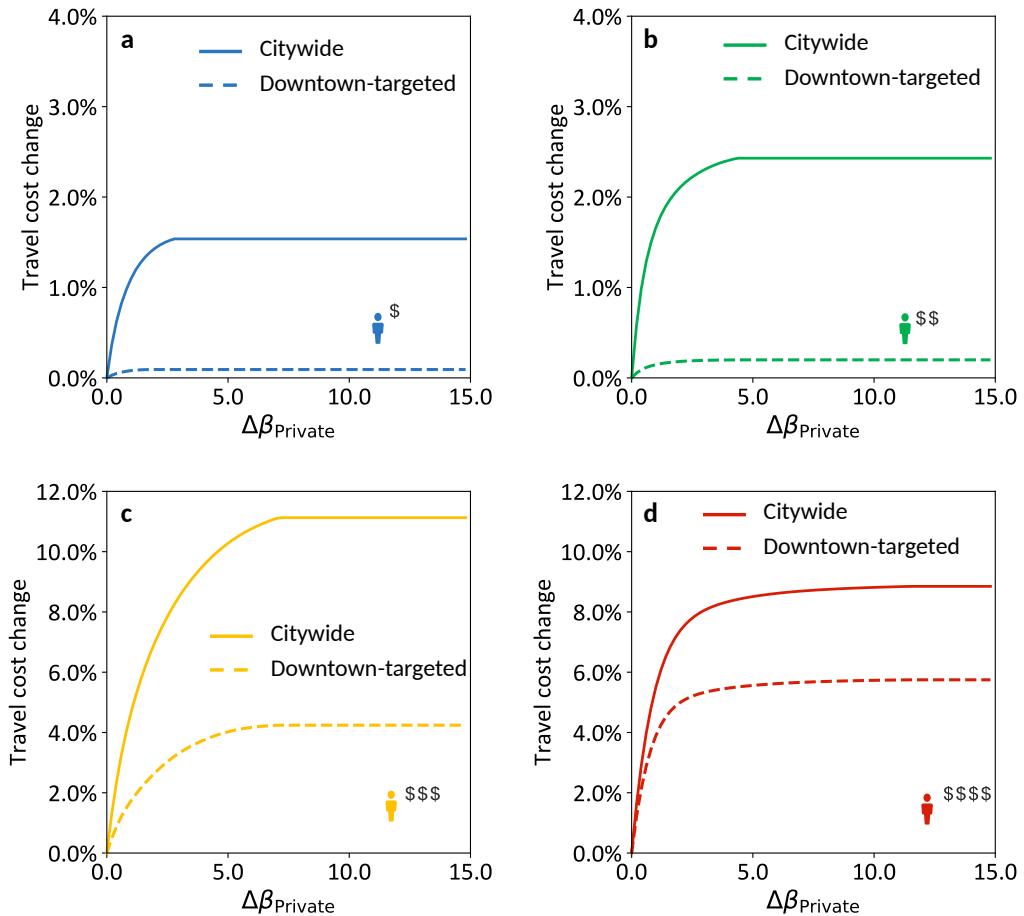
Supplementary Figure 24 | Spatial distribution of changes in the Probabilistic Mixing Index (PMI) for three transport modes under a uniform private car cost increase policy. The figure compares the policy scenario ($\Delta\beta_{\text{private}} = 5$) to the baseline. Panels show spatial units where PMI increased (indicating increased mixing potential) or decreased (indicating reduced mixing potential). Other panels illustrate policy-induced shifts in mode usage by income group.

508 Promoting active travel shows progressive distributional effects, disproportionately benefiting lower-income
 509 groups with the largest travel cost savings (Supplementary Fig. 31a-c and Fig. 32). However, the impacts on
 510 encounter diversity are multifaceted. While citywide mixing potential generally increases for active and private

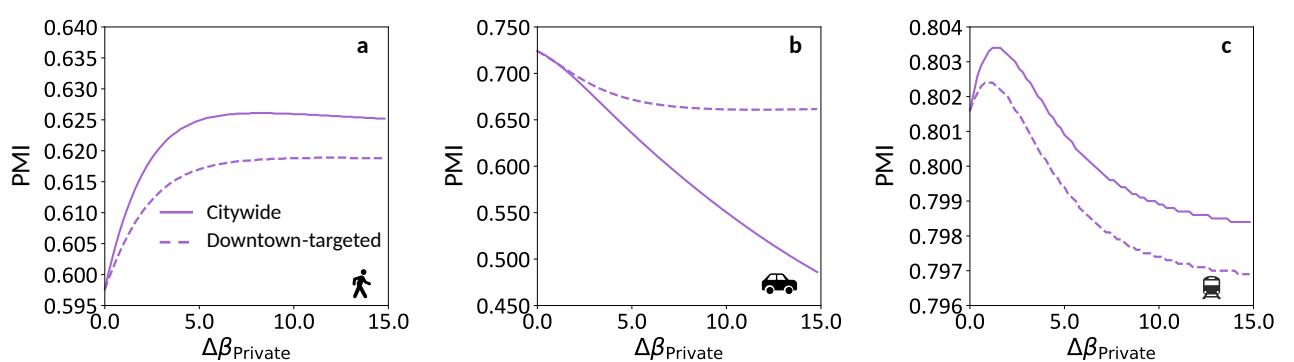


Supplementary Figure 25 | Proportional changes in mode usage by income groups under two private car policy scenarios.

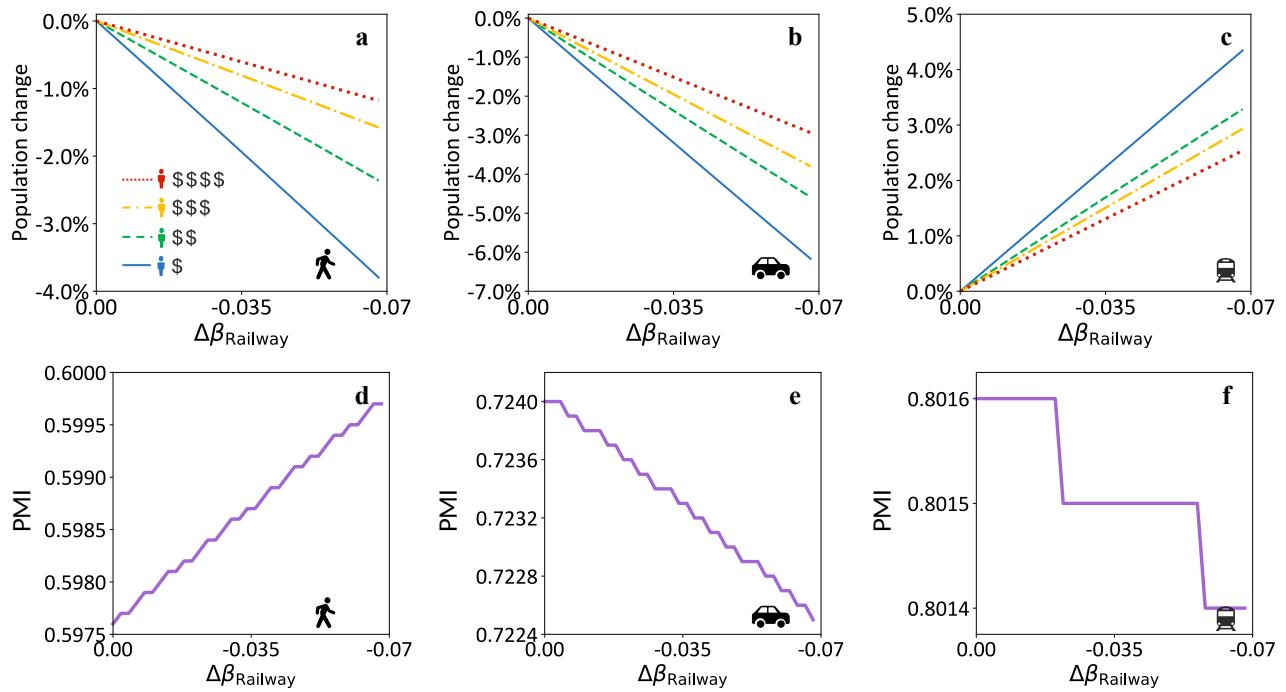
511 modes (Supplementary Fig. 31d-f), the spatial effects diverge significantly (Supplementary Fig. 33). Active travel
 512 promotes income mixing downtown but reduces it in suburbs. Conversely, private and railway modes see their
 513 mixing potential decrease downtown while it improves in suburbs. This highlights a key trade-off: promoting
 514 active travel reshapes patterns of encounter diversity in complex, spatially dependent ways. Policymakers should
 515 consider complementary measures to ensure fairer social outcomes across all modes and areas.



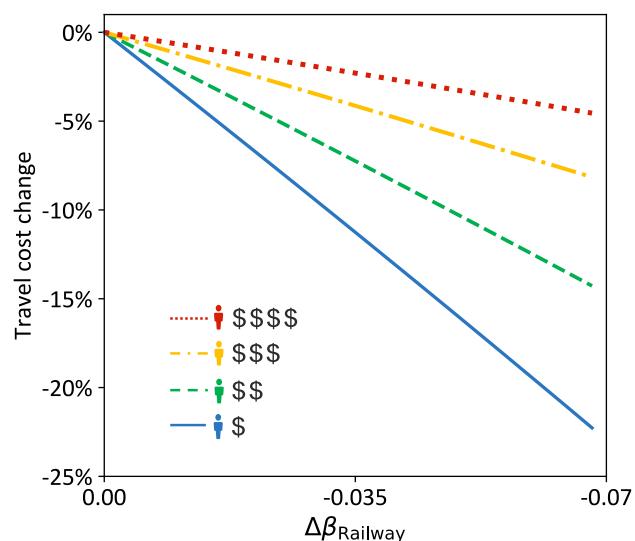
Supplementary Figure 26 | Impact of two private car policies on average travel costs by income group.



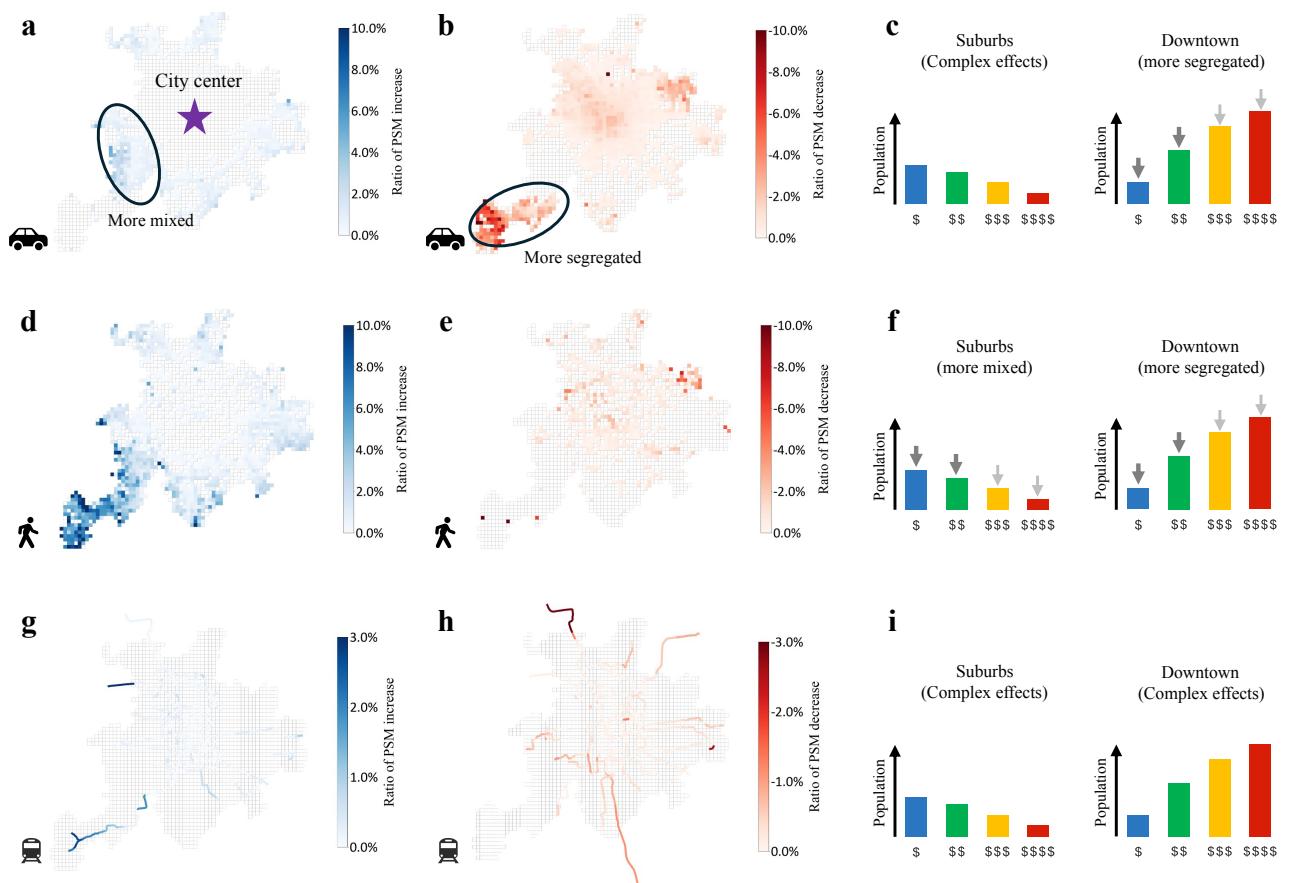
Supplementary Figure 27 | Impact of two private car policies on citywide mixing potential by mode. Under the downtown-targeted policy, overall mixing potential increases for private car users (higher PMI) while it decreases for both active and railway users (lower PMI).



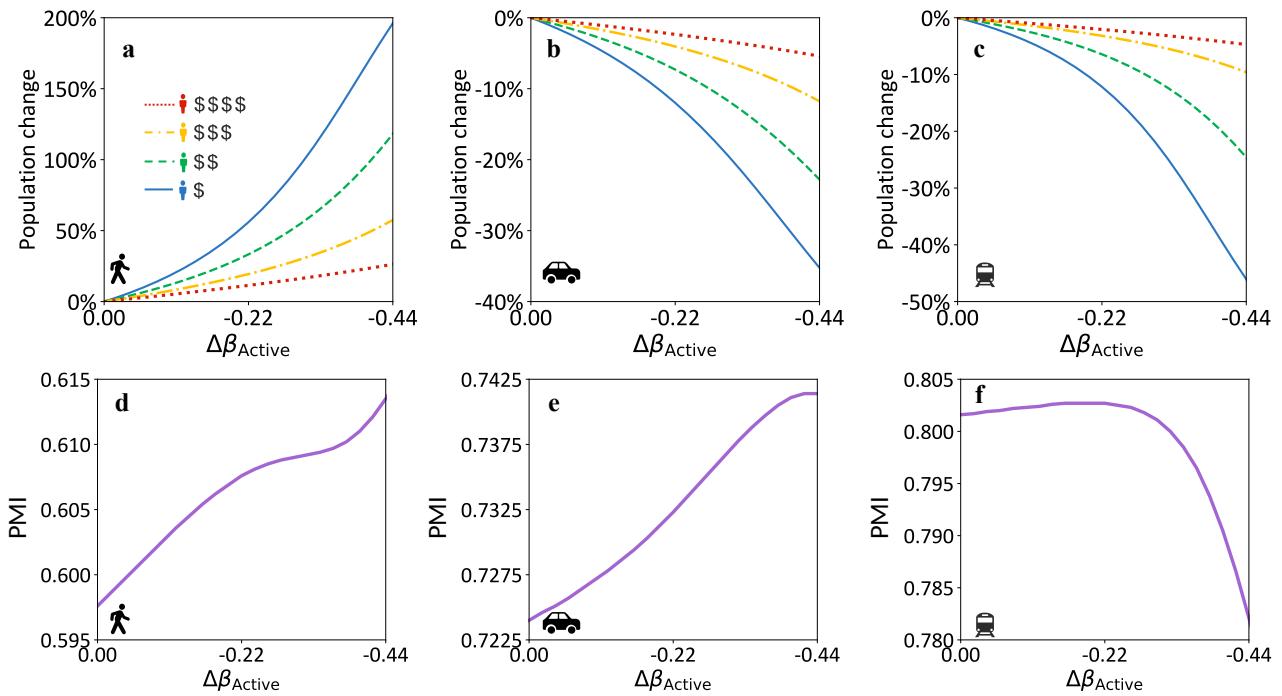
Supplementary Figure 28 | Impact of public transport subsidies on mode usage and citywide mixing potential. **a–c** Proportional changes in mode usage by income group. **d–f** Overall citywide mixing potential (PMI) for each mode. Results indicate increased mixing potential (increasing PMI) for active travel, but reduced mixing potential (decreasing PMI) for both private and railway travel.



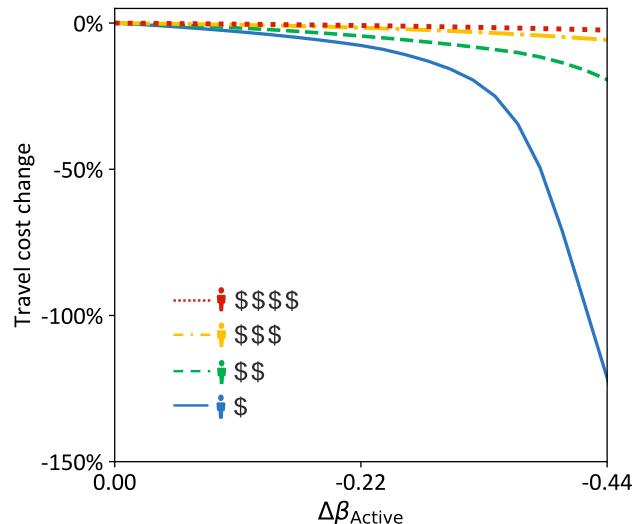
Supplementary Figure 29 | Impact of public transport subsidies on average travel costs by income group.



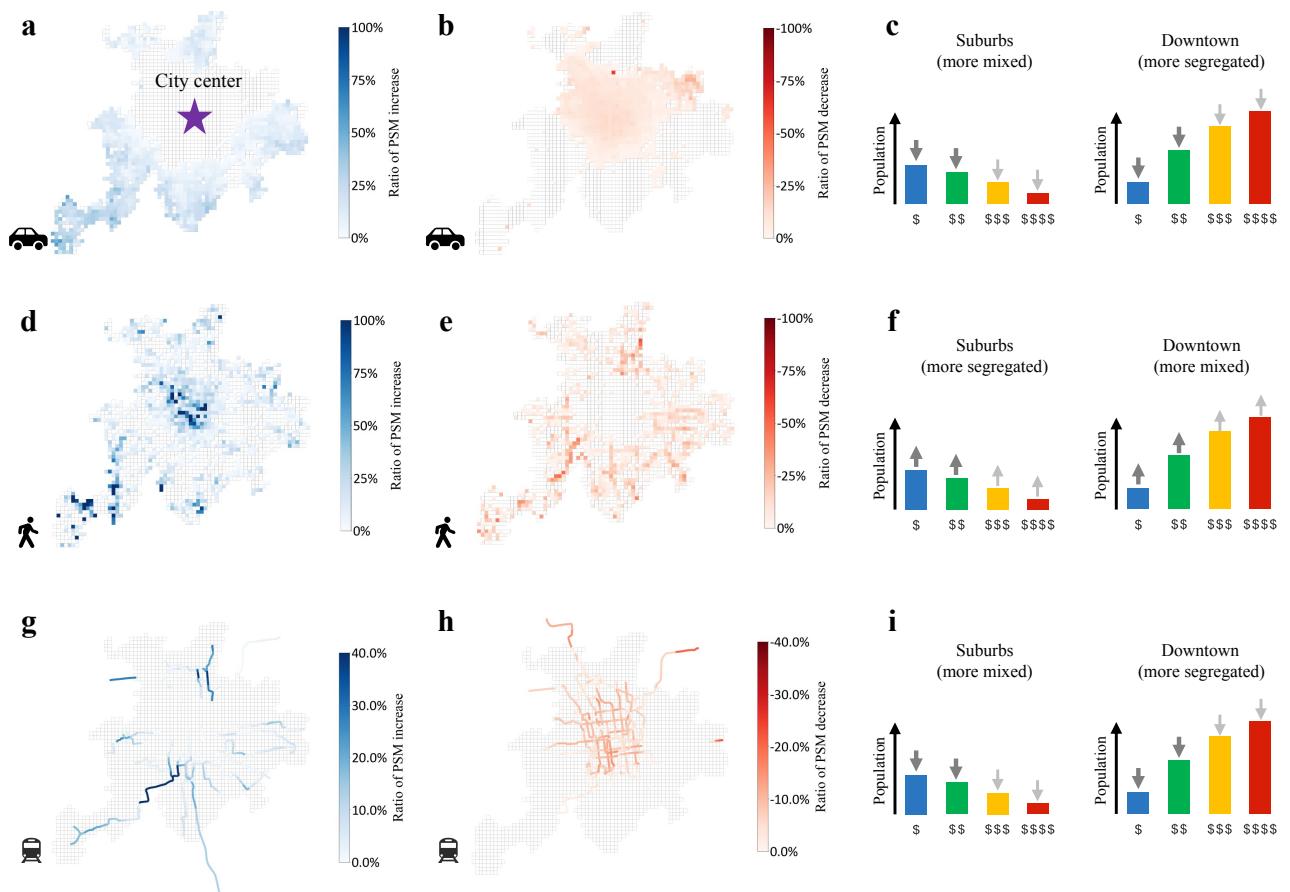
Supplementary Figure 30 | Spatial distribution of changes in the Probabilistic Mixing Index (PMI) for three transport modes under public transport subsidy policies. The figure compares the maximum subsidy scenario to the baseline. Panels show where PMI increased (increased mixing potential) or decreased (reduced mixing potential), with illustrations of mode shifts.



Supplementary Figure 31 | Impact of promoting active travel policies on mode usage and citywide mixing potential. a–c Proportional changes in mode usage by income group. d–f Overall citywide mixing potential (PMI) for each mode.



Supplementary Figure 32 | Impact of promoting active travel policies on average travel costs by income group.



Supplementary Figure 33 | Spatial distribution of changes in the Probabilistic Mixing Index (PMI) for three transport modes under active travel policies. The figure compares the maximum promotion scenario to the baseline. Panels show where PMI increased (increased mixing potential) or decreased (reduced mixing potential), with illustrations of mode shifts.

516 Supplementary references

517 [1] Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large
518 spatial databases with noise. *Proceedings of the Second International Conference on Knowledge Discovery
519 and Data Mining (KDD)* 226–231 (1996).

520 [2] National Bureau of Statistics of China. The seventh national population census (2021). https://www.stats.gov.cn/english/PressRelease/202105/t20210510_1817185.html.

522 [3] Beijing Municipal Bureau of Statistics. Beijing statistical yearbook 2020 (2020). <https://nj.tjj.beijing.gov.cn/nj/main/2020-tjnj/zk/e/indexee.html>.

524 [4] Beijing Municipal Bureau of Statistics. Beijing statistical yearbook 2021 (2021). <https://nj.tjj.beijing.gov.cn/nj/main/2021-tjnj/zk/e/indexee.htm>.

526 [5] Beijing Municipal Bureau of Statistics. Beijing statistical yearbook 2022 (2022). <https://nj.tjj.beijing.gov.cn/nj/main/2022-tjnj/zk/e/indexee.htm>.

528 [6] Beijing Municipal Bureau of Statistics. Beijing statistical yearbook 2023 (2023). <https://nj.tjj.beijing.gov.cn/nj/main/2023-tjnj/zk/e/indexee.htm>.

530 [7] Deville, P. *et al.* Dynamic population mapping using mobile phone data. *Proceedings of the National
531 Academy of Sciences* **111**, 15888–15893 (2014).

532 [8] Zheng, Y., Zhang, L., Xie, X. & Ma, W.-Y. Mining interesting locations and travel sequences from GPS
533 trajectories. *Proceedings of the 18th International Conference on World Wide Web* 791–800 (2009).

534 [9] Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic
535 (ROC) curve. *Radiology* **143**, 29–36 (1982).

536 [10] Brier, G. W. Verification of forecasts expressed in terms of probability. *Monthly Weather Review* **78**, 1–3
537 (1950).

538 [11] Amap navigation application API. <https://lbs.amap.com/>. Accessed on May 2024.

539 [12] Cai, Z. *et al.* MemDA: Forecasting urban time series with memory-based drift adaptation. *Proceedings of
540 the 32nd ACM International Conference on Information and Knowledge Management* 193–202 (2023).

541 [13] Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione. *Giornale dell'Istituto Italiano
542 degli Attuari* **4**, 83–91 (1933).

543 [14] Ben-Akiva, M. & Lerman, S. R. *Discrete Choice Analysis: Theory and Application to Travel Demand* (MIT
544 Press, Cambridge, MA, 1985).

545 [15] McFadden, D. *Conditional Logit Analysis of Qualitative Choice Behavior* (Academic Press, New York,
546 1974).

547 [16] Becker, G. S. A theory of the allocation of time. *The Economic Journal* **75**, 493–517 (1965).

548 [17] Lucas, K. Transport and social exclusion: Where are we now? *Transport Policy* **20**, 105–113 (2012).

549 [18] Pereira, R. H. M., Schwanen, T. & Banister, D. Distributive justice and equity in transportation. *Transport
550 Reviews* **37**, 170–191 (2017).

551 [19] Leape, J. The london congestion charge. *Journal of Economic Perspectives* **20**, 157–176 (2006).

552 [20] Eliasson, J. A cost–benefit analysis of the stockholm congestion charging system. *Transportation Research
553 Part A: Policy and Practice* **43**, 468–480 (2009).

554 [21] Goodwin, P., Dargay, J. & Hanly, M. Elasticities of road traffic and fuel consumption with respect to price
555 and income: a review. *Transport Reviews* **24**, 275–292 (2004).

556 [22] Parry, I. W. H., Walls, M. & Harrington, W. Automobile externalities and policies. *Journal of Economic
557 Literature* **45**, 373–399 (2007).

558 [23] Marsden, G. The evidence base for parking policies—a review. *Transport Policy* **13**, 447–457 (2006).

559 [24] Taylor, B. D. Rethinking transit policy in an era of budgetary constraint: Who benefits from transit
560 subsidies? *Transportation Research Record* **1804**, 93–100 (2002).

561 [25] Pucher, J. & Buehler, R. Making public transport financially sustainable. *Transport Policy* **15**, 241–254
562 (2008).

563 [26] Pucher, J., Dill, J. & Handy, S. Infrastructure, programs, and policies to increase bicycling: An international
564 review. *Preventive Medicine* **50**, S106–S125 (2010).

565 [27] Bunn, F. *et al.* Area-wide traffic calming for preventing traffic related injuries. *Cochrane Database of*
566 *Systematic Reviews* (2003).

567 [28] Cairns, S. *et al.* Smarter choices: assessing the potential to achieve traffic reduction using ‘soft measures’.
568 *Transport Reviews* **28**, 593–618 (2008).