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Supplementary Figure 1: Calculated trajectories of Japan’s electricity sector under the
baseline-Mid and 1.5°C-Mid scenarios. From top to bottom: installed capacity, annual system
cost, electricity generation, and CO, emissions, each disaggregated by technology.
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Supplementary Figure 2: Data center location scenarios under different siting strategies. a
and b show baseline-Mid and 1.5°C-Mid scenarios, respectively.
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Supplementary Figure 3: Impacts of data center growth on annual electricity generation and
CO- emissions, shown in a and b, respectively, by siting strategies under the 1.5°C-Mid
scenario.
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Supplementary Figure 4: Additional system costs due to data center growth. Green and
orange lines show 1.5°C-Mid and baseline-Mid scenarios, respectively. Colored solid,
dashed, and dotted lines indicate data center siting strategies of BAU, ILA, and FLEX,
respectively. A grey dash-dotted line indicates the data center capacity assumption.
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Supplementary Figure 5: a, ¢, and e present the additional system cost due to data center
expansion under the 1.5°C pathway. b, d, and f present the system cost per final energy,

assuming high, medium, and low data center electricity demand projections, respectively.
The grey solid line corresponds to the NoDC scenario and the grey dash-dotted lines show
the total data center capacity (right axis).
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Supplementary Figure 6: Hourly averaged electricity balance in January 2050 under the
1.5°C-Mid scenario with the FLEX strategy. a, b, and ¢ represent Wakkanai City, Higashidori
Village, and Hachimantai City, respectively.



Supplementary Notes.

1 Model description

In this study, we employ a substantially enhanced version of the ReGRID model’,
designed to strengthen both continuity with the existing electricity grid and consistency
across regions. In previous studies, this model was used to design snapshots of fully
renewable energy systems in a greenfield context, based on a hierarchical optimization
approach. The updated version enables recursive optimization of transition pathways in a
brownfield setting without relying on the hierarchical approach.

1.1 System configuration
Technological resolution

The ReGRID model is a linear programming model that simultaneously optimizes
region-specific capacity planning and hourly operational dispatch across technologies
including electricity generation, energy conversion, storage, transmission, and carbon
capture and sequestration (CCS). The technological configurations are detailed in
Supplementary Figure 8. Final energy demand is treated as an exogenous input (see
Supplementary Section 1.3), and technologies for end-use energy consumption are not
explicitly modeled.

The model assumes that no new fossil fuel power plants will be constructed under
increasing decarbonization pressure; their installed capacity is capped at existing levels.
However, retrofitting existing plants with carbon capture facilities is allowed. Given the high
uncertainty of nuclear power development to democratic and political decisions, nuclear
capacity is treated as exogenously fixed. Following the Japanese government's latest policy
direction (outlined in the 7th Strategic Energy Plan), this study assumes that currently
suspended nuclear reactors (under regulatory review) will gradually resume operation.
However, the replacement of reactors beyond their statutory lifetime (60 years) is considered
highly uncertain and is therefore excluded from the analysis.
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Supplementary Figure 7: Technological configurations and energy flows. Yellow, blue, and

grey arrows represent electricity flows, hydrogen, and carbon flows, respectively.




Spatial resolution

The model employs a spatial resolution of 1,741 nodes, corresponding to municipal
administrative units in Japan. Among these, 403 nodes correspond to the locations of high-
voltage substations and selected nodes representing remote islands. These are hereafter
referred to as "substation nodes." These nodes can accommodate dispatchable and variable
renewable energy (VRE) generation as well as grid-connected battery storage. The
remaining 1,338 nodes, referred to as branch nodes, host VRE generation and balance
electricity supply and demand through interregional transmission and curtailment.

Substation nodes are interconnected following the potential routes of existing and
planned high-voltage transmission lines, categorized as HVAC, offshore HVDC, or onshore
HVDC (Supplementary Figure 9). Branch nodes are linked to their nearest substation node
via routes that minimize the total line distance; looped or redundant connections among
branch nodes are not considered. The dataset on the existing transmission infrastructure is
compiled from open sources such as OpenStreetMap? and publicly available information
from OCCTO and Transmission System Operators (TSOs)3-'3. We thank the developers of
PyPSA meets Earth for providing the useful tool earth-osm (https://github.com/pypsa-meets-
earth/earth-osm).

— HvVDC
— HVAC
— LVAC

Supplementary Figure 8: Transmission network model. Blue and red lines indicate high-
voltage AC (HVAC) and high-voltage DC (HVDC) transmission lines connecting substation
nodes, respectively. Green lines show low-voltage AC lines, which connect substation and
branch nodes, or between branch nodes.



1.2 Mathematical formulation

Objective function

min Z +ZCTT,' TT,+ZCg Tgt+ch rft+zcc Cret M (1)
9.t r.ft
M= Ze (Trr,t+T;r,t)+Ze (S7se + Srse) (S2)

st

where ¢, are the fixed annualized costs for capacity W, , of technology g ateach regional
node r; c,,, are the fixed annualized costs for transmission line capacity G, ,, between
nodes r and r'; ¢, are the variable costs for generation P, . at each time step t, ¢, are
the variable costs for the import I. . of fuel f (hydrogen in this study); and ¢, are the
variable costs for carbon sequestration C,.. M is a penalty term introduced to ensure
numerical stability of the optimal solution, representing the sum of transmission (electricity
import T, and export T, from r to r') and charge S/;, and discharge S, of
storage s, each multiplied by minuscule weight & (1072 ¥/kWh).

Electricity balance constraints
For substation nodes

Z hrge Wrg + Z PTM"'Z rr! t+ZST_,grt

gEVRE geEDG gEST (83)
=d,, + DPE¢ + DF?¢ + z Tipre + z ot TR+ U WPC vre SN
gEST

l',+ represents the normalized power load profiles of a data center (i.e., the capacity factor),
and W,P¢ denotes the capacity of data centers. The product of these two represents the
electricity demand of data centers in node r at time t. The range of W,°¢ is constrained
based on the location strategies, as represented by Equations (S4) to (S7). To calculate the
integrated cost of demand, this term is omitted, and the dummy term from Equation (1) in the
main text is added to the right-hand side of Equations (S3).

Data center siting constraints
For the BAU strategy
Data centers are located according to existing distribution.
vr € R (S4)

Wy

ZneRM%

WPt =q-

For the DEV and ILA strategies
The total capacity of data centers is a given, and the existing capacity is the lower bound
of capacity at each regional node.
:E:V%PC =g GSS)

WPC > w. vreR (S6)
For the ILA strategy

The capacity of data centers at each regional node is capped based on integrated
location assessment.
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WPt < wme* vreR (S7)

Other constraints
All other constraints, regarding grid operation, resource limits, CO2 emission caps, etc.,
are provided in the GitHub: https://github.com/hiroakionodera/Re GRID/wiki.

Nomenclature
Variable Description Unit or Range
Static variables
Unit fixed cost for generation, conversion, and storage

K ($/MWh for energy capacity of storage) $/MW or $/MWh
Crorr Unit fixed cost for transmission line $IMW
Cg Unit variable cost for generation $/MWh
¢r Unit variable cost for fuel import $/MWh
Ce Unit variable cost for carbon sequestration $/tCOo2
h Capacity factor of generation [0,1]
Minuscule cost $/MWh
U Normalized electricity demand of a data center [0,1]
w Existing data center capacity MW
wmax Data center siting potential MW
a Total data center capacity MW
d Final electricity demand MWh
Decision variables
P Electricity generation MWh
R Curtailment MWh
St Charge to storage MWh
S” Discharge from storage MWh
C Carbon sequestration tCO2
1 Fuel import MWh
pbac Electricity demand of DAC MWh
D26 Electricity demand of P2G MWh
T+ Electricity import MWh
T- Electricity export MWh
G Transmission line capacity MW
wpoe Capacity of data center MW
w Capacity of generation, conversion, and storage technologies MW or MWh
Subscript
r Node
r' Adjacent node
t Time
g Technology
f Fuel
Set
R All nodes
SN All substation nodes

RN All branch nodes

VRE Variable renewable energy technologies
DG Dispatchable generation technologies
ST Storage technologies

11
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1.3 Input data and assumptions

Socioeconomic and emissions pathways
a
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Supplementary Figure 9: Socioeconomic and emissions pathways from the AR6 scenarios
database'. n denotes the number of scenarios. a shows scenarios classified as C1 (limit
warming to 1.5°C (>50%) with no or limited overshoot). b presents scenarios classified as
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Category C7 (limit warming to 4°C (>50%), represented by REMIND-MAgQPIE 2.1-
4.2 EN_NPi2100. Solid lines and dotted lines represent median and representative senarios.

Energy demand and renewable energy resources

The data sources for energy demand and renewable energy technical potential follow
the methodology of a previous study' and are publicly available in the Japan Energy
Database'®. However, deploying renewable energy up to its technical potential could provoke
social resistance, thereby substantially undermining feasibility. Accordingly, this study
assumes an upper limit of renewable energy deployment at 50% of the technical potential.

Power plants

The location, capacity, and commissioning year of power plants were obtained from the
Electrical Japan'® with developer’s permission. Although some fossil-fuel power plants have
been retrofitted for biomass co-firing, this study assumes that each plant operates based on
its primary fuel.

Hydrogen sector

Regional hydrogen demand was estimated based on national-level values from the
representative scenario, scaled using estimated regional fuel consumption’ and fuel
substitution ratios derived from the IEA Net Zero Emissions (NZE) scenario’, according to
the previous study'®. To reduce model dimensionality and reflect economies of scale,
hydrogen production, storage, and fuel cell-based power generation were aggregated at the
substation node within each prefecture exhibiting the highest hydrogen demand. As previous
studies'®1® have shown that hydrogen transport offers limited economic advantages where
the electricity grid is well developed, it is not explicitly modeled. Hydrogen imports from
overseas are allowed; however, the import price is assumed to be uniform across all regions.

Carbon sector

To support CO2 emissions reductions, the model allows for the retrofitting of existing
fossil fuel and waste incineration power plants with carbon capture technologies. Moreover,
in line with many scenarios aiming to achieve the 1.5°C target, negative emissions in the
power sector are considered essential. Accordingly, two negative emissions technologies are
included: bioenergy with carbon capture and storage (BECCS) and direct air capture and
sequestration (DACCS). DACCS is assumed to be deployable at substation nodes located
near five areas currently undergoing feasibility studies and pilot demonstrations?°. For each
site, the estimated storage potential is treated as the upper bound for CO, sequestration.
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Technology costs and specifications

For power generation technologies, this study adopts the median of technology
assumptions for Japan used across 16 integrated assessment models?'?2. Other sources for
each technology are shown in Supplementary Table 1. Technology specifications, such as
fixed operation and management cost, lifetime, and efficiency, provided in Supplementary
Table 2.

Supplementary Table 1: Overnight cost

Technology Unit 2020 2030 2040 2050 Source
Solar PV $/kW 1,450 1,384 1,236 1,025 [21.22]
Onshore wind $/kW 1,278 1,168 1,180 1,096 [21,22]
Floating offshore wind $/kW 3,027 2,767 2,588 2,366 (21-23]
Fixed offshore wind $/kW 2,066 1,889 1,726 1,577 (21.22]
Geothermal $/kW 3,663 3,663 3,663 3,663 [21.22]
Run-of-river $/kW 3,266 3,266 3,220 3,220 [21.22]
Hydro reservoir $/kW 2,208 2,162 2,162 2,162 [21.22]
Biomass $/kW 2,046 2,046 2,046 2,046 [21.22]
Biomass w/ CCS $/kW 5510 4,908 4,305 3,688 [21.22]
Waste-to-power $/kW 1,572 1,572 1,572 1,572 [24]
Waste-to-power w/ CCS $/kW 3,781 2,813 2,705 2,597 (24.25]
Coal power $/kW 1980 1980 1980 1980 [21,22]
Coal power w/ CCS $/kW 4113 3810 3496 3447 [21.22]
Gas power $/kW 986 942 924 924 [21.22]
Gas power w/ CCS $/kW 2046 1860 1773 1771 [21.22]
Oil power $/kW 1253 1253 1253 1253 [21.22]
Nuclear $/kW 5854 5854 5854 5854 (261
Fuel cell $/kW 182 72 60 48 (271
PEM electrolyzer $/kWh2 1,058 1,127 774 421 (28]
Pumped hydro storage $/kWh 622 622 622 622 (23]
LiB battery - Energy capacity $/kWh 478 342 273 216 (231
LiB battery - Power capacity $/kW 444 444 410 376 (231
H2 compressor $/kW 171 171 132 93 29,30]
Compressed H2 storage $/kWh 50 50 38 25 [29,30]
AC transmission line $/kWkm 114 114 114 114 (31
HVAC transmission line $/kWkm 3.07 3.07 3.07 3.07 (321
HVDC transmission line (Onshore)  $/kWkm 251 251 251 251 (321
HVDC transmission line (Offshore)  $/kWkm 3.76 3.76 3.76  3.76 (321
Voltage source converter $/kW 228 228 228 228 (32]
Direct air capture $/kWe 5,762 2,813 2,323 1,834 (33]
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Supplementary Table 2: Technology specification

Technology FOMm? Lifetime Efficiency Loss rate Source
[%/a] [a]

Solar PV 1.5 25 21.22]
Onshore wind 2.0 20 [21,22]
Floating offshore wind 3.8 25 [21-23]
Fixed offshore wind 3.8 25 (21,22]
Geothermal 4.0 40 [21,22]
Run-of-river 2.0 60 [21,22]
Hydro reservoir 2.6 100 [21,22]
Biomass 43 30 0.37 [21,22]
Biomass w/ CCS 2.2 30 0.36 21,22]
Waste-to-power 4.3 40 0.19 [24]
Waste-to-power w/ CCS 3.8 40 0.19 (24.34]
Coal power 2.7 30 0.45 [21,22]
Coal power w/ CCS 1.9 30 0.40 [21,22]
Gas power 26 30 0.56 [21,22]
Gas power w/ CCS 1.8 30 0.55 (21.22]
Oil power 3.0 30 0.40 [21,22]
Nuclear 3.6 60 0.35 (26]
Fuel cell 5.0 10 0.50 251
PEM electrolyzer 1.4 25 0.80 28]
Pumped hydro storage® 0.5 100 0.80 (23]
LiB battery - Energy capacity® 2.5 15 0.85 (231
LiB battery - Power capacity 2.5 15 0.85 (231
Compressed H2 storage® 4.5 30 0.99 (29]
H2 compressor 8.5 15 [29]
AC transmission linec® 1.6 40 0.07 [323536]
HVAC transmission line¢ 1.6 40 0.07 [35.36]
HVDC transmission line (Onshore) © 1.6 40 0.03 (35,36]
HVDC transmission line (Offshore)© 1.6 40 0.03 (35,36]
Voltage source converterd 2.8 30 0.01 [32,35]
Direct air capture® 3.7 30 [33]

a. Fixed Operation and Maintenance (FOM) cost is expressed as a ratio to the overnight cost.

b. The efficiency of battery storage refers to the round-trip efficiency of charging—discharging cycle.
c. The loss rate of transmission refers to the energy loss per 1000 km of transmission distance.
d. The loss rate of VSC refers to the AC-DC conversion loss.

e. The energy efficiency of DAC is 13.2 kWh of electricity to remove 1.0 tCO.,.
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Data center growth assumptions

Supplementary Table 3: Data center capacity (GW)

Scenario 2020 2030 2040 2050
High 2.7 5.1 15.0 30.1
Mid 27 5.1 9.3 15.3
Low 2.7 5.1 5.7 6.1

* TWh-based forecasts from Mase et al. (2024) are converted to GW-based values, assuming
a capacity factor of 0.8 from the same literature.
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2 Integrated location assessment

2.1 Assessment framework

The Integrated Location Assessment (ILA) framework estimates the siting potential of
each region using the following equation:

P =R, X (Ar - Er) (84)

where B. represents the maximum developable land area in region r. First, the total land
area A, is adjusted by subtracting the excluded area E,, which accounts for site-specific
constraints. Then, a regional suitability factor R, is applied. This is a binary indicator (0 or 1)
that reflects whether the remaining land can be utilized, based on region-specific conditions.
In this study, to avoid land-use conflicts and ensure infrastructure access and social
acceptance, A, is defined as the available area within industrial zones. The polygon data of
industrial zones is obtained from municipal zoning data provided by the Ministry of Land,
Infrastructure, Transport and Tourism of Japan (MLIT)*. Since data on actual vacancy is not
available, we assume a 4.8% average vacancy rate based on a random sample of 50 existing
industrial parks from the literature®. The land-based potential is then converted into server
load capacity using an empirical capacity density of 480 MW/km? based on a random sample
of 20 existing data centers from publicly available data (mainly from the Data Center Map®°).
The sample data for these assumptions are provided at the GitHub repository:
https://github.com/hiroakionodera/DC-tools.

Note that the potential of less than 100 MW is truncated to reflect economies of scale
and to align with the electricity demand simulation, which assumes a 100 MW data center.

2.2 Criteria selection

45 decision-making criteria for data center siting have been systematically identified by
Erdem et al.(2024), with quantified weights assigned to each criterion (Supplementary Figure
10). From these, we selected seven region-specific and site-specific criteria, as shown in
Table 4. Criteria related to electricity supply were excluded, as they are endogenously
represented within the energy system model. Additionally, the following regional criteria were
excluded:

- Affected population by natural disasters: Excluded as direct disaster risks are considered
through other criteria.

- Exposure to droughts: Interpreted as a regional climatic factor influencing cooling
demand in the energy system model.

- Protected area: Excluded as industrial zones is implemented instead.

- Forest resources: Excluded due to their limited weight.

- Freshwater resources: Also excluded due to their limited weight.
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Supplementary Figure 10: Pareto chart of decision factors for data center siting. Green

indicates the indicators adopted in this study, yellow represents factors related to the power
sector, and grey corresponds to national indicators and regional indicators that were not

adopted. Original data are obtained from Erdem and Ozdemir (2024)*.
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Supplementary Figure 11: Regional factors relevant to data center siting. a indicates
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industrial zones; b, water supply areas; ¢, potential tsunami inundation height; d, availability
of highway interchanges or railway stations; and e, potential flood inundation heigh. Data

sources are summarized in the Supplementary Table 4.
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Supplementary Figure 12: Data center siting potential based on integrated locational
assessment.
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Supplementary Table 4: Location assessment criteria

Criterion

Spatial scope

Data

Exposing to earthquakes
Exposing to tsunamis
Exposing to floods

Exposing to tropical cyclones

ICT development index

Train service efficiency
Road quality
Water supply reliability

Site-specific
Site-specific
Site-specific
Region-specific

Region-specific

Region-specific
Region-specific
Region-specific

Probabilistic seismic hazard maps*
Tsunami inundation estimation data®’
Flood inundation estimation data®’
d4PDF tropical cyclone track dataset 42
Speedtest by Ookla Global Fixed and
Mobile Network Performance Map Tiles*3
Railway data®’

Expressway time series data®”
Waterworks-related facility data®”
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