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I. THEORETICAL DETAILS ON THE MOSAIC LATTICE MODEL

In the main text, we experimentally simulate the mosaic lattice model with and with-
out on-site potential and demonstrate its dynamics associated with the density profile of

eigenstates. Here, we provide further details regarding the analytic results of the models.

A. Review of global theory of one-frequency cocycle

We begin by reviewing the global theory characterizing the one-dimensional (1D)
quasiperiodic systems and applying it to the model investigated in this work. The global the-
ory analyzes the one-frequency SL(2) cocycle, which describes systems with nearest-neighbor
hopping and a single incommensurate factor. A well-known example is the Aubry-André-
Harper (AAH) model [S1], or the almost-Mathieu operator in mathematics [S2]. Eigenstates
in such quasiperiodic systems can be categorized as extended, localized, and critical, which
belong to the absolutely continuous, pure point, and singularly continuous spectra, respec-
tively.

The localization properties of the eigenstates can be fully characterized by examining
the Lyapunov exponent (LE), denoted as 7, using Avila’s global theory [S2]. Consider
a generic 1D quasiperiodic system with one-frequency quasiperiodic modulation, with the

Hamiltonian given by

H/h =3 Ji (0f o5+ o7 o) + 3 Vila)aj oy (S1)

J J

The one-frequency quasiperiodic modulation for such Hamiltonian means that the hopping
coefficients J; and on-site potential V; can be modulated by a single frequency, characterized
by an irrational number «. For an eigenstate |¥) with the energy E, expanded over the

real-space basis as |U) = 3~ u;o;[09V), the Schrodinger equation H|W) = E|W¥) leads to:
Jj—1uj1 + Jjuip + Viuy = Eu;. (52)

The LE for the eigenenergy F, denoted by 7o(E), is derived by considering:

n
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where ||A]| is the norm of the matrix A, € is the imaginary part of the complexified 6 and

T T
T} is the transfer matrix at site j satisfying (Uj+1; uj ) =1T; (uj, uj ) , with

E-V; _Jj—l
n- ) g
1 0

The key result from Avila’s global theory is that v.(E), as a function of €, is convex, con-
tinuous and piecewise linear with a quantized acceleration w(F¢):

W(B;) = lim -~ [(E) —(E)] = Z. (55)
The non-negative LE determines the localization properties of the eigenstates: y(E) > 0
implies the state with the energy E belongs to the pure point spectrum and is localized with
the localization length £(E) = y~!. Conversely, 7(E) = 0 indicates the state is delocalized,
possessing an infinite localization length. Delocalized states can be further categorized into
extended (absolutely continuous spectrum) and critical states (singularly continuous spec-
trum) [S3]. Critical states, corresponding to the singularly continuous spectrum, can be
realized by imposing one of two fundamental conditions on the delocalized states (v = 0):
either introducing an unbounded quasiperiodic on-site potential or incorporating incommen-
surately distributed zeros (IDZs) in the hopping terms [S4]. The latter mechanism is the
primary focus of our experiment, as the former is generally unfeasible in physical systems
due to the requirement of divergent on-site energies. Both conditions effectively partition the
1D system into multiple subchains, prompting the delocalized orbitals to reorganize within

these subchains and thereby giving rise to critical states.

B. Generalized mosaic lattice model in the uniform potential limit

We analytically characterize the model in the main text for the limit of nearest-neighbor
coupling (i.e., long-range coupling J , = 0) and uniform potential 1 = 0. The Hamiltonian
is

Hih =3 J; (0707 +0707) (S6)
J
with

A 7=1 mod2,
J; = (S7)
2J cos(2maj +60) j=0 mod2.



The coupling coefficients exhibit a mosaic pattern, thus we consider the two-fold transfer

matrix
E . A E _ 2Jcos(2maj+6)
T — 2J cos(2maj+0) 2J cos(2maj+0) A A
J )
1 0 1 0
E2%2—4J2 cos?(2maj+6)

_ 1 N —E/J

2cos(2may +6) E/J Y
1 ~

- 2 cos(2raj + Q)TJ (S8)

By complexifying the phase of the system as 6 — 6 + ie and taking the limit ¢ — oo, we

calculate the LE using Eq. S3. The first term can be obtained using Jenson’s formula

27 1
In|————|df = —27le|. S9
/0 " 2 cos (0 + ie) lel (59)
The second term is
. 1 T L
Fe(E) = lim —— [ In jl;[lTj(Q—i—ze) de,
_ 1 - idmag ,i20 2
_T}l—{go 5 In ]1_[1(J//\)e e e db,
= In |J/A| + 2]e]. (S10)
Thus we obtain
2790 = max {In |J/A|,0}. (S11)

The factor 2 arises from the counting of the two-step transfer matrix. For |A| < [J], the

system is in the localized phase with the localization length given by

1 2

C= e T WA

(S12)

For || > |J]|, the 70 = 0, and the system exhibits a sequence of site indices {jx} where the
coupling coefficients vanish in the thermodynamic limit (J;, — 0), which are the IDZs of
the hopping terms. Thus, the system is in the critical phase [S3, S4].

We further numerically compute the phase diagram of the model by directly diagonalizing
the Hamiltonian and calculate the fractal dimension (FD) for the mth eigenstate |¢)) =

Zle umJO—;_‘O@N), which is defined as FD = —limy_,,, In(IPR)/In(L), with the inverse
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partition ratio given by IPR = Zj |um j|*. For localized states, FD approaches 0, while
for extended states, FD approaches 1. Critical states exhibit FD values between 0 and 1.
Fig. S1 shows FD as a function of energy E and A/J, with transitions between localized
and critical phases observed, consistent with our analytical results. The FD approaches 0
for |A] < |J]|, indicating localization, and increases towards a critical regime for [A| > |J|. In
addition, for the finite system we consider here, the FD is not exactly zero but remains close
to zero for the localized states. One can observe that the FD is closer to 0 for smaller A\/J
within the localized phase, aligning with the analytical result that a smaller A/.J corresponds

to a shorter localization length and more localized compared to larger A/J.

FD
1.0

0.5

0.0

1.9 2.0 2.5 3.0

Al

Supplementary Fig. S1. Phase diagram of generalized mosaic model with J#Lm =V =0.
Fractal dimension (FD) of the eigenstate as a function of energy E and A\/J for a system size of
L = 2584. The transition from localized to critical phases occurs as \/J increases, consistent with

the analytic results.

C. Generalized mosaic lattice model along high symmetry lines

We next provide an exact characterization of the model with a mosaic incommensurate

on-site potential, while maintaining J%; , = 0. The Hamiltonian is

H/h =" J; (005 + 0y 070) + 3 Viotoy, ($13)
J j
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where the definition of J; remains the same as before, and the on-site potential Vj is given
by

2Vpcos2ma(j —1)+60] j=1 mod2,
| ieotarati =1+ i
2V cos(2marj + 0) j=0 mod2.

Introducing the on-site potential generically breaks the solvability of the system; however, it
remains analytically tractable along high-symmetry lines where |Vy| = |.J|. Here we focus on

the case Vj = J > 0 without loss of generality. The two-step transfer matrix now becomes

oL (B =2B5M) /0N B/ - M)
TM E/]—M N\ J ’
1 .
2cos(2maj +6) 7

(S15)

with M = 2cos(2raj + 6). By complexifying the phase § — 6 + ie and taking the limit

€ — oo, we calculate the LE as follows:

n

1 [ 1 1
29 = — 1 df+ lim — [ 1 T;(6 + i€)|| do,
YT on 0 n‘Zcos(Qwaj+0)‘ +n£§o27m " ]1_[1 (0 +i€)
1 [ 2E/XN 1 . .
=—|¢e|]+ lim — [ In H / e~i2maci+0) el g,
n—oo 27N, 1 0

j=1
~In ‘]E/)\\ +E2 2 - 1‘ . (S16)

Following the same reasoning as in the previous section, the LE for the system is given by

299 = max {m ’]E/)\\ +VER N 1

,0}- (S17)

The critical energies for the LE transition from zero to a non-zero value, known as the
mobility edges (MEs), are
E. =%\ (S18)

For eigenenergies |E| > ||, the corresponding eigenstates are localized with the localization

length given by

€(5) = —

2
% In ‘|E//\| + JE2N = 1"

While for the eigenenergies |E| < |A|, the v = 0, and the system exhibits IDZs in the

(S19)

thermodynamic limit. Consequently, the corresponding eigenstates are critical states.

6
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Supplementary Fig. S2. Phase diagram of generalized mosaic model with Jén =0 and
Vo = J. The fractal dimension (FD) of the eigenstate with the energy E for a system size of
L = 2584. The dashed lines mark the positions of mobility edges at £ = +\. Eigenstates are
localized for energies |E| > |\| and critical for energies |E| < |A|, as predicted by the analytical

results.

Fig. S2 displays the FD of the eigenstates as a function of energy E for different A\/J.
The dashed lines indicate the positions of the MEs at £ = +A. FD approaches 0 for the
eigenstates with |E| > |A|, confirming their localized nature, and takes values between 0 and
1 for eigenstates with |F| < |A|, consistent with critical states. Additionally, for the finite
system size considered (L = 2584), the FD does not reach exactly zero but remains close
to zero in the localized phase. FD is closer to 0 for eigenstates with energies distant from
the MEs. This observation aligns with analytical predictions: eigenstates located far from
the MEs exhibit shorter localization lengths, resulting in lower FD values. As eigenstates
approach the MEs, the localization length increases and diverges at the MEs, leading to
higher FD values.

D. Finite size scaling for generalized mosaic lattice model

We investigate the finite size scaling of fractal dimension for the eigenstates in the gener-

alized mosaic lattice model without long-range coupling, i.e., wa = 0, in the presence and
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Supplementary Fig. S3.  Finite size scaling analysis of the fractal dimension. Plot of
the averaged —log(IPR) of all eigenstates versus log(L) for system size ranging from L = 144
to L = 10946. Solid lines represent linear fits, with their slopes corresponding to the fractal
dimensions. The fitted FD values are zero in the localized phase and approximately 0.74 in the

critical phase for this model. And the fitted FD is 1 in the extended phase.

absence of a quasiperiodic on-site potential. We numerically perform the finite size scaling
from system sizes L = 144 to L = 10946 to evaluate the fractal dimension of the model
in the thermodynamic limit L — oo. This involves calculating the inverse partition ratio
(IPR) for each finite size system and then analyzing the scaling of IPR as a function of L.
The slope of the logarithmic plot, —log(IPR) versus log(L), yields the fractal dimension in
the thermodynamic limit. Note that in the numerical calculation of this section, we consider
the averaged fractal dimension (FD) of all eigenstates in pure phases without mobility edges
(Vo = 0). In the presence of mobility edges (Vy = J), it corresponds to the averaged FD of
all eigenstates within the localized and critical regimes.

We first present the finite size scaling results in Fig. S3 for the case of A = J/4 and A = 2J
while keeping V; = 0, corresponding to the localized phase and critical phase, respectively,
which are the parameter regimes of Fig. 3a in the main text. To provide a comprehensive
analysis, we also include the finite size scaling results for the extended phase, modeled using

a Hamiltonian consisting of uniform nearest-neighbor hopping terms. As the system size
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Supplementary Fig. S4. Fractal dimension at thermodynamic limit for varying \/J. The
fractal dimension FD of the eigenstates is determined by a linear fit of the averaged — log(IPR)
versus log(L). a For the mosaic model with V=0, a phase transition occurs between the localized
and critical phases as A/J varies, with FD shows a transition from zero in the localized phase
(A\/J < 1) to approximately 0.74 in the critical phase (A/J > 1). b For the mosaic model with
Vo = J, the presence of mobility edges E = +\ separates the localized and critical states. In this
case, the FD remains nearly zero in the localized regime, while decreases to a value of approximately

0.6 in the critical regime.

increases towards the thermodynamic limit, the FD for the localized (extended) phase is
fitted to approximately 0 (1), respectively. And the FD for the critical phase is fitted to
approximately 0.74.

Next, we consider the FD in the thermodynamic limit for the mosaic lattice model under
two conditions: without an on-site quasiperiodic potential (Vy, = 0) and with a quasiperi-
odic potential (Vo = J) for different A\/J. For the mosaic lattice model without on-site
modulation, the system undergoes a phase transition between a localized phase (A\/J < 1)
and a critical phase (A/J > 1). Fig. S4a shows that the averaged FD is nearly zero in the
localized phase, while it remains consistently around 0.74 in the critical phase for different
values of A\/J > 1, which shows that the FD remains invariant within the critical phase
as \/J changes. Similarly, for the mosaic model with mobility edges (Vo = J), the FD
in the critical regime remains stable across varying A/J, as shown in Fig. S4b. Here, the

FD saturates at a lower value of approximately 0.6 when \/J > 0.1, compared to the case
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without a quasiperiodic potential shown in Fig. S4a. This reduction of FD can be attributed
to the quasiperiodic on-site potential, which limits the spatial extent of the critical states,
leading to more localized peaks in each subregion of the wave functions while preserving

their multifractal structure and preventing a transition to a fully localized state.

II. CHARACTERIZATION OF INCOMMENSURATELY DISTRIBUTED ZE-
ORS WITH LONG-RANGE COUPLING

In the main text, we demonstrate experimentally that critical states persist under weak
long-range coupling and undergo a transition to extended states only when the coupling
strength exceeds a threshold magnitude, which removes all the IDZs. To further elucidate
this phenomenon, we first model large systems using next-nearest neighbor (NNN) hopping
terms as a minimal representation of long-range interactions. Numerical simulations confirm

that critical states remain robust until the NNN hopping amplitude reaches a threshold value.

We further use renormalization group (RG) analysis to systematically characterize the
transition from critical states to extended states in the presence of long-range coupling. We
first show the robustness of the critical states protected by the IDZz, by showing a finite
transition NNN hopping coupling strength. This indicates that critical states will be driven
into extended states only when the NNN coupling exceeds a finite threshold. To explain
the smaller transition long-range coupling observed in the main text, we further introduce
the next-next-nearest neighbor (NNNN) coupling. The RG calculation shows that, in the
presence of the NNNN coupling, the transition threshold of NNN coupling is reduced. This
explains the smaller transition long-range coupling in the main text since the 2D geometry

of our system involves various ranges of long-range coupling.

A. Numerical demonstration

To show how the IDZs preserve in the presence of long-range coupling, and as a result, give
rise to critical states. Here we consider the 1D mosaic lattice model, with the minimal long-

range coupling modeled by the next-nearest neighbor (NNN) coupling J,,,, the Hamiltonian

10
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Supplementary Fig. S5. Mosaic model with long-range coupling. a Fractal dimension as
a function of energy E/J and the next nearest coupling Jy,/J. Here A\/J = 3 and system is in
critical phase when J,, = 0. For such finite but large system size, the critical state will be driven
to extended state when Jy,,/J is large enough. b Fractal dimension as a function of energy E/J
and the next nearest coupling Jy,/J. A/J = 0.5 and the system is in localized phase when J,,,, = 0.
Similarly, system persists in localized phase until Jyy is larger than a threshold. For both cases,

the system sizes are L = 2584.

is then given by

H = Z‘]( 01071+ 0)410; +Z‘]ﬂn 01052 + 014505 ), (820)
j
with the J; in a mosaic manner, namely J; = A for j is odd and J; = 2J cos(2maj + 6) for
j 1s even.

We first start from the critical phase, namely we introduce NNN coupling on top of the
critical state by considering the case A = 3J. As expected, when J,,,,/.J is not so large, the
system still contains critical states, as indicated in Fig. S5(a). And for sufficiently large
Jun/J, then the system enters the extended phase.

We then start from the localized phase with A = 0.5.J, then turning on J,, neither
drives the localized state into extended state immediately, only when it exceeds a threshold
as shown in Fig. S5(b). Moreover, in this case, there are no critical states in the whole
spectrum. This also manifests the mechanism that the critical states are generated by the

IDZs on top of the delocalized states.
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B. Renormalization group for the long-range mosaic model
1.  Review of the renormalization group approach

We first briefly review the procedure of the renormalization group approach. We consider
a generic 1D Hamiltonian H/h = 3 ti(ofor, + 05 0f,) + Vo o5 with quasiperiodic
modulation cos(2maj + 6), here the irrational number « is an irrational number that can be
approached by Diophantine approximation, for example, the golden ratio number that can

be approached by the Fibonacci series a = F,,_1/F,, with F}, being the Fibonacci series.

This approach aims at determining which localization phases the given state flows to by
calculating the relevant parameter of the associated dispersion. Specifically, we first approx-
imate the incommensurate parameter in the quasiperiodic modulation by a commensurate
integer o = lim,,_,oo F,_1/F,, with F}, being the Fibonacci number is the system size L. The
original Hamiltonian then becomes periodic and exhibits band structure. Then we introduce
the quasi-momentum x, along x-direction by the twisted boundary condition or equivalently
threading a flux. And we map the phase offset 6 as the quasi-momentum in y-direction as &,,.
Then one can obtain the corresponding Bloch Hamiltonian H™ (k,, x,). Then we identify
which dispersion within the Bloch Hamiltonian becomes relevant and irrelevant as we iterate
the size of the unit cell. Specifically, we shall investigate the characteristic polynomial given
by P™ = det[H™ (k,, k,) — E] for the state with the energy E, which can be rewritten the
P™ as the form

P"(E; Ky, ky) = tg)(E) cos (kg + K2) + ngn)(E) cos(ky + k)
+ C(E) cos(ky + 72) cos(ky + i)
+eN(E, o k) + TS(E), (S21)

where eg) represents higher harmonic terms. The different phases are characterized by
investigating how the parameters evolve as n — oo by comparing the coefficients of the
corresponding dispersions. For the extended phase, the on-site potential becomes irrele-
vt [C9 49|V
e

are relevant ‘ C](%n) / V}gn)

— 0, for the localized phase, we have an irrelevant hopping

9

tgl) / V}%n)‘ — 0 and for the critical phase, both hopping and on-site potential

c i > 1.

9
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L| 5 0) Vi 0) 157 0)[viF (0) i (0)

3] 0 0 2J8 | —2J6 43X (3J2, + \?)

500 0 2.J10 | —2,710 45N (55, + 5J2 A% + AY)
700 0 25 | =2 [ 4TTN(TIE, + 14T, N2 + TI2 A% + \°)

Supplementary Table I. Numerical results for the coefficients of the first three unit cells L = 3,

L=5and L=T.
2. Renormalization group analysis for the next-nearest neighbor coupling

To show how the IDZs preserve in the presence of long-range coupling, and as a result, give
rise to critical states. Here we consider the 1D mosaic lattice model, with the minimal long-
range coupling modeled by the next-nearest (NN) neighbor coupling J,,, the Hamiltonian

is then given by

H/h = Z Ji(of o +o5000) + Z Jn(0) 050 + 05 071), (S22)
- ‘

j
with the J; in a mosaic manner, namely J; = A for j is odd and J; = 2J cos(2rayj + 6)
for j is even. To facilitate the discussion, we first consider the transition from critical to
extended state of zero energy state, and then generalize it to the finite energy. For F = 0,

the characteristic polynomial is given by

PO0; ¢, k) = 15 cos(ky + K2) + Vi cos(k, + Ky)

+ té%) cos[2(ky + KO)] + VQ(}? cos[2(ky, + mg)]

+ Cp) cos(r, + RY) cos(ry + i) + et (B = 0,0,5) + Ty (E = 0).  (S23)

Here L is the size of the commensurately approximated unit cell L = F;,. The characteristic

polynomial for any generic approximated unit cell L for the energy E is given by

My(E) I 0 1,
I, M(E)
PY(E; p, k) = det 0 0 , (S24)
i}
I} 0 I, My .(F)

13



with the M;(FE) and II, being two-by-two matrices, which are given by

(B) = 2Jcos2m(j — o+ k) — E 0 ‘ (525)
0 —2Jcos2n(j — o+ k,] — E

and

e tha( g — 2 Leo—ika \
I, = ( _ 2) 2 (S26)
—temtka ) emthe( ]+ %)

Notice that under the transformation ¥ — —-F, k, — k; + 7 and k, — k, + 7, the
determinant remains the same. Since L is odd, under this transformation, we have k, =

Lk, — ki + L7 and K, = Lk, — K, + L altered by an odd number of w. Therefore, we

have
R (—E) = —{7(B),
Vig (—E) = V()
tyi (—EB) = 159 (E), (827)
Vap (—E) = Vo (B),
CP(-EB) = CP(E)

Therefore for the zero eigenenergy E = 0, we have
L L
t7(0) =0, V{F(0)=o. (528)

From the renormalized on-site coupling, we can see that to accumulate a k,-dependence
of €%y the only choice is to multiply 2L diagonal terms together, therefore we have the

normalized on-site potential strength

Var (0) = =22, (529)

Similarly, for the renormalized hopping coupling, to accumulate a k,-dependence of e??*z

one must multiply 2L terms with e”* together. By choosing any —e?*\ term, the possibility
of choosing two e*.J,, terms is eliminated, then one cannot find 2L terms with e’* to be
multiplied. Therefore the only choice is to multiply 2L e*J,, terms together, which gives

normalized hopping coefficient as

£y (0) = 2J20. (S30)

14



The renormalized hopping coupling for the critical states C’,(%L)(O) can be understood via
incoherent superposition between different contributions. To obtain such kx and k, depen-
dence, one will have L terms with e** and L terms with e’ multiplied together. Thus
one must multiply L factors of j:%ei(ky”pm) terms and a total of L factors of e**=.J, or
L factors of —e*=)\ terms together. Therefore each contribution to the total factor has a
random phase factor due to the incommensurate «, resulting in an incoherent superposition
with the combinatorial multiplicity to O(1) under exponential order at L. — oco. Then since
the infinite summation of a geometric progression is of order O(1), the value at L — oo is
determined by taking as much only e*.J,, or only —e*\ terms as possible. Therefore, we

obtain the renormalized hopping coupling for the critical states as
C(0) ~ JE (JE 4+ AF) . (S31)

The condition for the emergence of extended state in the presence of next-nearest coupling
can be identified by ‘/2%) (O)/tg%)(O) — 0 and C(O)/té@(O) — 0, therefore the critical state
at £/ = 0 will be driven into the extended state if

Jyn > max (J, \/ﬁ) : (S32)

which indicates that only if the next-nearest coupling is larger than a certain threshold, the

critical states will be driven into the extended states.

3. Inclusion of next-next-nearest neighbor coupling

In this subsubsection, we further show that introducing the next-next-nearest neighbor
coupling will decrease the transition threshold for J,, obtained in Eq. (S32). For simplicity
of the RG calculation, we introduce the next-next-nearest neighbor coupling on the even
site, whose Hamiltonian is given by

H=—pu Z (0)30; +0)07,3). (S33)
j=even
If we relabel the odd/even site as the A/B sublattice, then the eigenvalue equation H|¢)) =
El), with [¢) =37, (4 py Wjs takes the form
Jon —A Jon — 0 2J cos(2may)

uj—1 + ujt1 + uj = Eu;,  (S34)
—pi Jon -\ Jon 2J cos(2maj) 0

15



with a unitary transformation, the eigenvalue equation becomes

Jm —t4 —1_ Jan — to t_
Uj,1 + Uj+1+
t_ Jmm + 14 -t Jm 1ty
2J cos(2mayg 0
0 —2.J cos(2marj)

with ¢4+ = (A £ p)/2. Then the characteristic polynomial takes the same form as Eq. (S24),
with the same M;(E) as the case p = 0, and the modified I, as

e*Zk‘z(Jnnf%) €_Zk”%

I, = . (S36)

etk 25E ke (Jant )
Following the same logic, for the zero eigenenergy E = 0, we have
HR(0) =0, ViF(0)=0, V3(0) =27 (837)

The renormalized hopping coupling is contributed from the product of either J,, x Jyu, or

the term (—\)(—u), which gives

L
152(0) =23 CLI2 (=) (—p) = 20/ T2 + i (38)
=0

The renormalized hopping coupling for the critical states C can be obtained from the same

logic in the last subsubsection, which is given by
C0) ~ JE (JE + AF 4 ). (S39)

From the results Eq. (S37), Eq. (S38) and Eq. (S39), we can see the next-next-nearest
neighbor coupling further decreases the transition threshold of .J,, for extended states. In
particular, when g is small, i.e. pu < A, one finds that C’g)(O) under large L limit is
independent of u, yet t%(O) increases with pu, thus one requires a smaller J,,, to drive critical

states into extended states. More precisely, the condition for the emergence of extended state

is

v 0 oD
EQLI;( ) -0, ;;1;( ) —0 (S40)
tyx (0) tyr (0)

which is to solve the condition
J2E JE(TE + X+ pF)

———— 0 2%
VJE A 2/ J2, + A\

— 0 (S41)
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at L — oo, this gives

Jun € <\/J max (J, \, pt) — A\, max()\,,u)> U (max [\/ﬂ, A, u] , oo) , (S42)

which can be unified as

Jon > v/ J max (J, A, j1) — M. (543)

This shows that introducing the next-next-nearest neighbor coupling g will modify the
transition condition [Eq. (S32)] at 4 = 0, indicating the long-range coupling further decreases

the transition threshold of J,,.

III. ADDITIONAL INFORMATION FOR THE DYNAMICAL CHARACTERI-
ZATION

This section provides supplementary details regarding the time evolution presented in
the main text. We first review the properties of several key quantities used to characterize
the dynamics of critical states, and then introduce specific generalizations tailored to our
experimental systems.

In the main text, we analyze the time evolution of the fractal dimension, or equivalently,
the dynamical fractal dimension D(t). To distinguish it from the fractal dimension (FD)
obtained from the eigenstates of the Hamiltonian, the dynamical fractal dimension is defined

as:
B log Zj [t (4]
log N ’

D(t) = (S44)

where the u,, ;(t) are the time dependent coefficients of the state in the real-space basis,
which is given by |i(t)) = Zjvzl U ;o [vac). The dynamical fractal dimension is closely

related to the second-order participation entropy Sy [S5], up to a constant, where:

N
Sy =—10g > [t ;(t)]". (S45)
j=1

Both the dynamical fractal dimension D(t) and dynamical participation entropy Ss(t) quan-
tify the extent to which a quantum state spans the real space. These definitions can be
generalized to many-body systems to measure the spread of quantum states in the Hilbert

space [S6].
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To probe the phase diagram of the system described in the main text, we utilize the

time-averaged dynamical fractal dimension, defined as:

1 (b
Dt / D(r) — D(0))dr, (546)
ty Jo
which smooths out oscillations over time and serves as a reliable indicator of the phase of

the system.

A. Wave packet dynamics

Wave packet dynamics is a widely used method for characterizing the dynamical behavior
of quantum states. The localized, extended, and critical phases can be distinguished by
monitoring the time evolution of an initial wave packet, typically initialized as a Gaussian

distribution with half-width a, centered at the site jg:

1 S a2 2
it = 0) = —===e U020, (S47)

VTa

The evolution can be characterized by the mean square displacement W (t), which measures
the width of the wave packet and is defined as:

1/2

W)= | G =i le@n| (548)

J

In the long time limit, W (¢) exhibits universal scaling:
W (t) ~ t", (549)

where the dynamical exponent k takes characteristic values depending on the phase: kK =1
for extended phase, k = 0 for localized phase, and 0 < k < 1 for critical phase [S7—S9].

In our experimental implementation, we replace the initial Gaussian wave packet with a
single-site occupation. To improve robustness against local noise in experiments, we redefine

the mean square width using:
W(r) =Y Vi — ol (550)
J

Instead of focusing on the long-time universal behavior of W (7), we analyze its early-time

dynamics as a complementary marker for the dynamical fractal dimension. Specifically, we
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calculate the integrated width:

M(ty) = % / "W(r) - W(o)dr, (s51)

which captures the early-time spin dynamics in the system.
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IV. DEVICE FABRICATION AND ASSEMBLY
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Supplementary Fig. S6.  Fabrication process of the quantum processor. The processor
consists of a top qubit chip and a bottom carrier chip, bonded face-to-face using SU-8 and nLOF

glue.

The experiment in this work is carried out on a two-dimensional (2D) superconducting
quantum processor consisting of 66 frequency-tunable transmon qubits and 110 tunable
couplers. The processor comprises a top chip and a bottom carrier chip, bonded face-to-
face using SU-8 and nLOF glue [S10]. The top chip hosts the qubits and couplers, whereas
the bottom carrier chip hosts the readout resonators as well as control and readout wiring
circuitries. The fabrication and assembly process of the quantum processor, as illustrated

in Fig. S6, involves the following steps:

1. A 100 nm aluminum is deposited onto a sapphire wafer using electron beam evapo-
ration for the bottom chip; and a 100 nm tantalum film is deposited onto another

sapphire wafer using sputtering for the top chip respectively.

2. Large-scale structures, including the control and readout circuits on the bottom chip,
as well as the capacitor pads for the qubits and couplers on the top chip, are realized

through optical lithography and subsequent wet etching.
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3. To mitigate signal crosstalk, SiOs-supported bridges are created on the bottom chip

to shield critical circuits.

4. The Al-AlO,-Al Josephson junctions are patterned on the top chip via electron beam

lithography and fabricated using the double-angle electron beam evaporation.

5. Bandage technology [S11] is employed to establish a galvanic connection between the

aluminum junctions deposited in step 4 and the tantalum film deposited in step 1.

6. 9-pum-tall SU-8 photoresist is positioned at the corners of the bottom carrier chip as
a spacer between the top and bottom chips, and then the top and bottom chips are
bonded together using nLOF glue.

The device fabricated using the above technique is robust in performance after several
cycles of cooling down and warming up, and the bonding process of two separate chips
through polymer spacers enables us to recycle the bottom (top) chip if the performance
of the other chip is not good after cooling down and being measured, which increases the

productivity of our fabrication.

Q
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package modes
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-
o

('n'e) (pe14-3)Bol

o
o
Transmission Magnitude (dB)
1
®
S

| readout resonator frequencies

~5.59 GHz 10 mm 2 4 6 8 10
Frequency (GHz)

Supplementary Fig. S7. Package modes. a Example EM simulation of the box model revealing
the package mode at 5.59 GHz (others larger than 7.0 GHz). The box modes in real device can
slightly vary as the bonding connections are involved. b The transmission magnitudes for the device
package are measured by vector network analyzer via multiple ports (grey lines) and being averaged
(black line). The probed package modes are marked by the red arrows, which are detuned from
the working frequencies of qubits and readout resonator. The inset (upper left) shows an example

photograph of the package with the cover removed.
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Care must be taken when designing the package for quantum chips of this scale [S12, S13].
Fig. S7 shows the electromagnetic (EM) simulation and measurement of the package mode
for our device. EM simulation of the package, as shown in Fig. S7a, reveals the lowest
package mode at 5.59 GHz. In Fig. S7b, we measure the transmission magnitudes for the
device package by vector network analyzer via multiple ports. The lowest package mode
is probed at 5.5 GHz, which is close to the simulated value. The slight deviation could
be due to the bonding connections involved in the real device. The working frequencies of
the qubits (~ 4.2 GHz) are well below the fundamental box mode. The readout resonators
(~ 6.2 GHz) are strategically positioned between the fundamental box mode at 5.5 GHz
and the secondary mode at 7.3 GHz.

V. EXPERIMENTAL SETUP

Electronics chassis

[DAC][DAC] [ADC][DAC]

4K

10 mK

(@]
o
c
S
3
N

quantum processor (5 soiver () tamier (D0 Gl ® 900 /T Gser
DC block @ local oscillator attenuator

— | filt room temperature @] HEMT
ow pass filer amplifier Ecossorb filter

Supplementary Fig. S8. Experimental setup. a Photograph of the cryogenic setup with the

mounted quantum processor. b Illustration for room-temperature and cryogenic wiring.
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Supplementary Fig. S9. Characterization of qubit frequencies fiy and readout resonator
frequencies f,.. The blue lines denote the tuning range of qubit frequencies, the blue dots denote

the qubit idling frequencies, and the red lines with dots denote the readout resonator frequencies.

The quantum processor is mounted on the mixing chamber plate of a dilution refrigerator
(DR) with a temperature of around 10 mK, as shown in Fig. S8a. The room-temperature
and cryogenic wirings in our experimental setup are illustrated in Fig. S8b, in which we
use custom-made digital-to-analog converter (DAC) and analog-to-digital converter (ADC)
circuit boards for qubit control and measurement, respectively. In the quantum processor,
the 66 qubits are arranged in a square lattice, from which we select 56 qubits arranged in
a 1D array, as shown in Fig. Slla. Each nearest-neighbor (NN) qubit pair is connected
by a tunable coupler to control the effective coupling strength between qubits. The qubits
have two asymmetric Josephson junctions with E;/FE s = 3.6, where E;; and E 5 are the
Josephson energies of the two junctions. The frequency of each qubit can be individually
adjusted by varying the corresponding external flux through the Z control line and ranges
from approximately 3.9 GHz to 5.2 GHz, as shown in Fig. S9 and Fig. S11b. Typical qubit
relaxation time 77 at their idle frequencies are shown in Fig. S11c. The state of the qubit

can be deduced by measuring the state-dependent transmission of the readout resonator
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Supplementary Fig. S10. Characterization of readout fidelities for states |0),|1). The blue

dots denote the readout fidelities of |0), and the red dots denote the readout fidelities of |1).

using the dispersive readout scheme, where the dedicated readout resonator with frequency
around 6.15 GHz is coupled to each qubit. Fig. S10 and Fig. S11d display the qubit readout
fidelities, with median values of 0.96 for the |0) state, 0.93 for the |1) state, respectively.
The two floating tunable transmon qubits in our device are capacitively coupled to a
floating tunable coupler [S14], and each floating qubit is surrounded by four couplers [S15].
The circuit schematic of the qubit-coupler-qubit system is shown in Fig. S12a, where the
effective coupling strength between qubits Q4 and Qg can be controlled by applying external
flux on the corresponding coupler C' [S16, S17]. The system of qubits Q4 5 and coupler C

can be described by the Hamiltonian

Ui
H/h = Z (Wz‘agai + 5&1@3%%) + gac <CLJACLC + CLACLTC> + 9BC (aTBaC —+ a,Ba,TC>

i=A,B,C (S52)
+ 94B (CLLOJB —+ QACLE) ,

where a; (a]

1) is the annihilation (creation) operator, w; is the qubit or coupler frequencies,

U; is the qubit or coupler anharmonicities, gac (gpc) is the coupling strength between @ 4

(@p) and coupler C, and gap is the coupling strength between Q4 and @@p. When the
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Supplementary Fig. S12. Characterization of the tunable coupling. a Circuit schematic for
the qubit-coupler-qubit system. b The coupling strength |geg| extracted from the vacuum Rabi

oscillation between the neighboring qubits at different coupler bias.

coupler frequency is largely detuned from the qubits frequencies |wa g — we| > gac, 9Bc,
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the effective Hamiltonian of such a system is given as
Ui
Heg/h = Z (wl-a;rai + ?ajaZaiai> + Goft (ai‘aB + aAa};) , (S53)
i=A,B

where the effective coupling strength

1 1
geft = 9AB + gACZgBC ( + ) ) (854>
wWa — Wo wp — W

can be modulated by tuning the coupler frequency we through the flux bias line of the
coupler. In experiments, we perform the vacuum Rabi oscillation between the first excited
states of two qubits to characterize the effective coupling strength g.g between qubits, where
a Z control pulse is applied on the coupler with different coupler bias to change the strength
of geg. Fig. S12b shows the characterization of the couplers Cj ;4 connecting the qubits
Q; and ;41 in the 1D array, where the effective coupling strength geg can be continuously

adjusted from +4 MHz to approximately —30 MHz [S16].

VI. ADDITIONAL EXPERIMENTAL RESULTS OF THE TIME EVOLUTION
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Supplementary Fig. S13. 1D quantum spin model with long-range coupling on a 2D
array of spin qubits. a The qubit topology for a 2D array of spin qubits. b The effective 1D

quantum spin model with long-range coupling.

The 2D configuration enables us to emulate the processes with long-range coupling beyond
the original 1D array with various controlled configurations, as shown in Fig. S13, which is

used in Fig. 2e and f of the main text. In Fig. 2 of the main text, the dynamics of the critical
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state in the mosaic lattice model shows uni-side quantum dynamics around the site j = 14
and j = 47. We further investigate the critical state dynamics in the presence of long-range
couplings under different configurations of long-range couplings. We first show that the
IDZs protected critical states are robust to the local perturbative long-range couplings, as

long as the quasiperiodic modulation of hopping couplings and the overall IDZs persist. As

a o o o b5
0 0 0 O O
O 0 0 0 0 0O 4
o O O O
(#] © 0 0 ©O 3
© 0 0 0 ©O =
O 0 0 ® 2
o O 0 ®& O O
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Supplementary Fig. S14. Dynamics of the mosaic model in the presence of long-range
coupling. a Illustration for a 1D array with a single long-range coupling between the sites
12 < 15. b Measured dynamics in the configuration of a 1D array with long-range couplings
as illustrated in a. c Illustration for a 1D array with more long-range couplings. d Measured
dynamics in the configuration as illustrated in b. Here A/(27) = 10 MHz, J/(27) = 4 MHz,
JE /(2m) =10 MHz and ¢ = 7/5.
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illustrated in Fig. S14a, when a single long-range coupling between the sites 12 <> 15 is

involved, only the largest zeros in the quasiperiodic hopping couplings are removed under

this local perturbation. Fig. S14b shows the measured dynamics, and the density evolution

pattern of critical states still persists. This indicates that the critical states are robust to

the local perturbation of the IDZs.

Introducing more long-range couplings generically breaks the critical states. In Fig. Sl4c,

we introduce the long-range coupling into half of the system, while keeping the IDZs in the

rest of the system unchanged. Fig. S14d shows the characteristic dynamics of the extended

state in the presence of long-range coupling. The unperturbed part, however, still shows

non-ergodic dynamics.
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