1. [bookmark: _Ref156506663][bookmark: OLE_LINK39][bookmark: OLE_LINK40][bookmark: OLE_LINK41]Supplementary Methods
1.1 [bookmark: _Ref156506651]Explanation of Data Domain and Domain Generalization 
In machine learning, particularly in the context of domain generalization, the term "domain" refers to the source of data or the environment from which the data is drawn, which includes a specific distribution of features, patterns, and possibly labels. Each domain has its own characteristics and statistical properties. The multi-source training data and biased joint distribution of data categories and sources in this study are relevant to the domain generalization problem. Domain generalization is a scenario where a model is trained on data from one or more source domains to perform well on a target domain that it has not seen during training. The goal is to learn a model that can generalize well to any new domain. The challenge is that the model must learn features that are invariant across the various domains, ignoring domain-specific noise and capturing only the essence of the data that is consistent and predictive across all domains.
1.2 Introduction of the CLAM Model
Considering recent progress in computer-aided diagnosis and deep learning algorithms, some recent works have already tried to accomplish histopathological image classification tasks with deep learning methods. The key challenge comes from the gigapixels of the histopathological images, which is unaffordable for any off-the-shelf deep learning method designed for natural images. Therefore, the Multi-Instance Learning (MIL) framework has been widely adopted, and previous works were mainly based on simple local-level predicting and global-level averaging diagrams in MIL. However, as for the differentiation of the MSS, MSI-H, and POLE mutations, it is hard to make decisions for every single patch. Moreover, simply aggregating patch-level classification results by numerical averaging is not enough to capture contextual information, which is critical for molecular classification. Furthermore, the training data is limited because of the rarity of MSI-H and pathogenic POLE mutations. Therefore, in this paper, our model is developed based on the attention-based dual-level MIL classification model CLAM which performs well on different WSI classification tasks and remains robust in the scarcity of training data. 
The CLAM model accordingly conducts one global slide classification task and another local-level patch diagnostic relevance prediction task on the given input pre-extracted patch feature vectors for each slide. The CLAM model contains two variants, CLAM-SB and CLAM-MB, whose differences lie in the aggregation of patch features and the final classification strategy.
In the global-level slide classification task, for each class that the slide could be classified as the model employs an attention sub-network to learn how to assign attention weights to each feature vector. It subsequently aggregates the patch features through a weighted sum to form a comprehensive representation feature vector for the entire slide (CLAM-SB) or each target class (CLAM-MB) for the global classification of the entire slide. Therefore, only one global-level feature is obtained in CLAM-SB representing the entire slide with the patch-wise attention mechanism, and the final classification is conducted with a multi-class classifier implemented by a Multi-Layer Perceptron (MLP); and multiple global-level feature vectors are obtained in CLAM-MB, with one feature for each class, and the final results are obtained by several binary classifiers. For example, in the ternary classification task, CLAM-MB will produce three global-level features, and three binary classifiers are used to classify the slide into each class. As CLAM-MB can focus on different image characteristics for different classes, it fits the multi-category classification tasks better. As illustrated in the visualization results in the main paper, different classes have different attention distributions in the ternary classification, which indicates that the model focuses on different image characteristics for different classes.
Besides the global-level task, an additional local-level prediction task is further designed to improve the model performance based on the attention mechanism. For the entire slide (CLAM-SB) or each class (CLAM-MB), patches with the highest attention scores can be regarded as strong positive or strong negative evidence for the final classification result. Therefore, a local patch diagnostic significance prediction task can be conducted based on the patch-wise attention scores, in which patches with the highest attention scores can be seen as “diagnostic”, and a "diagnostic" pseudo label can be assigned to top- patches with the highest attention scores, while patches with the lowest attention scores can be seen as “non-diagnostic”, and a “non-diagnostic” pseudo label can be assigned to the top- patches with the lowest attention scores. A local-level predictor is trained to classify these  patches into “diagnostic” or “non-diagnostic”. 
1.3 Cross-Domain Feature Alignment and Adversarial Training
[bookmark: _Hlk165650935][bookmark: _Hlk165651103]To thoroughly eliminate domain-specific characteristics in the multi-source training WSIs, in this paper, we propose the multi-level cross-domain feature alignment method. The multi-level cross-domain feature alignment techniques consist of the local-level patch-wise alignment to ensure detailed patch feature consistency across different data sources, the feature-level prototypical alignment to aggregate patches with attention mechanism and construct prototypes to adaptively extract holistic features representing domain-specific general characteristics, and the global-level slide-wise alignment to directly calibrate the final slide feature for final classification, and are developed based on the domain discriminator and adversarial training method. The optimization objective of the domain discriminator is to distinguish from which data domain its input features are collected and refine the input features to be domain-specific. This objective contrasts with the cross-domain generalizable model, which aims to acquire domain-invariant features. Therefore, the adversarial training method is proposed to reconcile this contradiction, in which gradient reversal layers (GRLs) are integrated before the domain discriminators and reverse the gradients back-propagated from the discriminators, thus tuning the model to learn robust domain-invariant features (opposite to the domain discriminators optimizing goal). In cross-domain adversarial training, components placed after the GRL are trained to become more domain-specific, while components before the GRL are trained to be domain-invariant.

As introduced below, cross-domain feature alignment is conducted at different levels. By aligning the multi-level features and patches from the WSIs, the model ensures that cross-domain variabilities can be thoughtfully removed and generalization performance can be improved.
· [bookmark: _Hlk163564637][bookmark: _Hlk163564375][bookmark: _Hlk163564754]Local-Level Patch-wise Alignment: This technique focuses on the consistency of localized image features in small patches from the WSIs across different data sources. It ensures that patches containing similar contents from different domains are aligned in feature space, which helps the model learn to recognize these patches regardless of their domain. This level of alignment is crucial for maintaining the integrity of the localized and subtle diagnostic features. The local-level patch-wise alignment is performed by applying a domain discriminator to each patch feature accordingly. The domain discriminator is implemented by an MLP, and a GRL is inserted before the domain discriminator. With the gradient-reversed domain discriminator, the patch features are trained to confuse the domain discriminator and to be domain-agnostic, and with the following parts of the pathologic classification network, the features are trained to be diagnostic at the same time.
· Feature-level Prototypical Alignment: At a higher level, this technique involves aggregating patches based on patch-wise attention to form “prototypes”. These prototypes represent the general characteristics of a domain and are used to extract holistic features that are domain-specific. Therefore, the entire domain discriminator, comprising an attention-based aggregation module to adaptively extract a feature vector rich in domain-specific information from all patch features, and an MLP for classification, together with a GRL, is applied to all patch features. By such means, domain-specific characteristics can be removed from features before the GRL. The adaptive nature of this alignment allows the model to dynamically adjust feature extraction concerning different inputs, thereby enhancing the model's ability to generalize.
· Global-Level Slide-wise Alignment: The final technique operates at the highest level by aligning the overall slide features for molecular classification. This global alignment ensures that the final, comprehensive features used for classifying an entire slide are diagnostic and consistent across different domains, which is crucial for the model’s performance on the final task. Besides the POLEmut/MSI-H/MSS&TMB-L classifier, a gradient-reversed domain discriminator is additionally applied to the final slide feature in a multi-task manner. 
The model is trained in a multi-task manner with the POLEmut/MSI-H/MSS&TMB-L classification and the data source identification tasks, and both pathologic labels and data source labels are required. The model performs five tasks in total: molecular classification for the entire slide, diagnostic relevance prediction for each patch, and the three alignment techniques, each with a loss value to compute. The loss values are added and optimized simultaneously. 
[bookmark: _Hlk163565957]By integrating these comprehensive alignment methods conducted at different levels with cross-domain adversarial training, the CDA-CLAM model is trained to identify and emphasize the most informative features for the POLE mutation prediction, irrespective of their domain of origin, and address the challenges posed by dataset biases and data source variability in gene mutation classifications.
1.4 Dataset Description of Camelyon17
The publicly available training set of the Camelyon17 dataset is included in our study to validate the deep learning model's performance in distinguishing data sources for various datasets. Camelyon17 is a publicly available dataset for the automated detection and classification of breast cancer metastases in H&E-stained WSIs of histological lymph node sections. The dataset is collected from 5 medical centers in the Netherlands. The training set is composed of 500 slides, 100 slides from each institution. The negative/positive labels and data-source labels are only provided for the training set. In this study, we focus on the data-source label to evaluate the model's performance in distinguishing data sources, and therefore, only the training set with data-source label available is used. For more detailed descriptions of the Camelyon17 dataset, please refer to the official website of the Camelyon17 challenge (https://camelyon17.grand-challenge.org/Data/).


2. Supplementary Results
2.1 POLE mutants and TMB of internal POLE dataset
Supplementary Table 1 POLE mutants and TMB of the internal POLE dataset
	Sample ID
	Exon rank
	Mutation
	TMB
(muts/MB)
	MSI status(by NGS methods)

	RS1707149FFP
	9
	p.P286R
	N/A
	MSS

	RS19022465FFP
	9
	p.P286R
	719
	MSS

	RS19032639FFP
	9
	p.P286R
	N/A
	MSS

	RS19045942FFP
	9
	p.P286R
	446
	MSS

	RS20023172FFP
	9
	p.P286R
	305·08
	MSS

	RS20027535TIS
	9
	p.P286R
	245·26
	MSS

	RS21000404FFP
	9
	p.P286R
	266·2
	MSS

	RS21000408FFP
	9
	p.p436R
	409·77
	MSS

	RS21002804FFP
	9
	p.P286R
	171·49
	MSS

	RS21010980FFP
	9
	p.P286R
	388·83
	MSS

	RS21026294FFP
	9
	p.P286R
	276·17
	MSS

	RS210626296
	9
	p.P286R
	354·94
	MSS

	RS20126297FFP
	9
	p.P286R
	296·11
	MSS

	RS21026298
	9
	p.P286R
	534·4
	MSS

	RS21029405FFP
	9
	p.P286R
	199·4
	MSS

	RS21031385FFP
	9
	p.P286R
	462·61
	MSS

	RS21041493FFP
	9
	p.P286R
	385·84
	MSS

	RS21041494FFP
	9
	p.P286R
	195·41
	MSS

	RS21041496FFP
	9
	p.P286R
	339·98
	MSS

	RS21041498FFP
	9
	p.P286R
	204·39
	MSS

	S2039973
	9
	p.P286R
	221·79
	MSS

	CP60003446
	9
	p.P286R
	N/A
	MSS

	CP60006791
	9
	p.P286R
	N/A
	MSS

	CP60007027
	9
	p.P286R
	N/A
	MSS

	CP60016342
	9
	p.P286R
	200
	MSS

	CP60016879
	9
	p.P286R
	N/A
	MSS

	CP60019570
	9
	p.P286R
	N/A
	MSS

	CP60023126
	9
	p.P286R
	N/A
	MSS

	CP70003785
	9
	p.P286R
	243·548
	MSS

	CP70005186
	9
	p.P286R
	N/A
	MSS

	CP70005417
	9
	p.P286R
	391·935
	MSS

	CP70007268
	9
	p.P286R
	N/A
	MSS

	CP70007815
	9
	p.P286R
	N/A
	MSS

	CP70021990
	9
	p.P286R
	N/A
	MSS

	CP70024538
	9
	p.P286R
	N/A
	MSS

	CP70029937
	9
	p.P286R
	218·548
	MSS

	CP70030117
	9
	p.P286R
	N/A
	MSS

	CP70030172
	9
	p.P286R
	N/A
	MSS

	CP70030990
	9
	p.P286R
	400
	MSS

	CP70035731
	9
	p.P286R
	N/A
	MSS

	CP70036555
	9
	p.P286R
	N/A
	MSS

	CP70036625
	9
	p.P286R
	N/A
	MSS

	CP70037667
	9
	p.P286R
	313·966
	MSS

	CP70040967
	9
	p.P286R
	N/A
	MSS

	CP70041500
	9
	p.P286R
	N/A
	MSS

	CP70044571
	9
	p.P286R
	N/A
	MSS

	CP70046332
	9
	p.P286R
	N/A
	MSS

	CP70046439
	9
	p.P286R
	324·581
	MSS

	CP70047930
	9
	p.P286R
	235·196
	MSS

	CP70048207
	9
	p.P286R
	N/A
	MSS

	CP70050242
	9
	p.P286R
	168·715
	MSS

	CP70054434
	9
	p.P286R
	332·402
	MSS

	CP70054990
	9
	p.P286R
	N/A
	MSS

	P193927
	9
	p.P286R
	183·11
	MSS

	P195200
	9
	p.P286R
	272·92
	MSS

	P197188
	9
	p.P286R
	195·65
	MSS

	P207020
	9
	p.P286R
	115·8
	MSS

	P219716
	9
	p.P286R
	107·03
	MSS

	P227158
	9
	p.P286R
	335·24
	MSS

	RS22013897FFP
	9
	p.P286R
	44·87
	MSS

	RS22013911FFP
	9
	p.P286R
	341·97
	MSS

	255765
	9
	p.P286R
	N/A
	MSS

	260216
	9
	p.P286R
	N/A
	MSS

	RS1724507FFP
	9
	p.S297F
	N/A
	MSS

	RS21026267FFP
	9
	p.S297F
	273·18
	MSS

	CP60012061
	9
	p.S297Y
	N/A
	MSS

	CP70030435
	9
	p.S297Y
	384·916
	MSS

	CP70031381
	9
	p.S297F
	N/A
	MSS

	CP70034548
	9
	p.S297F
	N/A
	MSS

	RS21010978FFP
	11
	p.p367V
	383·83
	MSS

	RS1819517FFP
	13
	p.V411L
	251·59
	MSS

	RS1831592FFP
	13
	p.V411L
	N/A
	MSS

	RS20019503FFP
	13
	p.V411L
	N/A
	MSS

	RS20039725TIS
	13
	p.V411L
	245·26
	MSS

	RS20054564TIS
	13
	p.V411L
	184·45
	MSS

	RS20058381FFP
	13
	p.V411L
	232·3
	MSS

	RS20058382FFP
	13
	p.V411L
	368·67
	MSS

	RS21026283FFP
	13
	p.V411L
	N/A
	MSS

	RS2106286FFP
	13
	p.V411L
	227·32
	MSS

	RS21026303FFP
	13
	p.V411L
	252·24
	MSS

	RS21029409FFP
	13
	p.V411L
	151·55
	MSS

	2020-06835-1
	13
	p.V411L
	315·05
	MSS

	22848
	13
	p.V411L
	423·73
	MSS

	CP10003817
	13
	p.V411L
	197·331
	MSS

	CP50005938
	13
	p.V411L
	N/A
	MSS

	CP60010076
	13
	p.V411L
	N/A
	MSS

	CP70005653
	13
	p.V411L
	N/A
	MSS

	CP70008593
	13
	p.V411L
	N/A
	MSS

	CP70020681
	13
	p.V411L
	N/A
	MSS

	CP70024351
	13
	p.V411L
	278·771
	MSS

	CP70027380
	13
	p.V411L
	N/A
	MSS

	CP70042177
	13
	p.V411L
	256·425
	MSS

	CP70044365
	13
	p.V411L
	N/A
	MSS

	CP70047002
	13
	p.V411L
	259·218
	MSS

	P207325
	13
	p.V411L
	181·38
	MSS

	P224738
	13
	p.V411L
	267·88
	MSS

	T0014682
	13
	p.V411L
	163·04
	MSS

	255765
	13
	p.V411L
	290·4
	MSS

	236859
	13
	p.V411L
	N/A
	MSS

	CP70024427
	13
	p.V411L
	378·226
	MSS

	84374
	13
	p.L424I
	91·6
	MSS

	CP50004918
	13
	p.P436R
	187·378
	MSS

	CP70010543
	13
	p.P436R
	N/A
	MSS

	P189820
	13
	p.P436S
	71·2
	MSS

	RS21026290FFP
	13
	p.M444K
	218·34
	MSS

	579421A5
	13
	p.M444K
	191·53
	MSS

	RS22013912FFP
	13
	p.M444K
	179·46
	MSS

	9728-8
	13
	p.M444K
	N/A
	MSS

	RS21026291FFP
	14
	p.A456P
	329·01
	MSS

	RS21026295FFP
	14
	p.A456P
	314·06
	MSS

	CP60022091
	14
	p.A456P
	N/A
	MSS

	CP70003730
	14
	p.A456P
	N/A
	MSS

	CP70006042
	14
	p.A456P
	N/A
	MSS

	CP70024754
	14
	p.A456P
	N/A
	MSS

	CP70035349
	14
	p.A456P
	N/A
	MSS

	CP70036641
	14
	p.A456P
	283·799
	MSS

	CP70055075
	14
	p.A456P
	168·715
	MSS

	47021
	14
	p.A456P
	507·26
	MSS

	RS1806307FFP
	14
	p.S459Y
	442
	MSS

	RS21000403FFP
	14
	p.S459F
	235·29
	MSS

	RS21003154FFP
	14
	p.S459F
	91·27
	MSS

	RS21017731FFP
	14
	p.S459F
	294.12
	MSS

	RS21026300FFP
	14
	p.S459F
	82·75
	MSS

	RS21041495FFP
	14
	p.S459F
	161·52
	MSS

	238749-9
	14
	p.S459F
	136·59
	MSS

	CP70034940
	14
	p.S459F
	N/A
	MSS

	CP70035001
	14
	p.S459F
	195·531
	MSS

	CP70046280
	14
	p.S459F
	N/A
	MSS

	164705
	14
	p.S459F
	250·25
	MSS


TMB, tumor mutation burden; MSS, microsatellite stable, MSI, microsatellite instable; N/A, not available
2.2 Clinical characteristics of the POLEex dataset
[bookmark: OLE_LINK4]Supplementary Table 2 Clinicopathological characteristics of patients in the POLEex dataset
	
	MSS/TMB-L
(n=27)
	MSI-H
(n = 19)
	POLEmut
(n=14)
	p value

	Age
	60·9 (55·9 – 65·9)
	56·1 (49·0 – 63·1)
	48·1 (43·3 – 52·9)
	0·0007

	Gender
  Male
  Female
	
[bookmark: OLE_LINK3]14 (51·9%)
13 (48·1%)
	
7 (36·8%)
12 (63·1%)
	
9 (64.3%)
5 (35·7%)
	
0·2871

	Primary tumor location 
[bookmark: OLE_LINK2]  Right-side
  Left-side
	
8 (29·6%)
19 (70·4%)
	
13 (68·4%)
6 (31·6%)
	
9 (64.3%)
5 (35·7%)
	
0·0165

	Histology
  Adenocarcinoma
  Mucinous/ signet-ring cell carcinoma
	
24 (88·9%)
3 (11·1%)
	
15 (78·9%)
4 (21·1%)
	
11 (78·6%)
3 (11·4%)
	
0·5793

	Tumor differentiation
  Well/Mediate
  Poor
	
24 (88·9%)
3 (11·1%)
	
13 (68·4%)
6 (31·6%)
	
8 (57·1%)
6 (42·9%)
	
0·0609

	Stage
  Ⅰ/Ⅱ
Ⅲ
Ⅳ
	
7 (25·9%)
16 (59·3%)
4 (14.8%)
	
13 (68·4%)
5 (26·3%)
1 (5·3%)
	
8 (57·1%)
3 (21·4%)
3 (21·4%)
	
0·0295

	T stage
  1/2
3
4
	
2 (7·4%)
14 (51·9%)
11 (40·7%)
	
5 (26·3%)
13 (68·4%)
1 (5·3%)
	
3 (21·4%)
9 (64.3%)
2 (14.3%)
	
0·0428



2.3 [bookmark: _Ref156826706][bookmark: OLE_LINK16][bookmark: OLE_LINK17][bookmark: _Hlk170734130]Detailed Performance of the proposed CDA-CLAM
[bookmark: _Hlk163484395]As introduced in Section 3.4 of the main manuscript, the proposed CDA-CLAM model demonstrates good performance in both internal cross-validation and external prospective evaluation and in both the binary and ternary classification tasks. The detailed ROC curves and AUC values for each fold in cross-validation, and the performance of each fold’s model on the external evaluation dataset are shown in Supplementary Table 3 and Supplementary Figure 1 for the binary classification task, and Supplementary Table 4 and Supplementary Figure 2. for the ternary classification task.
[bookmark: _Ref163575780][bookmark: _Hlk168615656][bookmark: _Hlk163576939]Supplementary Table 3 Detailed cross-validation and external validation performance for CDA-CLAM in the binary classification task
	
	Internal
	External

	[bookmark: _Hlk168615909]
	AUC
	Accuracy
	AUC
	Accuracy

	Avg
	0·9543
(0·9376 - 0·9710)
	0·8775
(0·8489 - 0·9060)
	0·8676
(0·7687 - 0·9665)
	0·8333
(0·7390 - 0·9276)

	Fold 0
	0·9882
(0·9715 - 1·0000)
	0·9510
(0·9091 - 0·9929)
	0·8631
(0·7626 - 0·9636)
	0·8000
(0·6988 - 0·9012)

	Fold 1
	0·9412
(0·8970 - 0·9853)
	0·8431
(0·7726 - 0·9137)
	0·8676
(0·7674 - 0·9678)
	0·8000
(0·6988 - 0·9012)

	Fold 2
	0·9520
(0·9172 - 0·9868)
	0·8515
(0·7821 - 0·9208)
	0·8721
(0·7756 - 0·9686)
	0·8333
(0·7390 - 0·9276)

	Fold 3
	0·9144
(0·8614 - 0·9675)
	0·8200
(0·7447 - 0·8953)
	0·8698
(0·7706 - 0·9690)
	0·8000
(0·6988 - 0·9012)

	Fold 4
	0·9629
(0·9283 - 0·9974)
	0·9208
(0·8681 - 0·9735)
	0·8608
(0·7590 - 0·9627)
	0·7833
(0·6791 - 0·8876)



[image: ]   [image: ]
[bookmark: _Hlk168614043](a) Internal cross-validation           (b) External evaluation
[bookmark: _Hlk163424752]Supplementary Figure 1 The ROC curves and the AUC values for CDA-CLAM in the binary classification task

Supplementary Table 4 Detailed cross-validation and external validation performance for CDA-CLAM in the ternary classification task
	
	Internal
	External

	
	AUC
	Accuracy
	AUC
	Accuracy

	Avg
	0·9638
(0·9453-0·9823)
	0·8880
(0·8614-0·9147)
	0·9323
(0·8693-0·9932)
	0·8778
(0·7965-0·9590)

	Fold 0
	0·9890
(0·9699-1·0000)
	0·9281
(0·8796-0·9766)
	0·9056
(0·8290-0·9798)
	0·8333
(0·7428-0·9239)

	Fold 1
	0·9661
(0·9261-0·9992)
	0·9085
(0·8536-0·9634)
	0·8981
(0·8181-0·9778)
	0·8111
(0·7130-0·9092)

	Fold 2
	0·9662
(0·9408-0·9909)
	0·8944
(0·8391-0·9496)
	0·8790
(0·7804-0·9775)
	0·8444
(0·7539-0·9350)

	Fold 3
	0·9409
(0·8890-0·9928)
	0·8533
(0·7854-0·9212)
	0·9257
(0·8611-0·9876)
	0·8889
(0·8120-0·9658)

	Fold 4
	0·9580
(0·9152-0·9990)
	0·8548
(0·7880-0·9216)
	0·9396
(0·8806-0·9963)
	0·8889
(0·8094-0·9683)

	Class 0
(MSS)
	0·9663
(0·9520-0·9806)
	0·8597
(0·8294-0·8899)
	0·9091
(0·8338-0·9844)
	0·8500
(0·7597-0·9403)

	Class 1
(MSI-H)
	0·9524
(0·9303-0·9746)
	0·8538
(0·8230-0·8845)
	0·9204
(0·8458-0·9951)
	0·8500
(0·7597-0·9403)

	Class 2
(POLE)
	0·9727
(0·9536-0·9918)
	0·9506
(0·9317-0·9695)
	0·9674
(0·9283-1·0000)
	0·9333
(0·8702-0·9965)
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[bookmark: _Hlk168614635][bookmark: _Hlk168614087]            (a) Internal cross-validation,
per-fold results
(b) External evaluation,
per-fold results

[image: ]   [image: ]
            (c) Internal cross-validation,
per-class results
(d) External evaluation,
per-class results

Supplementary Figure 2 The ROC curves and the AUC values for CDA-CLAM in the ternary classification task
2.4 Subgroup analysis of CDA-CLAM model
Colorectal cancer is a highly heterogeneous disease. Subgroup analysis was performed to validate the robustness of the CDA-CLAM classifier. Performance of the ternary and binary CDA-CLAM models remained unaffected by patient gender, primary tumor site, tumor differentiation, clinical stage, or pathological subtype. Notably, the subgroup with T4-stage tumors exhibits a higher AUC, which can be attributed to the model's ability to capture more extensive imaging information from T4-stage tumors compared to those at T1-3 stages.
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Supplementary Figure 3 Subgroup AUC of the ternary CDA-CLAM models (A to F) and the binary CDA-CLAM model (G to L)
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