

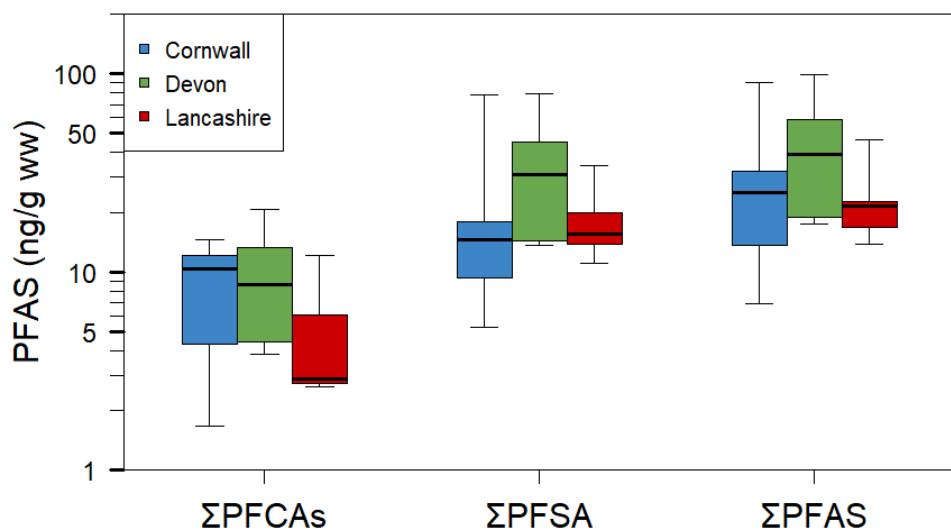
Supplementary Information for:

Per- and polyfluoroalkyl substances (PFAS) in the egg of peregrine falcon (*Falco peregrinus*) populations in West England, United Kingdom

(Published in *Ecotoxicology*)

*Shinji Ozaki^{*1}, Jacqueline S. Chaplow¹, Beverley Dodd¹, Helen Grant¹, M. Glória Pereira¹, Elaine Potter¹, Richard G. Sale², Darren Sleep¹, Sarah Thacker¹, Steve J. Watson², Lee A. Walker¹, and Suzane M. Qassim³*

1 UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, United Kingdom


2 South-West Peregrine Group, Old Builders Arms, Randalls Green, Chalford Hill, Stroud, Gloucestershire, GL6 8EF, United Kingdom

3 Natural England, 4th Floor, Eastleigh House, Upper Market Street, Eastleigh, SO50 9YN, United Kingdom

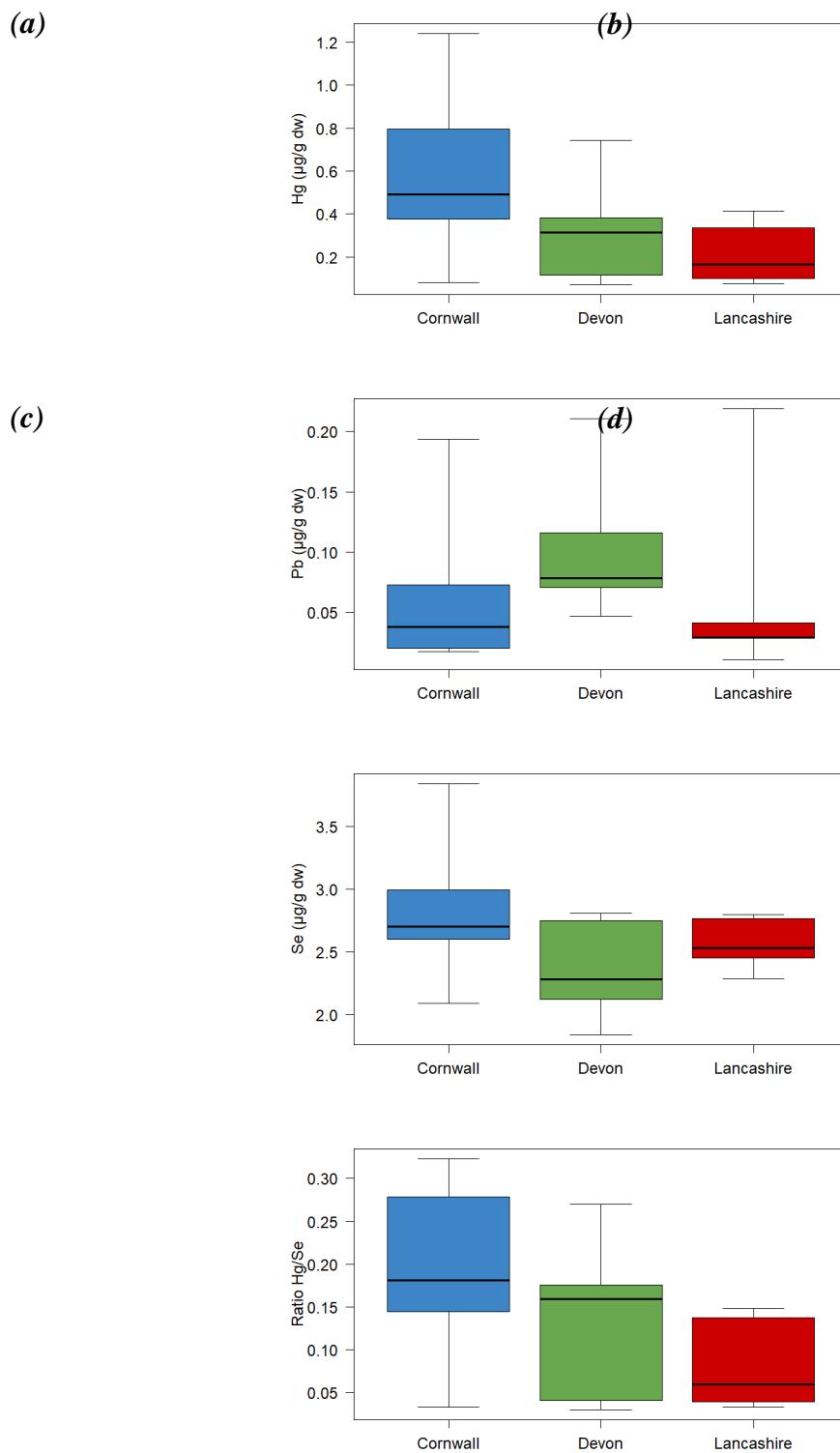
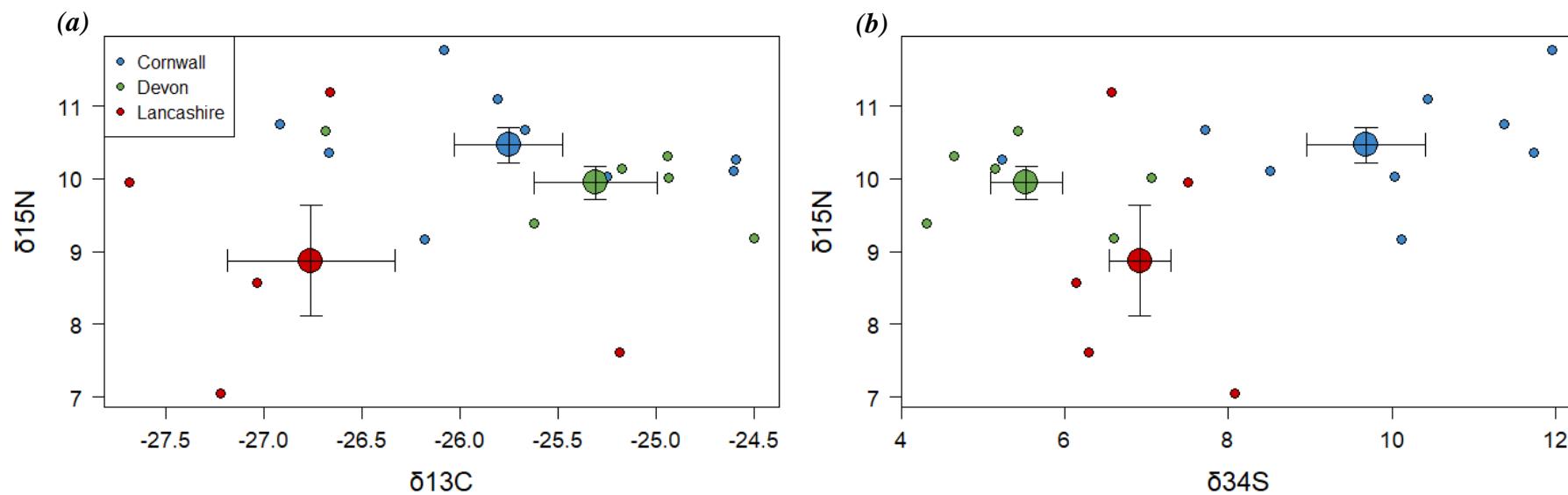
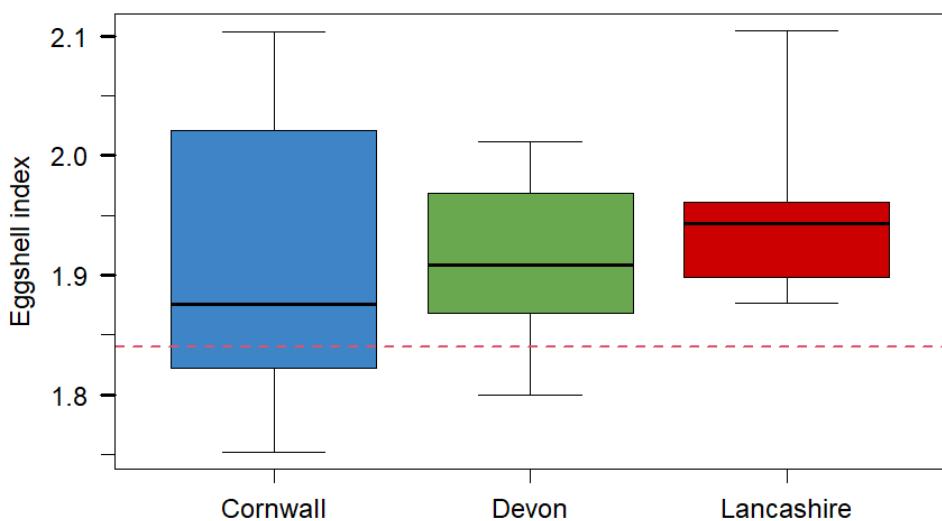
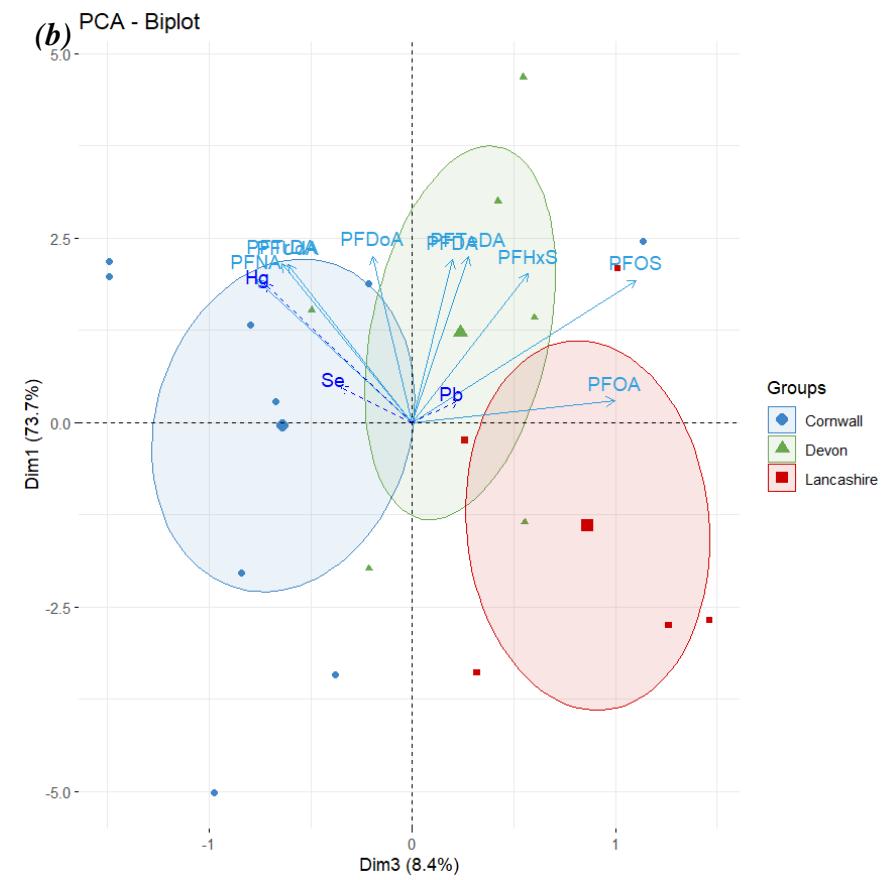
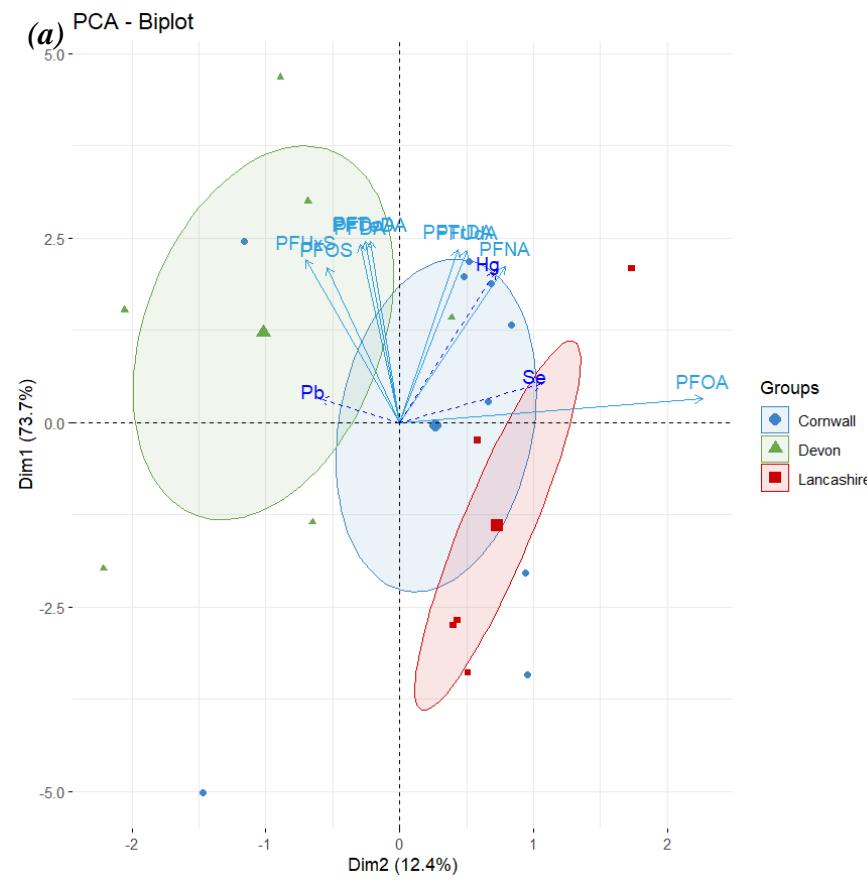

* Corresponding author: Shinji Ozaki
E-mail address: ShiOza@ceh.ac.uk

Table of Contents:


Supplementary Information Fig. 1	Page S1
Supplementary Information Fig. 2	Page S2
Supplementary Information Fig. 3	Page S3
Supplementary Information Fig. 4	Page S4
Supplementary Information Fig. 5	Page S5
Supplementary Information Table 1	Page S6
Supplementary Information Table 2	Page S7
Reference	Page S8


Supplementary Information Fig 1 Graphical representation of Σ PFAS, Σ PFCA, and Σ PFSA in peregrine eggs (ng g^{-1} wet weight) per county (Cornwall, Devon, and Lancashire). No significant difference in Σ PFAS, Σ PFCA, and Σ PFSA among counties was demonstrated by the Kruskall-Wallis test



Supplementary Information Fig. 2 Graphical representations of concentrations of mercury (a), lead (b), selenium (c) and the ratio Hg/Se (d) in peregrine eggs ($\mu\text{g g}^{-1}$ dry weight) per county (Cornwall, Devon, and Lancashire). No significant differences in concentrations of Hg, Pb, Se, and the ratio Hg/Se among counties were demonstrated by the Kruskall-Wallis test

Supplementary Information Fig. 3 Scatter plots representing the relationships between $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ (a) and between $\delta^{15}\text{N}$ and $\delta^{34}\text{S}$ (b) in peregrine eggs. Each small point represents stable isotope values of each egg. Counties are distinguished by colours (blue: Cornwall; green: Devon; red: Lancashire). Larger points and bars represent the mean value and the standard error of the mean by county.

Supplementary Information Fig. 4 Graphical representation of eggshell index values per county (Cornwall, Devon, and Lancashire). The red dashed line represents the eggshell index value of the UK peregrine at the pre-DDT level of 1.84 (Ratcliffe, 1970). No significant difference in eggshell index values among counties was demonstrated by the Kruskall-Wallis test. Only eggshell index values in Lancashire were significantly higher (t-test; p -value = 0.043) than the pre-DDT level of 1.84.

Supplementary Information Fig. 5 Principal component analysis (PCA) on PFAS residues in 20 eggs of peregrine from the UK. (a): biplot for the first and second principal axes; (b) biplot for the first and third principal axes. Concentrations of Hg, Pb, and Se are 'a posteriori' projected on each biplot and represented by dotted arrows. The three counties are represented by different colours and shapes of dots. Confidence ellipses for the centroid of each county are also projected on the biplots. All contaminant concentrations were logarithmically transformed because of their skewed distribution.

Supporting Information Table 1 Name, abbreviation, CAS number and limit of quantification value (LoQ; ng g⁻¹ wet weight), and recovery rate of each PFAS compound measured in this study. The recovery rate is given only for the ¹³C labelled standards (PFBA, PFHxA, PFHxS, PFOA, PFNA, PFOS, PFDA, PFUdA, PFDOA, and PFTeDA)

PFAS		CAS Number	LoQ (ng/g ww)	Recovery rate	
Abbreviation	Name			Mean	Range
PFBA	Perfluorobutanoate	456-22-4	0.08	81%	73-93%
PFPeA	Perfluoropentanoate	5989-64-0	0.08	-	-
PFBS	Perfluorobutane sulfonate	375-73-5	0.02	-	-
PFHxA	Perfluorohexanoate	307-24-4	0.02	81%	70-89%
PFHpA	Perfluoroheptanoate	375-85-9	0.02	-	-
PFHxS	Perfluorohexane sulfonate	355-46-4	0.02	83%	71-99%
PFOA	Perfluorooctanoate	335-93-3	0.02	82%	69-97%
PFNA	Perfluorononanoate	444-03-1	0.02	83%	73-93%
PFOS	Perfluorooctane sulfonate	2795-39-3	0.02	88%	73-98%
PFDA	Perfluorodecanoate	335-76-2	0.02	85%	71-111%
PFUdA	Perfluoroundecanoate	2058-94-8	0.05	94%	63-120%
PFDS	Perfluorodecane sulfonate	335-77-3	0.02	-	-
PFDoA	Perfluorododecanoate	307-55-1	0.02	84%	61-118%
PFTrDA	Perfluorotridecanoate	72629-94-8	0.02	-	-
PFTeDA	Perfluorotetradecanoate	376-06-7	0.02	78%	60-107%
PFHxDA	perfluorohexadecanoate	67905-19-5	0.02	-	-
PFODA	Perfluorooctadecanoic acid	16517-11-6	0.05	-	-
PFOSA	Perfluorooctane sulfonamide	754-91-6	0.02	-	-

Supporting Information Table 2 Statistics (minimum, median, mean, and maximum) ($\mu\text{g g}^{-1}$ dry weight), limit of quantification (LoQ; $\mu\text{g g}^{-1}$ dry weight), number of the samples under the limit of quantification (No. <LoQ), and recovery rates compared to the two certified reference materials (Dorm-3: a fish protein CRM; Dolt-5: a dogfish liver CRM) of 13 elements measured by ICP-MS in this study. Percentage recovery rates of the elements that were not certified in CRM are not reported. Statistics of the ratio Hg/Se are also added.

		Chromium	Iron	Cobalt	Nickel	Copper	Zinc	Arsenic
		Cr	Fe	Co	Ni	Cu	Zn	As
LoQ ($\mu\text{g g}^{-1}$ dw)	Value	0.018	0.867	0.002	0.002	0.018	0.867	0.006
	No. <LoQ	2	0	0	0	0	0	0
Statistics ($\mu\text{g g}^{-1}$ dw)	Minimum	0.024	18.80	0.005	0.007	1.56	32.8	0.035
	Mean	0.073	74.90	0.011	0.078	2.34	47.1	0.114
	Median	0.046	74.50	0.010	0.049	2.28	47.4	0.082
	Maximum	0.265	109.00	0.021	0.264	3.84	60.7	0.610
Recovery rate (%)	DORM-3	96.5	98.1	-	109.3	106.5	110.8	104
	DOLT-5	-	100.3	107.4	-	100.3	103.8	100.4

		Selenium	Strontium	Molybdenum	Cadmium	Lead	Mercury	Ratio
		Se	Sr	Mo	Cd	Pb	Hg	Hg/Se
LoQ ($\mu\text{g g}^{-1}$ dw)	Value	0.085	0.002	0.004	0.002	0.002	0.09	-
	No. <LoQ	0	0	0	19	0	0	-
Statistics ($\mu\text{g g}^{-1}$ dw)	Minimum	1.84	0.089	0.048	-	0.011	0.071	0.030
	Mean	2.61	0.887	0.078	0.001	0.078	0.401	0.146
	Median	2.65	0.702	0.079	0.001	0.055	0.356	0.146
	Maximum	3.84	4.33	0.125	-	0.219	1.24	0.323
Recovery rate (%)	DORM-3	-	-	-	116.8	98.8	-	-
	DOLT-5	120.6	108.4	103.9	100.1	93.9	109.2	-

Reference

Ratcliffe, D.A., 1970. Changes Attributable to Pesticides in Egg Breakage Frequency and Eggshell Thickness in Some British Birds. *J. Appl. Ecol.* 7, 67–115.
<https://doi.org/10.2307/2401613>