
 
 
Supplementary Information 
 
Supplementary Figures 
 

Supplementary Figure 1. CD74 expression is a predictor of overall survival across different cancers  
A) Kaplan Meier survival curves (Log-rank test) of CD74 in GDC-TCGA cohorts, with cutoff value set at 
expression median.  B) Kaplan Meier survival curve (Log-rank test) of CD74 protein measured by 
immunohistochemistry in AURIA cohort of skin and lymph node primary and metastatic biopsies from 
metastatic melanoma patients. C) Kaplan Meier survival curves of mutation and neoantigen load in anti-PD1 
treated Liu [1] and Riaz [2] cohorts (n=166). D) Mutation and neoantigen load response prediction power in 
anti-PD1 Liu [1] and Riaz [2] cohorts (n=171) compared between responders (CR, PR) and non-responders 
(SD, PD) (Mann-Whitney U test).  
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Supplementary Figure 2. CD8A stratification reveals predictive limitations in CD8A-low tumors and 
survival prognostic insights in CD8A-high tumors. A) ROC curve assessing predictive performance for 
RECIST response in melanoma patients with low CD8A tumor levels. Kaplan-Meier curves for OS and PFS 
after CD8A stratification for A) IMPRES [3] B) TIDE [4] C) CTL score D) TMB E) PD-1 and F) PD-L1 
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Supplementary Figure 3. GSP gene expression is enriched in anti-PD1 responders while PSP genes are 
enriched in non-responders. Average expression of A) GSP top 3 cluster genes (C7 dark blue, C2 light green, 
and C8 light blue) and B) PSP top 3 cluster genes (C13 amethyst, C10 teal, and C9 sage) in each subcellular 
localization compared between responders (CR, PR) and non-responders (SD, PD) in the integrated anti-PD1 
dataset of metastatic melanoma patients (n=268) [1, 2, 5, 6]. Mann-Whitney U-test was used after normality 
testing to test for differences between responders and non-responders for each cluster separately. 
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Supplementary Figure 4. GSP gene expression is enriched in immune compartments while PSP genes 
are enriched in tumor compartments of metastatic melanoma skin biopsies. A) Average expression of 
GSP top 3 cluster genes in each subcellular localization compared between tumor and immune compartments 
of metastatic melanoma skin biopsies (n=49; Mann-Whitney U-test) B) Average expression of PSP top 3 
cluster genes in each subcellular localization compared between tumor and immune compartments of 
metastatic melanoma skin biopsies (n=49; Mann-Whitney U-test). C) Heatmap showing mean expression of 
each PSP gene from response relevant clusters of amethyst and sage clusters in the tumor and immune 
compartments of metastatic melanoma skin samples and p-value of the difference. T-tests with False 
Discovery Rate (FDR) corrections were used to assess the significance for each gene between tumor and 
immune compartments. Heatmap shows gene expression values centered around the mean expression of the 
cluster where blue indicates values below the mean and red indicated values above the mean. The heatmap 
was generated using pheatmap package in R.  
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Supplementary Figure 5. SLAMF7 and TYMP do not regulate the expression of many antigen 
processing and presentation -associated markers on dendritic cells. A) Gating strategy to identify HLA-
ABC, HLA-DR and DQ-Ovalbumin median fluorescence intensities in CD45+CD14-CD16- human 
monocyte-derived dendritic cells (moDCs) B) Percent of DQ Ovalbumin positive moDCs normalized against 
Scramble (Scr) negative control sample C) Normalized median fluorescence intensity of HLA-DR and HLA-
ABC in moDCs normalized against Scramble negative control sample D) Western blot analysis of calnexin, 
IFNGR1, TAP1 and TAP2 protein levels in human monocyte-derived dendritic cells with CD74, SLAMF7 or 
TYMP knockdown (KD) compared to Scr. N=3 independent experiments. E) Western blot analysis of CD86, 
CD155, DC-SIGN, Galectin-9, OX40L and PD-L1 protein levels in human monocyte-derived dendritic cells 
with CD74, SLAMF7 or TYMP KD after 24 hours LPS, compared to Scr. N=2 independent experiments. 
Western blot band intensities were measured using ImageJ and normalized against GAPDH and then against 
Scr sample for each KD sample. Multiple t-tests with Bonferroni correction were used to adjust for multiple 
comparisons. 
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Supplementary Notes 
 
 
HKPCA batch correction method 
 
The method consists of the following steps: 
 
1. The log2-transformed TPM gene expression values are standardized by subtracting the mean and by 
dividing by the standard deviation computed over all patients. 
 
2. All data are transformed by PCA with maximum number of components (in this case, the minimum of 
N(patients)=323 and N(genes)=18505), i.e. with minimal information loss, to a latent space spanned by the 
principal components, which are ordered by their magnitude of variation in the data as is usual to PCA. This 
results in a vector v(𝑝) for each patient p in the latent space. If G denotes the (patients x genes)-matrix of 
expression values, and P the (patients x genes)-matrix of principal components, then 
 

V = G𝑃! 
 
is a (patients x patients)-matrix with v(𝑝) as row vectors. Notice that the Euclidean norm of each row vector 
of P equals 1. 
 
3.  The housekeeping gene data (all patients represented by their housekeeping genes only) are represented in 
the basis of principal components, i.e. in the latent space, found in step 1. This leads to another representation 
of each patient p by vector 𝑣"#(𝑝) in the latent space. More precisely, let H be the (patients x hk-genes)-matrix 
with patients represented by the housekeeping genes as row vectors, and let 𝑃"# be the restriction of P to 
housekeeping genes as its column vectors and renormalized in such a way that row vectors have unit Euclidean 
norm. Then,  
 

𝑉"# = H𝑃"#!  
 
is again a (patients x patients)-matrix with 𝑣"#(𝑝) as row vectors representing patients in the latent space by 
their housekeeping genes.  
 
4.  For each batch (cohort) b: 
 

4.1 Compute the vector 𝑚"#(𝑏) = mean{𝑣"#(𝑝): 𝑝 ∈ 𝑏}  pointing the mean position of the batch 
represented only by the housekeeping genes in the latent space. 

 
4.2 The mean vectors 𝑚"#(𝑏) are projected in the latent space to a hyperplane spanned by a few (we 
used 3) first principal components, with most variation in all data.  This yields new vectors 𝑚"#

$ (𝑏) 
with condensed information about the highest variation in the data. 

 
 4.3 For each patient p in batch b: 
   

 4.3.1 A Batch-corrected position vector 𝑣%&(𝑝) = v(𝑝) − σ ∗ 𝑚"#
$ (𝑏)  

            is computed. 
   

Here σ^2 =  N(all genes)/N(housekeeping genes) is a scaling factor stemming from the 
assumption of approximately normally distributed null model points in the latent space. 

 
5.  The batch-corrected vectors are transformed back to their original representation by the individual genes 
by inverse-PCA: 
 



 
 

𝐺%& = 𝑉%&!  𝑃	, 
 
where 𝑉%& is the matrix with rows 𝑣%&(𝑝). The matrix 𝐺%& is the batch-corrected data with patients as rows 
and genes as columns. 
 
6. The batch-corrected features can be scaled back to include their original variation by multiplying the batch-
corrected vectors by the standard deviation and by adding the mean obtained in step 0. 
 
7. Pseudocounts equal to minimum value in log2(1+batch-corrected TPM) can be added to ensure positive 
‘counts’, if needed. 
 
The HKPCA batch correction was tested to yield similar results with ComBat-seq in terms of correlation of 
the principal components of batch-corrected data, yet the patients from separate cohorts were mixed better in 
UMAPs of the batch corrected data. This could be a consequence of ComBat-seq not being designed for TPM 
data. Our method is also preferred over correction by first few PCA components of the whole data, which is 
sometimes performed as a simple batch correction, because HKPCA uses only information from housekeeping 
genes in the latent space and therefore leaves most of the biological variation untouched. 
 
Prognostication framework clustering 
 
To identify clusters of genes with biomarker potential and relevance to antigen presentation and CD8+ T cell 
generation, genes were classified according to their immune functions using the nCounter immune category 
list (NanoString Technology) as described previously [59, 60], complemented by literature review. Immune 
categories were further subcategorized into T cell dysfunction, T cell activation, antigen presentation, immune 
suppression, immune activation, autoimmunity, epigenetics, metabolism, tumor, motility, and others. The 
subcellular localization of the corresponding proteins was retrieved from the Human Protein Atlas 
(https://www.proteinatlas.org), COMPARTMENTS Human knowledge channel 
(https://compartments.jensenlab.org), or literature review. All classifications are provided in Supplementary 
Table 4. 
 
For cluster identification, unsupervised clustering was applied using Euclidean distance (dist function) and 
hierarchical clustering (hclust function) in R, allowing visualization of clusters with shared characteristics. 
Circos plots were generated using the circlize package in R [100], incorporating survival prediction, gene 
expression variance (σ²), immune category, and subcellular localization. 
 
To prioritize clusters with potential biomarker and therapeutic relevance, we developed two scoring metrics: 
 Priority Cluster Index (PCI) – a metric ranking biomarker clusters based on gene expression levels, 
expression variance, and cluster robustness. 
 Functional Priming Index (FPI) – a metric integrating PCI with the functional enrichment of genes 
related to antigen presentation, immune activation, and T cell priming. 
 
PCI Calculation: PCI ranks biomarker clusters by integrating gene expression properties and cluster 
robustness, computed as: 
 
 
PCI = (Eavg × σ²)(Gcluster / Gtotal) 
 
where: 
 Eavg: average gene expression in the anti-PD1 dataset 
 σ²: expression variance 
 Gcluster: number of genes in a given cluster 
 Gtotal: total number of genes in GSP or PSP 
 



 
 
This formula ensures that clusters with higher gene representation and biological coherence receive higher 
PCI scores. 
 
FPI Calculation: FPI integrates PCI with functional immune category enrichment, calculated as: 
 
FPI = PCI × fic 
 
where: 
 
fic: frequency of genes assigned to a functional immune category (ic) 
 
Functional categories were defined based on immune function: 
GSP (immune activation categories): antigen presentation, T cell activation, immune activation, and 
motility. 
PSP (immune suppression categories): antigen presentation, T cell dysfunction, immune suppression, and 
motility. 
 
Response Analysis and Subcellular Localization: To assess the association of subcellular localization with 
ICT response, we evaluated top PCI-scoring clusters (C8, C2, C7 for GSP; C9, C10, C13 for PSP). The average 
gene expression for each subcellular category (e.g., ER, plasma membrane, nucleus) was computed, and 
patients were stratified by clinical response (complete/partial response vs. stable/progressive disease). 
Normality and significance (p-values) were assessed, with response analysis statistics plotted alongside FPI 
results. 
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