
2 **Additional file 1: Barley hydroponic growing system.** The system consists of a 16 mm tube
3 containing 9 mL of fragmented sterile semi solid MS medium (agarose 8 g/L). Before seed transfer,
4 an inoculum of 1 mL of bacterial suspension at 1×10^4 to 5×10^4 CFU/mL or 1 mL of sterile liquid MS
5 (as a control) was added. The tubes were then vortexed for 5 seconds to distribute the liquid between
6 the agar agglomerates. The germinated seeds were placed in the test tubes using sterile forceps so that
7 the radicle was in contact with the agar medium. Finally, the 16 mm tubes were placed in a raised
8 rack and topped with a 20 mm diameter test tube to cover the smaller diameter tube at a height of 14
9 cm.

10 **Additional file2: qPCR primers used in this study**

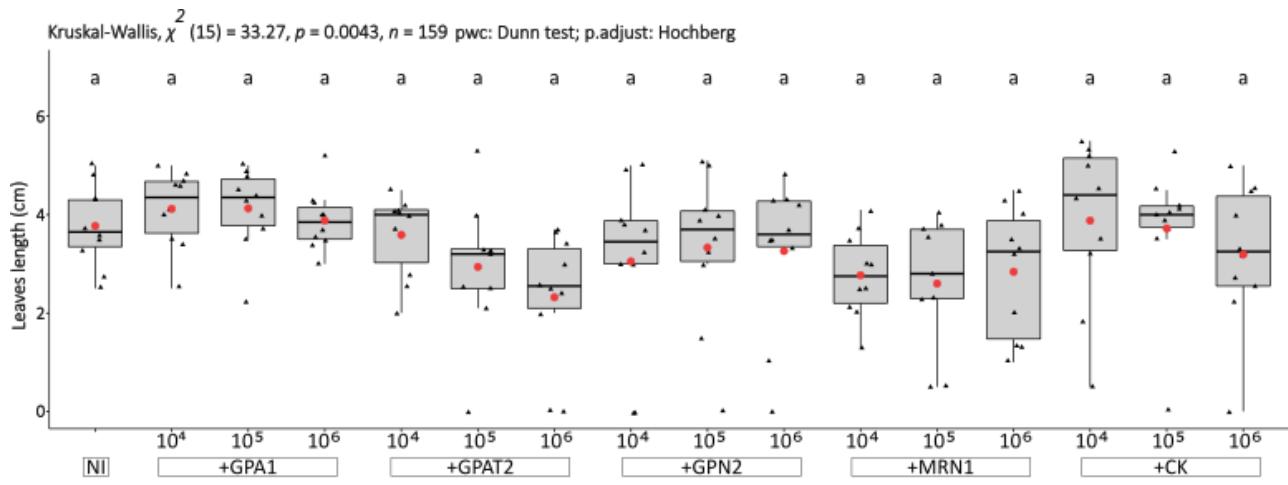
Targeted organisms	Targeted genes	Primers	References
Barley	<i>hsp90</i>	5'-AGGAGTTGAGGGCAAGAAGC-3' 5'-CCAGCACCTCCTTGATGACC-3'	Zhang <i>et al.</i> , 2018 ¹¹
	<i>cyp2</i>	5'-CCTGTCGTGTCGTCGGTCTAAA-3' 5'-ACGCAGATCCAGCAGCCTAAAG-3'	Zhang <i>et al.</i> , 2018 ¹²
<i>Streptomyces</i> strains	<i>rpbA</i>	5'-CTTCGAGATGCCCTTCGG-3' 5'-GGGCTTGGCCTTCTTCTCCT-3'	This study ¹³

Tree scale: 0.1

20

21 **Additional file 4: Phylogenetic trees based on the *rpoB* sequences of *Streptomyces* sp. GPA1,**

22 **GPAT2 and GPN2.** The tree was produced using the BOOSTER platform (BOOtstrap Support by


23 TransfER) [1] and PhyML-SMS workflow. The tree was implemented in the Interactive Tree Of Life

24 (iTOL) software (v.6.9.1) [2]. The black numbers at the branch level represent branch length values.

25 **Additional file 5: Optical density of *Streptomyces* sp. GPA1/GPAT2/GPN2 and *S. misionensis***
26 **in Biolog PM1 and PM2A microarrays.** The optical density (590 nm) was measured after one week
27 of growth and the optical density of the control was subtracted from those values. Arbitrarily, we
28 have defined 4 different growth patterns, depending on the optical density measured: no growth for
29 optical densities below 0.05 (-), slight growth for optical densities between 0.05 and 0.2 (+/-), average
30 growth for optical densities between 0.2 and 0.5 (+) and efficient growth for optical densities above
31 0.5 (++).

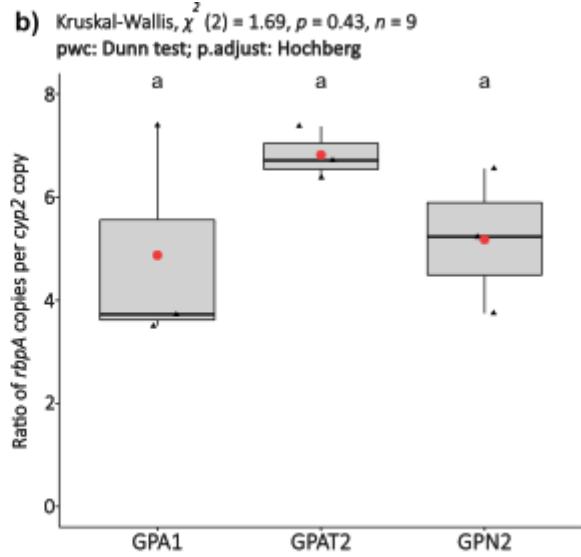
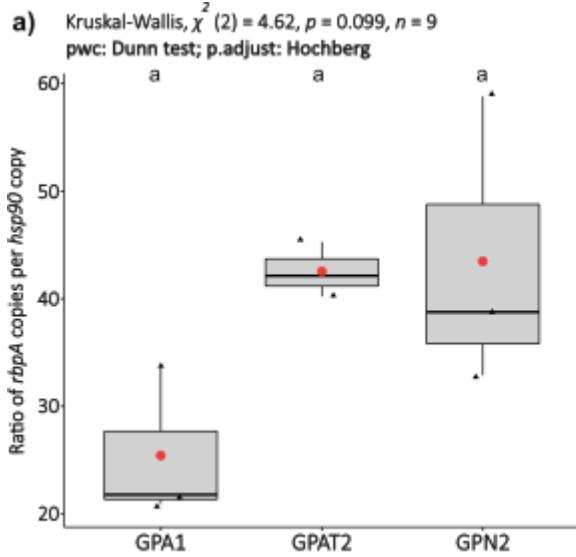
32

33 **See .xlsx file**

34

35 **Additional file 6: Effects of microorganisms on leaves size during barley germination.** Barley
 36 Bowman seeds were inoculated by immersion in microbial suspension containing *Streptomyces* sp.
 37 GPA1, GPAT2, GPN2, *Pseudomonas* sp. MRN1 or *Fusarium* sp. CK at different concentrations (10^6 ,
 38 10^5 , 10^4 CFU or spores/mL). Inoculated seeds were placed on MS media and incubated in culture
 39 chamber in the dark for 5 days. Leaves length was measured 5 days after inoculation and compared
 40 to the leave size of non-inoculated seedlings. Differences were statistically tested using a Kruskal-
 41 Wallis test followed by a pairwise Dunn test with Hochberg correction. Different letters indicate
 42 significant root size differences (p -values < 0.05). 10 replicates per condition were carried out except
 43 for *Pseudomonas* sp. MRN1 at concentration 10^5 CFU/mL where 9 seeds were measured.

44



NI

GPA1

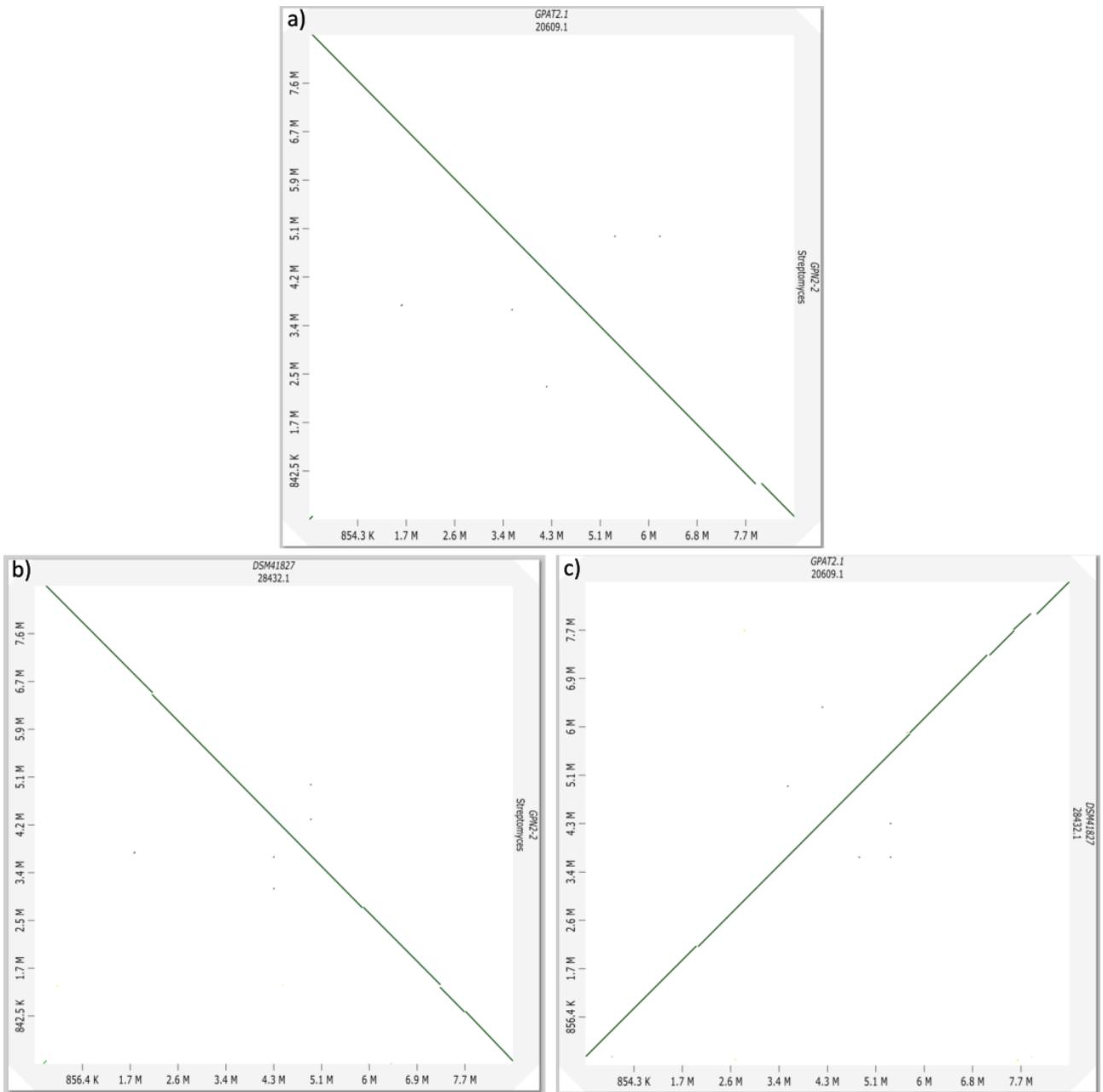
GPAT2

GPN2

45 **Additional file 7: Barley seedlings grown in the hydroponic system at 14 dpi.** NI: Non-inoculated
46 seedlings, GPA1: seedlings inoculated with GPA1, GPAT2: seedlings inoculated with GPAT2,
47 GPN2: seedlings inoculated with GPN2. Seedlings were selected at random from a pool of 19 for
48 non-inoculated seedlings and 20 for other conditions.

49

50 **Additional file 8: Quantification of the root colonization of *Streptomyces* sp. GPA1, GPAT2 and**
 51 **GPN2 by qPCR.** Quantification of the colonization efficiency of *Streptomyces* strains by qPCR using
 52 a) *rbpA/hsp90* primers. b) *rbpA/cyp2* primers. The test used for the qPCR results was a Kruskal-
 53 Wallis test followed by a pairwise Dunn test with Hochberg correction. 3 replicates were carried out
 54 for each sample. Different letters indicate significant differences (p -values < 0.05).

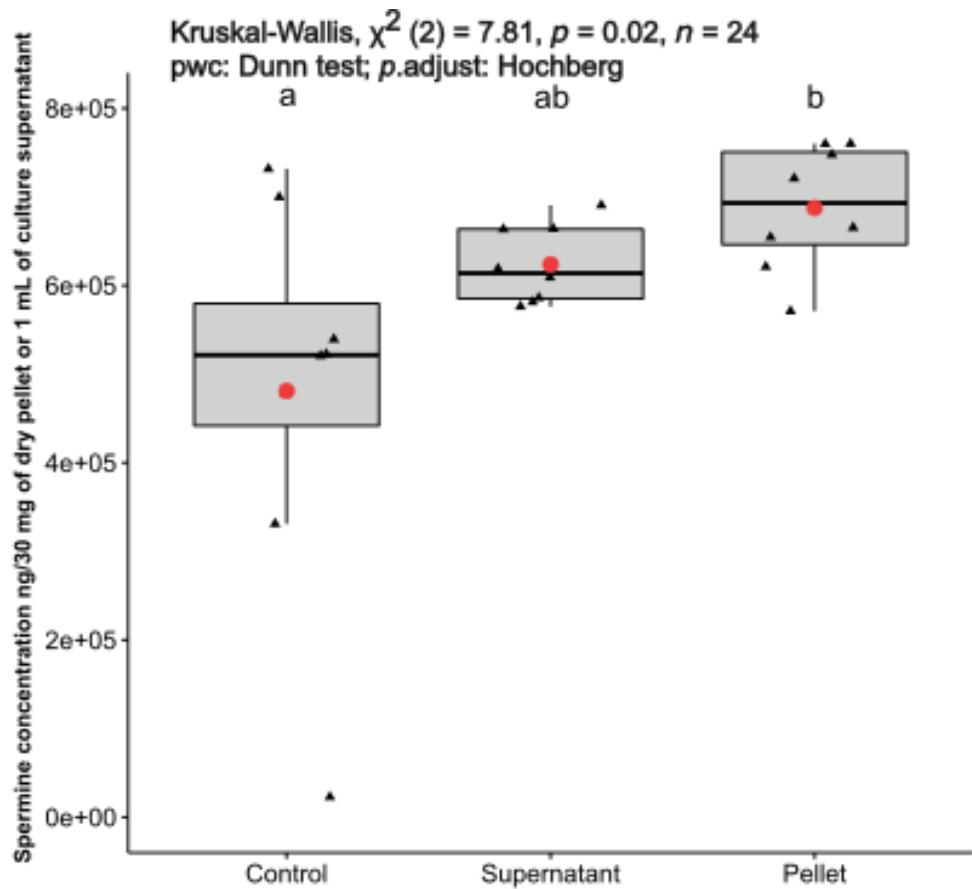

55 **Additional file 9: General characteristics of the *Streptomyces* genomes.** ^aCalculation of repetitive
 56 regions did not include undetermined ('N') bases. ^bCompleteness was estimated using CheckM [3].
 57 In bold: the activity was confirmed using Biologs tests

Genome characteristics	GPA1	<i>Streptomyces misionensis</i> DSM 40306	GPAT2	GPN2	<i>Streptomyces murinus</i> DSM 41827
Size (bp)	8077379	8474121	8543218	8424890	8564314
GC-content (%)	72.26	72.38	71.79	71.83	71.74
Predicted CDS	9552	7874	7985	7793	7715
Genome coding (%)	90.66	88.57	89.52	89.68	89
Average CDS size (bp)	912.72	967.75	976.52	986.88	1001.67
Number of tRNA	21	21	22	22	22
Number of 16S encoding gene	2	6	7	7	7
Repetitive regions (%) ^a	6.78	8.83	8.28	8.41	8.42
Nb of scaffold	11	5	0 (chromosome)	2	2
Completeness (%) ^b	100	100	99.89	99.89	99.89

Putative genes involved in plant-bacteria interactions

Polymer degradation	1,4- β -xylan (xlnA, xlnB), cellulose (SGPA1_v2_4 0428-40433), glycogen, and chitin (chi genes)	1,4- β -xylan (xlnA, xlnB), cellulose, glycogen, and chitin (chi genes)	1,4- β -xylan (xlnA, xlnB), cellulose (GPAT2_v1_7 842-7846), glycogen, and chitin (chi genes)	1,4- β -xylan (xlnA, xlnB), cellulose (GPN2_v1_20 270-20274), glycogen, and chitin (chi genes)	1,4- β -xylan (xlnA, xlnB), cellulose, glycogen, and chitin
Other degradation capacities	Putrescine patD (SGPA1_v2_1 1389-11390 and SGPA1_v2_11 408), patA (SGPA1_v2_1 0991)	Putrescine patA and D, (GPAT2_v1_5 813)	Putrescine patD (GPAT2_v1_5 813, patA 26), patA (GPAT2_v1_6 154)	Putrescine patD (GPN2_v1_22 152 -)	Putrescine patA and D (GPN2_v1_22 152 -)
Genes involved in degradation of	fructose, D-mannose, L-arabinose, lactose, galactose, maltose, melibiose, ribose, glycerol and xylose	fructose, D-mannose, L-arabinose, lactose, galactose, maltose, melibiose, ribose, glycerol and xylose	D-mannose, lactose, galactose, maltose, melibiose, ribose, glycerol and xylose	D-mannose, lactose, galactose, maltose, melibiose, ribose, glycerol and xylose	D-mannose, lactose, galactose, maltose, melibiose, ribose, glycerol and xylose

Nitrogen fixation	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c
Siderophore	<i>rhbEB</i> (SGPA1_v2_3 1337-31338), <i>rhbC</i> (SGPA1_v2_1 1231), <i>feuV-fepDG</i> (SGPA1_v2_2 0005-20007)	<i>rhbEB, rhbC,</i> <i>feuV-fepDG</i>	<i>rhbEB</i> (GPAT2_v1_2 287-2288), <i>feuV-fepDG</i> (GPAT2_v1_2 052-2054), <i>dhbABCEF</i> (GPAT2_v1_7 361-7368)	<i>rhbEB</i> (GPN2_v1_12 234-12236), <i>feuV-fepDG</i> (GPN2_v1_12 476-12478), <i>dhbABCEF</i> (GPN2_v1_20 605-20612)	<i>rhbEB, feuV-fepDG,</i> <i>dhbABCEF</i>
Phosphate solubilization	<i>gdh</i> (SGPA1_v2_1 0359, 31446, 40417), <i>pqq</i> (SGPA1_v2_2 1676, 21677, 21 678, 21679, 216 78, 21681)	3 <i>gdh</i> genes, 3 <i>pqq</i> genes	<i>gdh</i> (GPAT2_v1_2 205, 6818, 7856)	<i>gdh</i> (GPN2_v1_12 322, 20259, 21164)	3 <i>gdh</i> genes
<i>Quorum sensing</i> A-factor synthesis (\square -butyrolactone)	<i>barS</i> , (SGPA1_v2_2 1530, 21911)	2 <i>barS</i> genes	<i>barS</i> (GPAT2_v1_0 550)	<i>barS</i> (GPN2_v1_13 560, 13908)	2 <i>barS</i> genes
<i>Phytohormone homeostasis</i> IAA synthesis	Putative <i>iaaH</i> (hydrolase, SGPA1_v2_20 424) <i>iaaM</i> (tryptophan 2-monoxygenase, SGPA1_v2_20 425)	Putative <i>iaaH</i> and <i>iaaM</i>	Putative <i>iaaH</i> (hydrolase, GPAT2_v1_16 60) <i>iaaM</i> (tryptophan 2-monoxygenase, e, GPAT2_v1_16 59)	Putative <i>iaaH</i> (hydrolase, GPN2_v1_128 70) <i>iaaM</i> (tryptophan 2-monoxygenase, e, GPN2_v1_128 71)	Putative <i>iaaH</i> and <i>iaaM</i>
Cytokinin synthesis	<i>log</i> (SGPA1_v2_1 1602, SGPA1_v2-12009, SGPA1_v2_40 878)	2 <i>log</i> genes	<i>log</i> (GPAT2_v1_5 256, GPAT2_v1_56 38)	<i>log</i> (GPN2_v1_22 341, GPN2_v1_227 19)	2 <i>log</i> genes
<i>Secondary metabolites</i>					
Number of BGCs (AntiSMASH)	29 (geosmin, albaflavenone, pyrrolizixenam ide A, desferrioxamin e E, melanin, ectoine, filipin, e E, melanin, ectoine)	28 (geosmin, albaflavenone, desferrioxamin e E, melanin, ectoine, filipin, curamycin)	36 (geosmin, albaflavenone, desferrioxamin e E, melanin, ectoine, pentamycin, albusnodyn, curamycin, 2-methylisoborne ol)	34 (geosmin, albaflavenone, desferrioxamin e E, melanin, ectoine, pentamycin, albusnodyn, curamycin, 2-methylisoborne ol)	34 (geosmin, albaflavenone, desferrioxamin e E, melanin, ectoine, pentamycin, albusnodyn, curamycin, 2-methylisoborne ol)
<i>Biofilm formation and regulation</i>	<i>vbfA</i> , (SGPA1_v2_3 1568)	<i>vbfA</i>	<i>vbfA</i> (GPAT2_v1_2 102)	<i>vbfA</i> (GPN2_v1_12 428)	<i>vbfA</i>


58

59 **Additional file 10: Syntenies between *Streptomyces* sp GPAT2, GPN2 and *S. murinus* DSM**
60 **41827.** Dot plot showing the genomic similarities between a) *Streptomyces* sp. GPAT2 and
61 *Streptomyces* sp. GPN2, b) *S. murinus* DSM 41827 and *Streptomyces* sp. GPN2 and c) *S. murinus*
62 DSM 41827 and *Streptomyces* sp. GPAT2. These figures were produced using the D-genies platform
63 [4].

64

65 **Additional file 11: PGP activities test in vitro of *Streptomyces* strains.** In vitro tests were carried
 66 out jointly for all *Streptomyces* strains. For that, 50 mL of GYM liquid medium was inoculated with
 67 the *Streptomyces* strains. 10 μ L of unwashed bacterial culture were deposited in triplicate on the
 68 different media. Controls were performed with 10 μ L of non-inoculated GYM medium. Petri dishes
 69 were incubated at 28°C for 7 days. The different media used are described in the Methods section.

70

71 **Additional file 12: Spermine concentration measured in *Streptomyces* sp. GPA1 pellet and**
 72 **culture supernatant.** Targeted metabolomics were performed by ultrahigh-performance liquid
 73 chromatography on GPA1 cell pellet, culture supernatant and non-inoculated control medium.
 74 Analyses were carried out on 8 biological replicates. Spermine (100 ng/mL) standard was injected
 75 during the analysis to calibrate and quantify the samples. Differences were statistically tested using a
 76 Kruskal-Wallis test followed by a pairwise Dunn test with Hochberg correction. Different letters
 77 indicate statistically significant differences (p -values < 0.05).

78 **References**

79 1. BOOSTER platform (Bootstrap Support by TransfER). <https://booster.pasteur.fr/new/>. Accessed 7
80 Mar 2025.

81 2. Interactive Tree Of Life - iTOL. <https://itol.embl.de/>. Accessed 11 Apr 2025.

82 3. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality
83 of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res.*
84 2015;25:1043–55.

85 4. D-Genies. <https://dgenies.toulouse.inra.fr/>. Accessed 27 Nov 2024.

86