

Supplement for

“Global climate models are unable to reproduce cloud cover response to aerosol”

Yu Wang^{1*}, David Neubauer², Ying Chen³, George Jordan⁴, Florent Malavelle⁵, Tianle Yuan^{6,7}, Daniel Partridge⁸, Paul Field^{5,9}, Hao Wang¹⁰, Minghuai Wang¹⁰, Martine Michou¹¹, Pierre Nabat¹¹, Anton Laakso¹², Gunnar Myhre¹³, and Ulrike Lohmann²

¹School of GeoSciences, University of Edinburgh, Edinburgh, UK

²Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

³School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

⁴Met Office Hadley Centre, Exeter, UK

⁵Met Office, Exeter, UK

⁶Goddard Earth Sciences Technology and Research (GESTAR) II, University of Maryland, Baltimore County, Baltimore, MD, USA.

⁷Sciences and Exploration Directorate, Goddard Space Flight Center, Greenbelt, MD, USA.

⁸College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK

⁹School of Earth and Environment, University of Leeds, Leeds, UK

¹⁰School of Atmospheric Sciences, Nanjing University, Nanjing, China

¹¹Météo-France–CNRS, CNRM-GAME UMR 3589, GMGEC, Toulouse F-31057, France

¹²Finnish Meteorological Institute, Kuopio, Finland

¹³CICERO Center for International Climate Research Oslo, Norway

*Corresponding author: Yu Wang (y.w@ed.ac.uk)

Table-of-Contents:

Supplementary Discussion Section S1

Supplementary Figures S1-S3

36 **Supplementary Discussion**

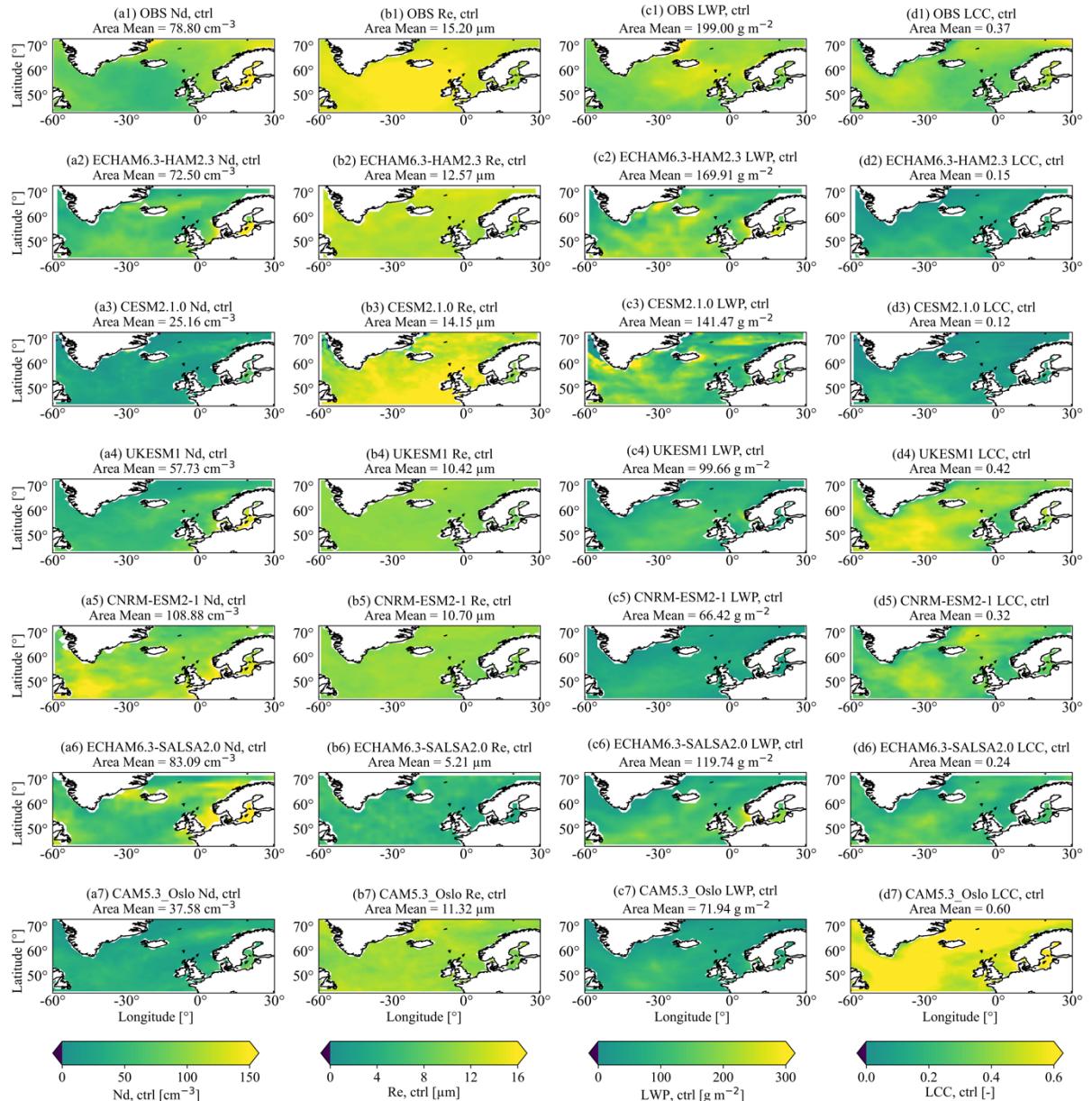
37 **Section S1 Spatial distribution of cloud property changes in observations and models**

38 The spatial distributions of key cloud properties and the influence of Holuhraun-2014 volcanic
39 plumes are shown in Figures S1-S3, with observations¹ provided in the top row and simulations
40 from six models in the following rows.

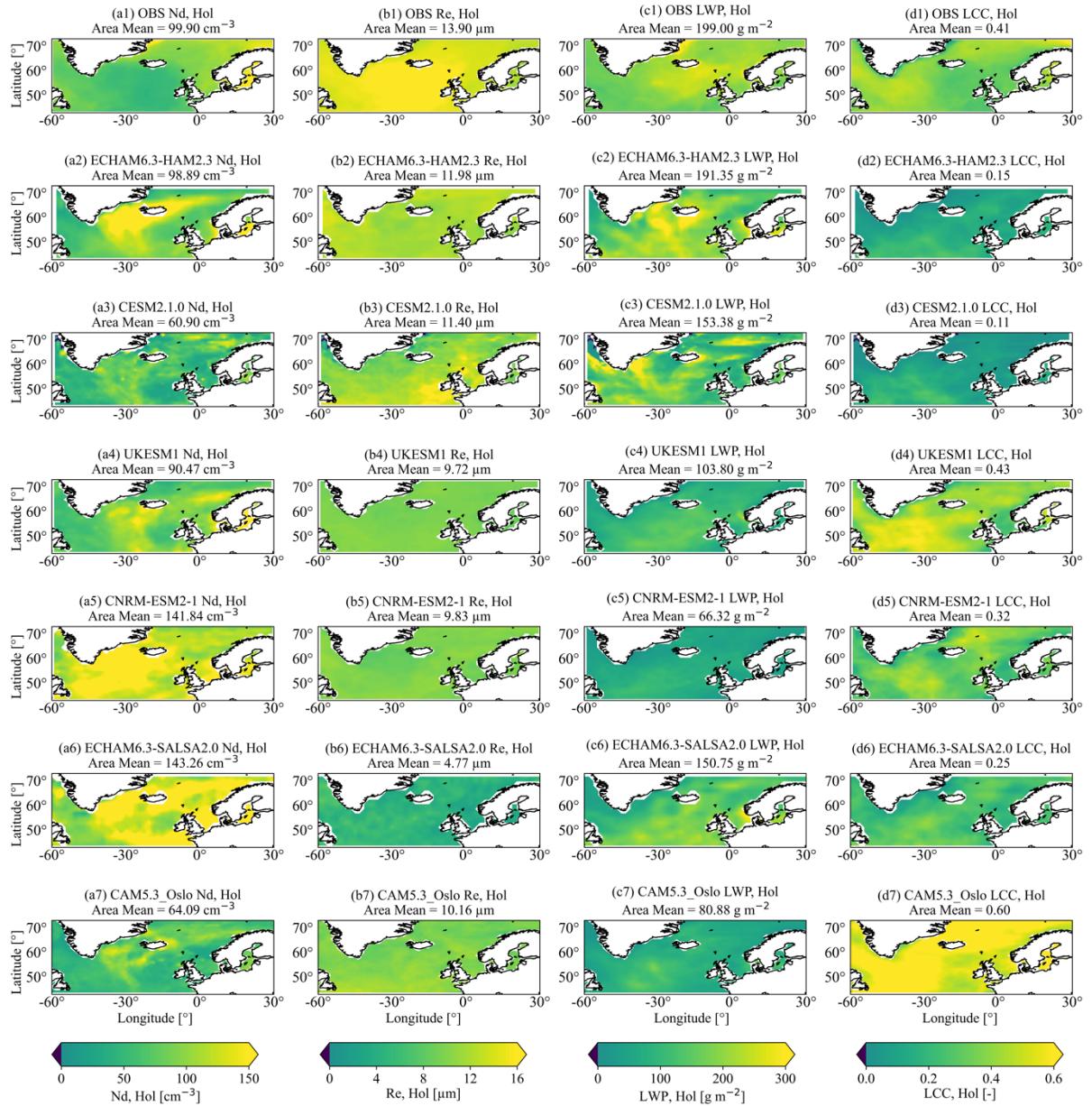
41 Fig. S1 shows the baseline of the control case, i.e. without volcanic eruption. A large
42 divergence is found among six models. For example: regarding cloud droplet number
43 concentration (Nd), CESM2.1.0 underestimates by about 70%, but CNRM-ESM2-1
44 overestimates by about 40%; regarding droplet effective radius (Re), ECHAM6.3-SALSA2.0
45 underestimates by about 65%, and other models slightly underestimate; regarding liquid water
46 path (LWP), UKESM1 and CNRM-ESM2-1 underestimate by 50-70% and other models
47 slightly underestimate; regarding liquid cloud cover (LCC), UKESM1 and CNRM-ESM2-1
48 provide a reasonable estimate, ECHAM6.3-HAM2.3, ECHAM6.3-SALSA2.0 and CESM2.1.0
49 underestimate by 35-65%, while CAM5.3_Oslo overestimates by about 50%. Fig. S2 shows
50 the volcanic case, in which both large overestimation and underestimation of all cloud variables
51 are observed. This large variation of baseline and experimental simulations is expected and is
52 in line with previous studies, showing great diversity of the chosen models and also justifying
53 that the importance of looking at the relative change of clouds caused by aerosol (rather than
54 absolute change)², which is the cloud susceptibility in logarithm scale that we discuss in the
55 main text.

56 Fig. S3 provides the difference between the volcanic case and baseline, i.e. Fig. S2
57 minus Fig. S1, which most intuitively shows the region influenced by the volcanic plume.
58 Generally speaking, over the whole North Atlantic, observation shows a clear increase of Nd,
59 a decrease of Re, no clear change of LWP (only -0.03 g m⁻² for domain-average), and a large
60 increase of LCC; models well capture the spatial patterns of Δ Nd and Δ Re (Twomey effect).
61 Four out of six models largely overestimate the increase of LWP, with only UKESM1 and
62 CNRM-ESM2-1 showing a reasonable regional response of LWP, in line with Malavelle et al.
63 (2017)³. However, all models show negligible increases in LCC and fail to reproduce the
64 observed strong increase in cloud cover.

65 These model-observation intercomparison highlights the model's incapability to
66 reproduce the key cloud properties and aerosol-induced cloud responses as observed, especially
67 the LWP and LCC. Although Re and LWP are determined mainly by cloud microphysics
68 diagnostically, while LCC is diagnosed by grid-mean relative humidity, these key cloud
69 variables are interlinked through the partitioning of water in the vapour, liquid, and ice phases
70 in models. To further understand model bias and its capability to represent the observation, we
71 applied different cloud microphysics and cloud cover schemes and conducted sensitivity
72 studies of cloud microphysical processes, see detailed discussion in the main text.


73

74


75

76

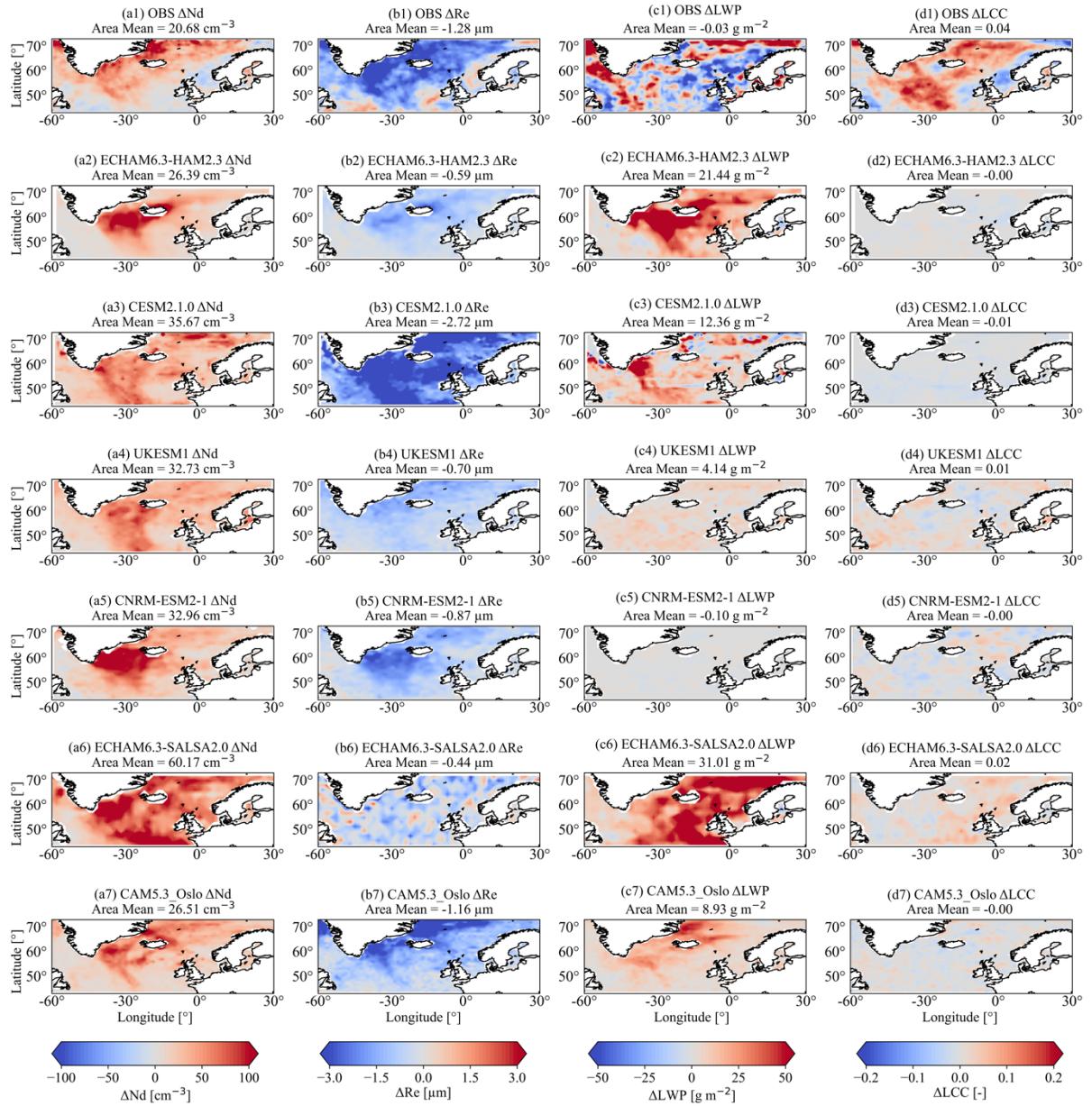

77

Fig. S1. The spatial distribution of Nd, Re, LWP, and LCC in Oct. 2014 (corresponding to columns from left to right), **for the control case**, i.e. without volcanic eruption. Rows from top to bottom are: (a1-d1) observations derived from a combination of satellite and machine learning¹; (a2-d2) ECHAM6.3-HAM2.3; (a3-d3) CESM2.1.0; (a4-d4) UKESM1; (a5-d5) CNRM-ESM2-1; (a6-d6) ECHAM6.3-SALSA2.0; (a7-d7) CAM5.3_Oslo.

94 **Fig. S2.** The spatial distribution of Nd, Re, LWP, and LCC in Oct. 2014 (corresponding to
95 columns from left to right), for the volcano case. Rows from top to bottom are: (a1-d1) satellite
96 observations¹; (a2-d2) ECHAM6.3-HAM2.3; (a3-d3) CESM2.1.0; (a4-d4) UKESM1; (a5-d5)
97 CNRM-ESM2-1; (a6-d6) ECHAM6.3-SALSA2.0; (a7-d7) CAM5.3_Oslo.

103 **Fig. S3.** The spatial distribution of Nd, Re, LWP, and LCC in Oct. 2014 (corresponding to
104 columns from left to right), for the differences between the volcano and control cases. Rows
105 from top to bottom are: (a1-d1) satellite observations minus machine learning derived
106 observations of control case¹; (a2-d2) ECHAM6.3-HAM2.3; (a3-d3) CESM2.1.0; (a4-d4)
107 UKESM1; (a5-d5) CNRM-ESM2-1; (a6-d6) ECHAM6.3-SALSA2.0; (a7-d7) CAM5.3_Oslo.
108

109 **References for Supplementary:**

110

111 1. Chen Y, Haywood J, Wang Y, Malavelle F, Jordan G, Partridge D, *et al.* Machine
112 learning reveals climate forcing from aerosols is dominated by increased cloud cover.
113 *Nature Geoscience* 2022, **15**(8): 609-614.

114

115 2. Ghan S, Wang M, Zhang S, Ferrachat S, Gettelman A, Griesfeller J, *et al.* Challenges
116 in constraining anthropogenic aerosol effects on cloud radiative forcing using present-
117 day spatiotemporal variability. *Proceedings of the National Academy of Sciences*
118 2016, **113**(21): 5804-5811.

119

120 3. Malavelle FF, Haywood JM, Jones A, Gettelman A, Clarisse L, Bauduin S, *et al.*
121 Strong constraints on aerosol–cloud interactions from volcanic eruptions. *Nature*
122 2017, **546**(7659): 485-491.

123

124