The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
1.X. Li, Y. Dong, Z. R. Li, et al. Experimental study on the temperature dependence of hyperelastic behavior of tire rubbers under moderate finite deformation[J]. Rubber Chem. Technol., 2011, 84: 215–228. DOI: https://doi.org/10.5254/1.3577534.
2.S.-J. Moon., J.-S. Kwak, J. -H. Chung, et al. A study on the hybrid mount against vibration and shock for naval ships[J]. Shock Vib., 2010, 17: 269–283. DOI: https://doi.org/10.3233/SAV-2010-0511.
3.D. Petkovic, M. Issa, N. D. Pavlovic, et al. Electrical properties estimation of conductive silicone rubber for tactile sensing structure[J]. J. Mech. Sci. Technol., 2011, 25: 1159–1165. DOI: https://doi.org/10.1108/02602281311299653.
4.W. Hong, J. P. Lin, X. H. Tian, et al. Viscoelasticity of nanosheet-filled polymer composites: Three regimes in the enhancement of moduli[J]. J. Phys. Chem. B, 2020, 124: 6437–6447. DOI: https://doi.org/10.1021/acs.jpcb.0c04235.
5.Y. Y. Gao, F. Y. Hu, Y. P. Wu, et al. Understanding the structural evolution under the oscillatory shear field to determine the viscoelastic behavior of nanorod filled polymer nanocomposites[J]. Comp. Mater. Sci., 2018, 142: 192–199. DOI: https://doi.org/10.1016/j.commatsci.2017.09.051.
6.F. Cai, Y. L. Luo, W. Yang, et al. Study on the thermal and dielectric properties of covalently modified GO/XNBR composites[J] Mater. Design, 2021, 198: 109335. DOI: https://doi.org/10.1016/j.matdes.2020.109335.
7.L. W. Mu, J. He, Y. F. Li, et al. Molecular origin of efficient phonon transfer in modulated polymer blends: Effect of hydrogen bonding on polymer coil size and assembled microstructure[J]. J. Phys. Chem. C, 2017, 121(26): 14204–14212. DOI: https://doi.org/10.1021/acs.jpcc.7b03726.
8.J. S. Seo, H. T. Jeon, T. H. Han. Rheological investigation of relaxation behavior of polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Polymers, 2020, 12(9): 1916. DOI:
9.Y. Bai, Y. Z. Wang, X. Li, et al. Interaction mechanism and binding mode of phycocyanin to lysozyme: Molecular docking and molecular dynamics simulation[J]. Food Chem., 2024, 438: 138001. DOI: https://doi.org/10.1016/j.foodchem.2023.138001.
10.N. R. Sun, Y. J. Li, N. X. Qiu, et al. Adsorption behaviors for clathrate hydrates of CO2 with mixed gases[J]. Fuel, 2024, 358: 130265. DOI: https://doi.org/10.1016/j.fuel.2023.130265.
11.Z. H. Zhang, M. F. Long, N. Zheng, et al. Microstructural, physicochemical properties, and interaction mechanism of hydrogel nanoparticles modified by high catalytic activity transglutaminase crosslinking[J]. Food Hydrocolloid., 2024, 147: 109384. DOI: https://doi.org/10.1016/j.foodhyd.2023.109384.
12.J. Zhang, W. Wang, Y. B. Wang, et al. Effect of cross-linked structures on mechanical properties of styrene-butadiene rubber via molecular dynamics simulation[J]. Macromol. Theor. Simul., 2022, 31: 2100054. DOI: https://doi.org/10.1002/mats.202100054.
13.R. Bhowmik, S. Sihn, V. Varshney, et al. Calculation of specific heat of polymers using molecular dynamics simulations[J]. Polymer, 2019, 167: 176–181. DOI: https://doi.org/10.1016/j.polymer.2019.02.013.
14.T. Zhang, H. B. Huang, W. Li, et al. Vulcanization modeling and mechanism for improved tribological performance of styrenebutadiene rubber at the atomic scale[J]. Tribol. Lett., 2020, 68(3): 83. DOI: https://doi.org/10.1007/s11249-020-01321-w.
15.J. Kruzelak, I. Hudec. Vulcanization systems for rubber compounds based on IIR and halogenated IIR: An overview[J]. Rubber Chem. Technol, 2018, 91(1):167–183. DOI: https://doi.org/10.5254/rct-18-82609.
16.S. Plimpton. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1): 1–19.
17.A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool[J]. Model. Simul. Mater. Sci., 2010, 18(1): 015012. DOI: https://doi.org/10.1088/0965-0393/18/1/015012.
18.T. Yan, K. J. Wang, X. Y. Zhao, et al. Effect of cross-linking density on non-linear viscoelasticity of vulcanized SBR: A MD simulation and experimental study[J]. Int. J. Mol. Sci., 2023, 24: 9970. DOI: https://doi.org/10.3390/ijms24129970.
19.D. I. Dimitrov, A. Milchev, K. Binder. Local viscosity in the vicinity of a wall coated by polymer brush from Green-Kubo relations[J]. Macromol. Theor. Simul., 2008, 17(6): 313–318. DOI: https://doi.org/10.1002/mats.200800038.
20.F. Müller-Plathe. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. J Chem. Phys., 1997, 106(14): 6082–6085. DOI: http://jcp.aip.org/resource/1/JCPSA6/v106/i14?ver=pdfcov.
A
21.J. Nichele, A. B. de Oliveira, L. S. D. Alves, et al. Accurate calculation of near-critical heat capacities Cp and Cv of argon using molecular dynamics[J]. J. Mol. Liq., 2017, 237: 65–70. DOI: https://doi.org/10.1016/j.molliq.2017.03.120.
22.G. Kikugawa, T. G. Desai, P. Keblinski, et al. Effect of crosslink formation on heat conduction in amorphous polymers[J]. J. Appl. Phys., 2013, 114(3): 034302. DOI: https://doi.org/10.1063/1.4813505.
23.A. Vasilev, T. Lorenz, C. Breitkopf. Prediction of thermal conductivities of rubbers by MD simulations—new insights[J]. Polymers, 2022, 14: 2046. DOI: https://doi.org/10.3390/polym14102046.
24.D. A. Weston. Quantitative evaluation of rubber/silica particle interphase through measurement of heat capacity[D]. South Carolina, Clemson University, 2004.
25.J. S. Yang, D. H. Huang. Rheological properties of ring and linear polymers under start-up shear by molecular dynamics simulations[J]. Acta Phys. Sin., 2019, 68(13): 138301. DOI: https://doi.org/10.7498/aps.68.20190403.