References
Ai Z, Chen QL (2019) Temporal and spatial distribution of aerosol optical depth in Sichuan and its correlation with meteorological factors. Sichuan Environment 38:79–86.
A
Bencherif H, Bounhir A, Bègue N, et al (2022) Aerosol distributions and Sahara dust transport in southern Morocco, from ground-based and satellite observations. Remote Sensing 14:2454. https://doi.org/10/gqg86n
Chen A, Zhao C, Fan T (2022) Spatio-temporal distribution of aerosol direct radiative forcing over mid-latitude regions in the Northern Hemisphere estimated from satellite observations. Atmospheric Research 266:105938. https://doi.org/10.1016/j.atmosres.2021.105938
Chen L-X, Zhang B, Zhu W-Q, et al (2009) Variation of atmospheric aerosol optical depth and its relationship with climate change in China east of 100° E over the last 50 years. Theoretical and Applied Climatology 96:191–199. https://doi.org/10.1007/s00704-008-0023-7
Chukwuka AV, Ogbeide O, Otomo PV (2023) Trend relationship between mountain normalized difference vegetation index (NDVI) and aerosol optical depth (AOD) across two decades: implication for water quality within the Lesotho Highlands, Drakensberg, South Africa. Environmental Monitoring and Assessment 195:584. https://doi.org/10.1007/s10661-023-11110-2
Collaud-Coen M, Andrews E, Aliaga D, et al (2018) Identification of topographic features influencing aerosol observations at high-altitude stations. Atmospheric Chemistry and Physics 18:12289–12313. https://doi.org/10.5194/acp-18-12289-2018
Das S, Das S, Das S, et al (2017) Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region. Journal of Geophysical Research 122:6391–6415. https://doi.org/10.1002/2016JD026421
de Leeuw G, Kang H, Fan C, et al (2023) Meteorological and anthropogenic contributions to changes in the aerosol optical depth (AOD) over China during the last decade. Atmospheric Environment 301:119676. https://doi.org/10.1016/j.atmosenv.2023.119676
Fang C, Tan X, Zhong Y, Wang J (2021) Research on the temporal and spatial characteristics of air pollutants in the Sichuan Basin. Atmosphere 12:1504. https://doi.org/10.3390/atmos12111504
A
Filip L, Stefan S (2011) Study of the correlation between the near-ground PM10 mass concentration and the aerosol optical depth. Journal of Atmospheric and Solar-Terrestrial Physics 73:1883–1889.
https://doi.org/10.1016/j.jastp.2011.04.027
Gao Y, Liu Z, Wang J (2018) Correlation analysis of PM2.5 concentration and MODIS aerosol optical depth in Urumqi City. Arid Land Geography 41:298–305.
Green M, Kondragunta S, Ciren P, Xu C (2009) Comparison of GOES and MODIS aerosol optical depth (AOD) to AERONET AOD and IMPROVE PM2.5 mass at Bondville, Illinois. Journal of the Air & Waste Management Association 59:1082–1091. https://doi.org/10.3155/1047-3289.59.9.1082
A
Grgurić S, Križan J, Gašparac G, et al (2014) Relationship between MODIS-based aerosol optical depth and PM10 over Croatia. Central European Journal of Geosciences 6:2–16.
https://doi.org/10.2478/s13533-012-0135-6
He Q, Gu Y, Zhang M (2019) Spatiotemporal patterns of aerosol optical depth throughout China from 2003 to 2016. Science of the Total Environment 653:23–35. https://doi.org/10.1016/j.scitotenv.2018.10.307
Jia W, Wang M, Wang Z (2019) Influence factors analysis of geological disasters in southeastern Tibet based on geographical detector. In: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, pp 3483–3486
Jin Q, Crippa P, Pryor SC (2020) Spatial characteristics and temporal evolution of the relationship between PM2.5 and aerosol optical depth over the eastern USA during 2003–2017. Atmospheric Environment 239:117718. https://doi.org/10.1016/j.atmosenv.2020.117718
A
Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223.
https://doi.org/10.1038/nature01091
A
Khor WY, Hee WS, Tan F, et al (2014) Comparison of aerosol optical depth (AOD) derived from AERONET sunphotometer and lidar system. IOP Conference Series: Earth and Environmental Science 20:012058.
https://doi.org/10.1088/1755-1315/20/1/012058
Kittaka C, Winker D, Winker DM, et al (2011) Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua. Atmospheric Measurement Techniques 4:131–141. https://doi.org/10.5194/amt-4-131-2011
A
Kumar S, Siingh D, Singh RP, Singh AK (2016) The influence of meteorological parameters and atmospheric pollutants on lightning, rainfall, and normalized difference vegetation index in the Indo-Gangetic Plain. International Journal of Remote Sensing (no page numbers)
Li X, Hussain SA, Sobri S, Md Said MS (2021) Overviewing the air quality models on air pollution in Sichuan Basin, China. Chemosphere 271:129502. https://doi.org/10.1016/j.chemosphere.2020.129502
A
Liao T, Gui K, Li Y, et al (2021) Seasonal distribution and vertical structure of different types of aerosols in southwest China observed from CALIOP. Atmospheric Environment 246:118145.
https://doi.org/10.1016/j.atmosenv.2020.118145
Liu B, Ma Y, Gong W, et al (2018) Comparison of AOD from CALIPSO, MODIS, and sun photometer under different conditions over Central China. Scientific Reports 8:10066. https://doi.org/10.1038/s41598-018-28417-7
A
Liu X, Chen Q, Che H, et al (2016) Spatial distribution and temporal variation of aerosol optical depth in the Sichuan Basin, China, over the recent ten years. Atmospheric Environment 147:434–445.
https://doi.org/10.1016/j.atmosenv.2016.10.008
A
Lv B, Hu Y, Chang HH, et al (2016) Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in North China. Environmental Science & Technology 50:4752–4759.
https://doi.org/10.1021/acs.est.5b05940
Lv B, Hu Y, Chang HH, et al (2017) Daily estimation of ground-level PM2.5 concentrations at 4 km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations. Science of the Total Environment 580:235–244. https://doi.org/10.1016/j.scitotenv.2016.12.049
Ma X, Ding Y, Shi H, et al (2022) Spatiotemporal variations in aerosol optical depth and associated risks for populations in the arid region of Central Asia. Science of the Total Environment 816:151558. https://doi.org/10.1016/j.scitotenv.2021.151558
Maghrabi AH, Almutayri MM, Aldosary AF, et al (2019) The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions. Theoretical and Applied Climatology 138:1375–1394. https://doi.org/10.1007/s00704-019-02903-y
Mancinelli E, Passerini G, Virgili S, Rizza U (2024) Multi-decadal trends in aerosol optical depth of the main aerosol species based on MERRA-2 reanalysis: A case study in the Baltic Sea Basin. Remote Sensing 16:2421. https://doi.org/10.3390/rs16132421
Mulcahy JP, O’Dowd CD, Jennings SG, Ceburnis D (2008) Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophysical Research Letters 35:. https://doi.org/10.1029/2008GL034303
Park SS, Kim S-W, Song C-K, et al (2020) Spatio-temporal variability of aerosol optical depth, total ozone and NO2 over East Asia: Strategy for validation of the GEMS scientific products. Remote Sensing 12:2256. https://doi.org/10.3390/rs12142256
A
Ramachandran S, Kedia S, Srivastava R (2012) Aerosol optical depth trends over different regions of India. Atmospheric Environment 49:338–347.
https://doi.org/10.1016/j.atmosenv.2011.11.017
Redemann J, Vaughan MA, Zhang Q, et al (2012) Comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth. Atmospheric Chemistry and Physics 12:3025–3043. https://doi.org/10.5194/acp-12-3025-2012
A
Schwartz CS, Liu Z, Lin H-C, McKeen SA (2012) Simultaneous three-dimensional variational assimilation of surface fine particulate matter and MODIS aerosol optical depth. Journal of Geophysical Research: Atmospheres 117:.
https://doi.org/10.1029/2011JD017383
A
Seinfeld JH, Pandis SN (2016) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons
Shi Y, Chen Y, Wang J, et al (2020) Spatio-temporal characteristics and correlation of MODIS aerosol optical depth and PM2.5 in Xiamen. Journal of Atmospheric and Environmental Optics 15:334–346. https://doi.org/10.3969/j.issn.1673-6141.2020.05.002
A
Smirnov A, Holben BN, Eck TF, et al (2003) Effect of wind speed on columnar aerosol optical properties at Midway Island. Journal of Geophysical Research: Atmospheres 108:.
https://doi.org/10.1029/2003JD003879
Tsai T-C, Jeng Y-J, Chu DA, et al (2011) Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment 45:4777–4788. https://doi.org/10.1016/j.atmosenv.2009.10.006
Toth TD, Zhang J, Campbell JR, et al (2013) Investigating enhanced Aqua MODIS aerosol optical depth retrievals over the mid- to high-latitude Southern Oceans through intercomparison with co-located CALIOP, MAN, and AERONET data sets. Journal of Geophysical Research 118:4700–4714. https://doi.org/10.1002/jgrd.50311
van Donkelaar A, Martin RV, Park RJ (2006) Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. Journal of Geophysical Research: Atmospheres 111:. https://doi.org/10.1029/2005JD006996
van Donkelaar A, Martin RV, Brauer M, et al (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environmental Health Perspectives 118:847–855. https://doi.org/10.1289/ehp.0901623
A
Wang H, Qin F, Xu C, et al (2021) Evaluating the suitability of urban development land with a Geodetector. Ecological Indicators 123:107339.
https://doi.org/10.1016/j.ecolind.2021.107339
Wang J, Li X, Christakos G, et al (2010) Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science 24:107–127. https://doi.org/10.1080/13658810802443457
Wang A, Kang P, Zhang Y, et al (2022) Spatial differentiation and driving factors of aerosol optical depth in the Sichuan Basin from 2003 to 2018. China Environmental Science 42:528–538. https://doi.org/10.19674/j.cnki.issn1000-6923.20211012.009
Wei J, Li Z, Cribb M, et al (2020) Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees. Atmospheric Chemistry and Physics 20:3273–3289. https://doi.org/10.5194/acp-20-3273-2020
Yang Q, Yuan Q, Yue L, et al (2019) The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: about and behind the spatio-temporal variations. Environmental Pollution 248:526–535. https://doi.org/10.1016/j.envpol.2019.02.071
Yang Z, Zdanski C, Farkas D, et al (2020) Evaluation of aerosol optical depth (AOD) and PM2.5 associations for air quality assessment. Remote Sensing Applications: Society and Environment 20:100396. https://doi.org/10.1016/j.rsase.2020.100396
A
Yap XQ, Hashim M (2013) A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmospheric Chemistry and Physics 13:3517–3526.
https://doi.org/10.5194/acp-13-3517-2013
A
Ye Z, Hu Y, Luo S, et al (2021) Analysis on the distribution pattern and differentiation mechanism of rural poverty by combining random forest and geographical detector. Anhui Agricultural Science 49:248–256
A
You W, Zang Z, Zhang L, et al (2016) A nonlinear model for estimating ground-level PM10 concentration in Xi’an using MODIS aerosol optical depth retrieval. Atmospheric Research 168:169–179.
https://doi.org/10.1016/j.atmosres.2015.09.008
A
Yu H, Cui W, He Z, et al (2025) Soil moisture loss in planted forests and its driving factors: a case study of the Nanpan River Basin. Forests 16:665.
https://doi.org/10.3390/f16040665
Yu H, Liu D, Zhang C, et al (2023) Research on spatial–temporal characteristics and driving factors of urban development intensity for Pearl River Delta region based on Geodetector. Land 12:1673. https://doi.org/10.3390/land12091673
Yuan J, Wang X, Feng Z, et al (2023) Spatiotemporal variations of aerosol optical depth and the spatial heterogeneity relationship of potential factors based on the multi-scale geographically weighted regression model in Chinese national-level urban agglomerations. Remote Sensing 15:4613. https://doi.org/10.3390/rs15184613
Zhang F (2024) Factors influencing the spatio-temporal variability of aerosol optical depth over the arid region of northwest China. Atmosphere 15:54. https://doi.org/10.3390/atmos15010054
Zhang J, Lu X, Hong J, Meng C (2016) Quantitative study on spatio-temporal patterns and driving factors of aerosols in Sichuan Province from 2000 to 2014. Journal of Natural Resources 31:1514–1525
Zhang L, Guo X, Zhao T, et al (2019) A modelling study of the terrain effects on haze pollution in the Sichuan Basin. Atmospheric Environment 196:77–85. https://doi.org/10.1016/j.atmosenv.2018.10.007
A
Zhang Y, Li Z (2013) Estimation of PM2.5 from fine-mode aerosol optical depth. Journal of Remote Sensing 17:929–943
Zhao C, Liu Z, Wang Q, et al (2019) High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region. Atmospheric Environment 203:70–78. https://doi.org/10.1016/j.atmosenv.2019.01.045
Zhao D, Xin J, Gong C, et al (2018) Trends of aerosol optical properties over the heavy industrial zone of northeastern Asia in the past decade (2004–2015). Journal of the Atmospheric Sciences. https://doi.org/10.1175/JAS-D-17-0260.1
Zhao L, Li F, Wang L, et al (2024) Inversion and variation analysis of aerosol optical depth in China using a random forest model. Earth and Environment
Zheng Y, Wang X, Zhang X, Hu G (2022) Multi-spatiotemporal patterns of aerosol optical depth and influencing factors during 2000–2020 from two spatial perspectives: the entire Yellow River Basin region and its urban agglomerations. International Journal of Applied Earth Observation and Geoinformation 106:102643. https://doi.org/10.1016/j.jag.2021.102643
Zhu L, Meng J, Zhu L (2020) Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecological Indicators 117:106545. https://doi.org/10.1016/j.ecolind.2020.106545