Supplemental Information for "Macroscopic particle transport in dissipative long-range bosonic systems"

Hongchao Li,^{1,*} Cheng Shang,^{2,†} Tomotaka Kuwahara,^{2,3,4,‡} and Tan Van Vu^{5,§}

¹Department of Physics, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

²Analytical quantum complexity RIKEN Hakubi Research Team,

RIKEN Center for Quantum Computing (RQC), Wako, Saitama 351-0198, Japan

³PRESTO, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan

⁴RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan

⁵Center for Gravitational Physics and Quantum Information,

Yukawa Institute for Theoretical Physics, Kyoto University,

Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

CONTENTS

- I. Macroscopic particle transport theory in closed quantum systems
- II. Triangle inequality of the generalized Wasserstein distance

I. MACROSCOPIC PARTICLE TRANSPORT THEORY IN CLOSED QUANTUM SYSTEMS

In this section, we review the macroscopic particle transport theory in long-range closed quantum systems. Firstly, we show the proof of $\tau \geq \kappa_1^{\varepsilon} d_{XY}^{\alpha_{\varepsilon}}$. Since the density matrix follows the von Neumann equation, the dynamics of the boson number density $x_i(t) := \operatorname{tr}(n_i \rho_t)/N$ is given by

$$\dot{x}_i = \frac{1}{N} \sum_{j,j \neq i} 2J_{ij}(t) \operatorname{Im}[\operatorname{tr}(b_j^{\dagger} b_i \rho_t)] =: \sum_{j(\neq i)} \phi_{ij}(t), \tag{S1}$$

where $\phi_{ij}(t)$ is the current flowing from the site j to the site i satisfying $\phi_{ij} = -\phi_{ji}$. On the one hand, since a fraction μ of bosons should be transported from X to Y in the time period τ , we have the relation

$$x_Y(\tau) - x_{X^c}(0) > \mu. \tag{S2}$$

1

3

Here, $X^c := \Lambda \setminus X$ is the complement of X. Since we consider the Wasserstein distance between the final distribution $\boldsymbol{x}(\tau)$ and the initial distribution $\boldsymbol{x}(0)$, the coupling π_{mn} should satisfy $\sum_m \pi_{mn} = x_n(0)$ and $\sum_n \pi_{mn} = x_m(\tau)$. Accordingly, we obtain

$$x_Y(\tau) - x_{X^c}(0) = \sum_{i \in Y, j \in \Lambda} \pi_{ij} - \sum_{i \in \Lambda, j \in X^c} \pi_{ij} = \sum_{i \in Y, j \in X} \pi_{ij} - \sum_{i \in Y^c, j \in X^c} \pi_{ij} \le \sum_{i \in Y, j \in X} \pi_{ij}.$$
 (S3)

Hence, the Wasserstein distance can be lower bounded by

$$W(\boldsymbol{x}_0, \boldsymbol{x}_\tau) \ge \min_{i \in Y, j \in X} c_{ij} \sum_{i \in Y, j \in X} \pi_{ij} \ge \mu d_{XY}^{\alpha_{\varepsilon}}.$$
 (S4)

On the other hand, since the current can be upper bounded by

$$|\phi_{ij}| < |J_{ij}(t)|(x_i + x_j). \tag{S5}$$

^{*} lhc@cat.phys.s.u-tokyo.ac.jp

[†] cheng.shang@riken.jp

[‡] tomotaka.kuwahara@riken.jp

[§] tan.vu@yukawa.kyoto-u.ac.jp

With the Kantorovich-Rubinstein duality, we obtain

$$W(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}) \leq \max_{\|\boldsymbol{h}\|_{L} \leq 1} h^{T}(\boldsymbol{x}(\tau) - \boldsymbol{x}(0)) = \max_{\|\boldsymbol{h}\|_{L} \leq 1} \sum_{i} h_{i} \int_{0}^{\tau} dt \sum_{j \neq i} \phi_{ij}(t)$$

$$\leq \frac{1}{2} \max_{\|\boldsymbol{h}\|_{L} \leq 1} \int_{0}^{\tau} dt \sum_{j \neq i} |\phi_{ij}| |h_{i} - h_{j}| \leq \frac{1}{2} \int_{0}^{\tau} dt \sum_{j \neq i} c_{ij} |\phi_{ij}(t)|. \tag{S6}$$

Here, we use $||h||_L \le 1$ to represent $|h_i - h_j| \le c_{ij}$. Therefore, the upper bound of the Wasserstein distance can be shown as

$$W(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}) \leq \frac{1}{2} \int_{0}^{\tau} dt \sum_{j \neq i} c_{ij} |\phi_{ij}(t)| \leq \sum_{i \neq j} J_{ij} c_{ij} \int_{0}^{\tau} x_{i}(t) dt = \int_{0}^{\tau} dt \sum_{i} x_{i}(t) \sum_{l=1}^{\infty} \sum_{j \in (i[l+1] \setminus i[l])} \frac{J}{\|i - j\|^{\alpha - \alpha_{\varepsilon}}}$$

$$\leq \int_{0}^{\tau} dt \sum_{i} x_{i}(t) \sum_{l=1}^{\infty} \frac{J}{l^{\alpha - \alpha_{\varepsilon} - D + 1}} = J\varphi\zeta(\alpha - \alpha_{\varepsilon} - D + 1)\tau. \tag{S7}$$

Hence,

$$\tau \ge \frac{\mu}{J\varphi\zeta(\alpha - \alpha_{\varepsilon} - D + 1)} d_{XY}^{\alpha_{\varepsilon}} =: \kappa_1^{\varepsilon} d_{XY}^{\alpha_{\varepsilon}}, \tag{S8}$$

which is nothing but Eq. (5). Then, we move to prove the inequality $\langle P_{n_Y \geq N_0 + \Delta N_0} \rangle_{\rho_{\tau}} \leq \wp$, where

$$\wp = (\Delta N_0 d_{XY}^{\alpha_{\varepsilon}})^{-1} N J \varphi \zeta (\alpha - \alpha_{\varepsilon} - D + 1) \tau.$$
 (S9)

By defining the probability distribution $p_{\vec{N}}(t) := \operatorname{tr}(\Pi_{\vec{N}}\rho_t)$, where $\Pi_{\vec{N}} = |\vec{N}\rangle\langle\vec{N}|$ be the projection onto the state $|\vec{N}\rangle$, the time evolution for $p_{\vec{N}}(t)$ can be derived from the von Neumann equation as

$$\dot{p}_{\vec{N}}(t) = -i \operatorname{tr} \left(\Pi_{\vec{N}} \left[H_t, \rho_t \right] \right) = i \sum_{i \neq j} \langle \vec{N} | [\rho_t, J_{ij}(t) b_i^{\dagger} b_j] | \vec{N} \rangle = i \sum_{i \neq j} J_{ij}(t) \sqrt{n_i n_{j'}} (\langle \vec{N} | \rho_t | \vec{N}' \rangle - \langle \vec{N}' | \rho_t | \vec{N} \rangle)$$

$$=: \sum_{i \neq j} \varphi_{\vec{N}\vec{N}'}(t), \qquad (S10)$$

where $\varphi_{\vec{N}\vec{N}'}(t)$ represents all possible flows from state $|\vec{N}\rangle$ to state $|\vec{N}'\rangle$, which satisfies $n_i'=n_i-1, n_j'=n_j+1$ and $n_k'=n_k$ for all $k\neq i,j$. For the neighboring states $|\vec{N}\rangle$ and $|\vec{N}'\rangle$, the transport cost is defined as $c_{\vec{N}\vec{N}'}=\|i-j\|^{\alpha_{\varepsilon}}$. Following that, the cost between arbitrary two states $|\vec{N}\rangle$ and $|\vec{M}\rangle$ can be defined as the shortest-path cost over all possible paths connecting these states, $c_{\vec{M}\vec{N}}=\min\sum_{k=1}^K c_{\vec{N}_k,\vec{N}_{k-1}}$, where $c_{\vec{N}_0}=c_{\vec{N}},c_{\vec{N}_K}=c_{\vec{M}}$, and $|\vec{N}_{k-1}\rangle$ and $|\vec{N}_k\rangle$ are neighboring states for all $1\leq k\leq K$. The Wasserstein distance reads:

$$W(\boldsymbol{p}_0, \boldsymbol{p}_{\tau}) = \min_{\pi \in \mathcal{C}(\boldsymbol{p}_0, \boldsymbol{p}_{\tau})} \sum_{\vec{M}, \vec{N}} c_{\vec{M}\vec{N}} \pi_{\vec{M}\vec{N}}, \tag{S11}$$

where p_{τ} and p_0 represent the final and initial probability distributions, respectively. Similar to the previous analysis, we obtain

$$W(\boldsymbol{p}_0, \boldsymbol{p}_{\tau}) \le \frac{1}{2} \int_0^{\tau} dt \sum_{\vec{N}} \sum_{i \neq j} c_{\vec{N}\vec{N}'} \left| \varphi_{\vec{N}\vec{N}'}(t) \right|. \tag{S12}$$

By combining Eq. (S12) with the definition for $\varphi_{\vec{N}\vec{N}'}$ in Eq. (S10), the right-hand side of Eq. (S12) can be upper bounded as

$$\frac{1}{2} \int_{0}^{\tau} \sum_{\vec{N}} \sum_{i \neq j} c_{\vec{N}\vec{N}'} |\varphi_{\vec{N}\vec{N}'}| dt \leq \sum_{\vec{N}} \int_{0}^{\tau} dt p_{\vec{N}}(t) \sum_{i} n_{i} \sum_{j(\neq i)} \frac{J}{\|i - j\|^{\alpha - \alpha_{\varepsilon}}} \leq N\tau J\varphi \zeta(\alpha - \alpha_{\varepsilon} - D + 1), \tag{S13}$$

where we apply the Cauchy-Schwarz inequality in the first inequality as

$$|\varphi_{\vec{N}\vec{N}'}(t)| \le |J_{ij}|[n_i p_{\vec{N}}(t) + n_i' p_{\vec{N}'}(t)].$$
 (S14)

Next, we make the following definitions:

$$S_0 := \{ \vec{N} | \sum_{i \in X^c} n_i \le N_0 \}, \quad S_\tau := \{ \vec{N} | \sum_{i \in Y} n_i \ge N_0 + \Delta N_0 \}.$$
 (S15)

The process $\vec{N} \in S_0 \to \vec{M} \in S_\tau$ signifies that at least ΔN_0 particles are transported from region X to the region Y. To determine the lower bound of the Wasserstein distance, we first give the lower bound of $c_{\vec{M}\vec{N}}$ as

$$c_{\vec{M}\vec{N}} \geqslant \Delta N_0 \sum_{l=1}^{L} c_{\vec{N}_l, \vec{N}_{l-1}} \geqslant \Delta N_0 \sum_{l=1}^{L} \|i_l - i_{l-1}\|^{\alpha_{\varepsilon}} \geqslant \Delta N_0 d_{XY}^{\alpha_{\varepsilon}}$$
(S16)

with $\vec{N}_0 \to \cdots \to \vec{N}_L$ be a sequence of states that transfers one particle from X to Y. Following this, we obtain

$$W(\boldsymbol{p}_{0}, \boldsymbol{p}_{\tau}) = \min_{\pi} \sum_{\vec{M}, \vec{N}} c_{\vec{M}\vec{N}} \pi_{\vec{M}\vec{N}} \geqslant \Delta N_{0} d_{XY}^{\alpha_{\varepsilon}} \min_{\pi} \sum_{\vec{M} \in S_{\tau}, \vec{N} \in S_{0}} \pi_{\vec{M}\vec{N}}, \tag{S17}$$

and $\sum_{\vec{N} \in S_0} \pi_{\vec{M}\vec{N}} = p_{\vec{M}}(\tau)$ since $p_{\vec{N}}(0) = 0$ for $\vec{N} \notin S_0$. Using these facts, we obtain a lower bound for the Wasserstein distance:

$$W(\mathbf{p}_{0}, \mathbf{p}_{\tau}) \geqslant \Delta N_{0} d_{XY}^{\alpha_{\varepsilon}} \sum_{\vec{M} \in S_{\tau}} p_{\vec{M}}(\tau) = \Delta N_{0} d_{XY}^{\alpha_{\varepsilon}} \langle P_{n_{Y} \geqslant N_{0} + \Delta N_{0}} \rangle_{\rho_{\tau}}, \tag{S18}$$

where $P_{n_Y \geq N_0 + \Delta N_0, N}$ is a projection operator given by

$$P_{n_Y \ge N_0 + \Delta N_0} := \sum_{\vec{N}: \langle \vec{N} | n_Y | \vec{N} \rangle \ge N_0 + \Delta N_0} |\vec{N}\rangle \langle \vec{N} |, \tag{S19}$$

and $\langle P_{n_Y \geq N_0 + \Delta N_0} \rangle_{\rho_{\tau}} := \text{Tr}[P_{n_Y \geq N_0 + \Delta N_0} \rho_{\tau}]$ is the expectation value of the projection operator, which is nothing but the probability of finding $N_0 + \Delta N_0$ bosons in the region Y at time τ . Combining with Eq. (S13) and Eq. (S18) yields

$$\langle P_{n_Y \geqslant N_0 + \Delta N_0} \rangle_{\rho_{\tau}} \le \frac{NJ\varphi\zeta(\alpha - \alpha_{\varepsilon} - D + 1)\tau}{\Delta N_0 d_{YY}^{\alpha_{\varepsilon}}},$$
 (S20)

which is the same as Eq. (17).

II. TRIANGLE INEQUALITY OF THE GENERALIZED WASSERSTEIN DISTANCE

In this section, we aim to prove that the generalized Wasserstein distance defined in Eq. (20) satisfies the triangle inequality:

$$\tilde{W}(x, y) + \tilde{W}(y, z) \ge \tilde{W}(x, z),$$
 (S21)

where $\|\boldsymbol{x}\|_1 \geq \|\boldsymbol{y}\|_1 \geq \|\boldsymbol{z}\|_1$.

Proof. We define $\mathbf{x}^{(1)}$ and $\mathbf{y}^{(1)}$ be the optimal vectors satisfying $\|\mathbf{x}^{(1)}\|_1 = \|\mathbf{y}^{(1)}\|_1$ to attain the generalized Wasserstein distance $\tilde{W}(\mathbf{x}, \mathbf{y})$, i.e., $W(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) = \tilde{W}(\mathbf{x}, \mathbf{y})$ where $W(\mathbf{x}^{(1)}, \mathbf{y}^{(1)})$ is defined as

$$W(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) := \min_{\pi} \sum_{m,n} \pi_{mn}^{(1)} c_{mn}.$$
 (S22)

Similarly, we can also define the vectors $y^{(2)}$ and $z^{(2)}$ to attain the generalized Wasserstein distance $\tilde{W}(y,z)$ with

 $\|{m y}^{(2)}\|_1 = \|{m z}^{(2)}\|_1$. Similarly, we also have

$$W(\mathbf{y}^{(2)}, \mathbf{z}^{(2)}) := \min_{\pi} \sum_{m,n} \pi_{mn}^{(2)} c_{mn}.$$
 (S23)

By defining $\pi_{mkn} \coloneqq \pi_{kn}^{(1)} \pi_{mk}^{(2)} / y_k^{(1)}$, we can verify that

$$\sum_{n} \pi_{mkn} = \sum_{n} \frac{\pi_{kn}^{(1)} \pi_{mk}^{(2)}}{y_k^{(1)}} = \pi_{mk}^{(2)}, \quad \sum_{m} \pi_{mkn} = \pi_{kn}^{(1)} \frac{y_k^{(2)}}{y_k^{(1)}} \le \pi_{kn}^{(1)}.$$
 (S24)

By applying these two relations, we obtain

$$\tilde{W}(\boldsymbol{x}, \boldsymbol{y}) + \tilde{W}(\boldsymbol{y}, \boldsymbol{z}) = W(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}) + W(\boldsymbol{y}^{(2)}, \boldsymbol{z}^{(2)})
= \sum_{k,n} \pi_{kn}^{(1)} c_{kn} + \sum_{m,k} \pi_{mk}^{(2)} c_{mk} \ge \sum_{m,n,k} \pi_{mkn} c_{mn} = \sum_{m,n} \tilde{\pi}_{mn} c_{mn},$$
(S25)

where we apply the triangle inequality $c_{mk} + c_{kn} \ge c_{mn}$ and define a new coupling $\tilde{\pi}_{mn} := \sum_k \pi_{mkn}$. The edge distributions of $\tilde{\pi}_{mn}$ are given by

$$\sum_{n} \tilde{\pi}_{mn} = \sum_{n,k} \pi_{mkn} = \sum_{k} \pi_{mk}^{(2)} = z_{m}^{(2)}, \quad \sum_{m} \tilde{\pi}_{mn} = \sum_{m,k} \pi_{mkn} = \sum_{k} \pi_{kn}^{(1)} \frac{y_{k}^{(2)}}{y_{k}^{(1)}} =: \tilde{x}_{n},$$
 (S26)

where we have $\tilde{x}_n \leq x_n^{(1)} \leq x_n$, indicating $\boldsymbol{x} \succeq \tilde{\boldsymbol{x}}$. Consequently, we derive the following inequality:

$$\tilde{W}(\boldsymbol{x}, \boldsymbol{y}) + \tilde{W}(\boldsymbol{y}, \boldsymbol{z}) \ge \sum_{mn} \tilde{\pi}_{mn} c_{mn} \ge W(\tilde{\boldsymbol{x}}, \boldsymbol{z}^{(2)}) \ge \tilde{W}(\boldsymbol{x}, \boldsymbol{z}),$$
 (S27)

which establishes the triangle inequality for the generalized Wasserstein distance and completes the proof. \Box