

¹ Supplementary Information for Probabilistic projections of
² global wind and solar power growth based on historical
³ national experience

⁴ Avi Jakhmola¹, Jessica Jewell^{1,2,3}, Vadim Vinichenko¹, Aleh Cherp^{4,5*}

⁵ ¹*Division of Physical Resource Theory, Department of Space, Earth and
⁶ Environment, Chalmers University of Technology, Gothenburg, 41296, Sweden.

⁷ ²Centre for Climate and Energy Transformations and Department of Geography,
⁸ University of Bergen, Bergen, 5020, Norway.

⁹ ³Advancing Systems Analysis, International Institute for Applied Systems Analysis,
¹⁰ Laxenburg, 2361, Austria.

¹¹ ⁴Department of Environmental Science and Policy, Central European University
¹² University, Vienna, 1100, Austria.

¹³ ⁵International Institute for Industrial Environmental Economics, Lund University,
¹⁴ Lund, 22100, Sweden.

¹⁵ *Corresponding author(s). E-mail(s): cherpa@ceu.edu;

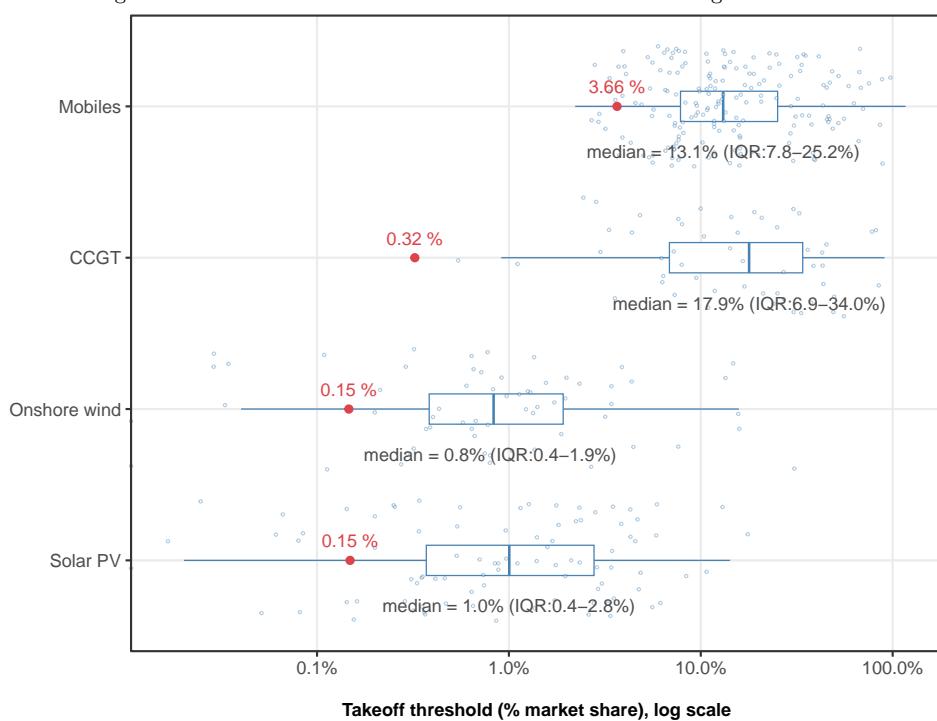
16 **Contents**

17	Supplementary Figures	3
18	Supplementary Tables	19
19	Supplementary Notes	24
20	Supplementary Note 1: Technology growth and diffusion mechanisms and phases	24
21	Supplementary Note 2: Mathematical models for technology growth	27
22	Supplementary Note 3: PROLONG (PRobabilistic mOdeL Of techNology Growth)	30
23	Step 0: Defining rules for the virtual worlds	32
24	Step 1: Exploring diverse technology futures using Monte Carlo simulations	34
25	Step 2: Generating training data from the ensemble of simulated trajectories	37
26	Step 3: Using machine learning to identify the relationships between curtailed national and final global parameters	37
27	Step 4: Generating probabilistic projections from empirical data	38
28	Step 5: Model validation and hindcasting	39
29	Supplementary Note 4: Acceleration scenarios for onshore wind and solar PV	41
30	Supplementary Note 5: The case of offshore wind power	44

³² **Supplementary Figures**

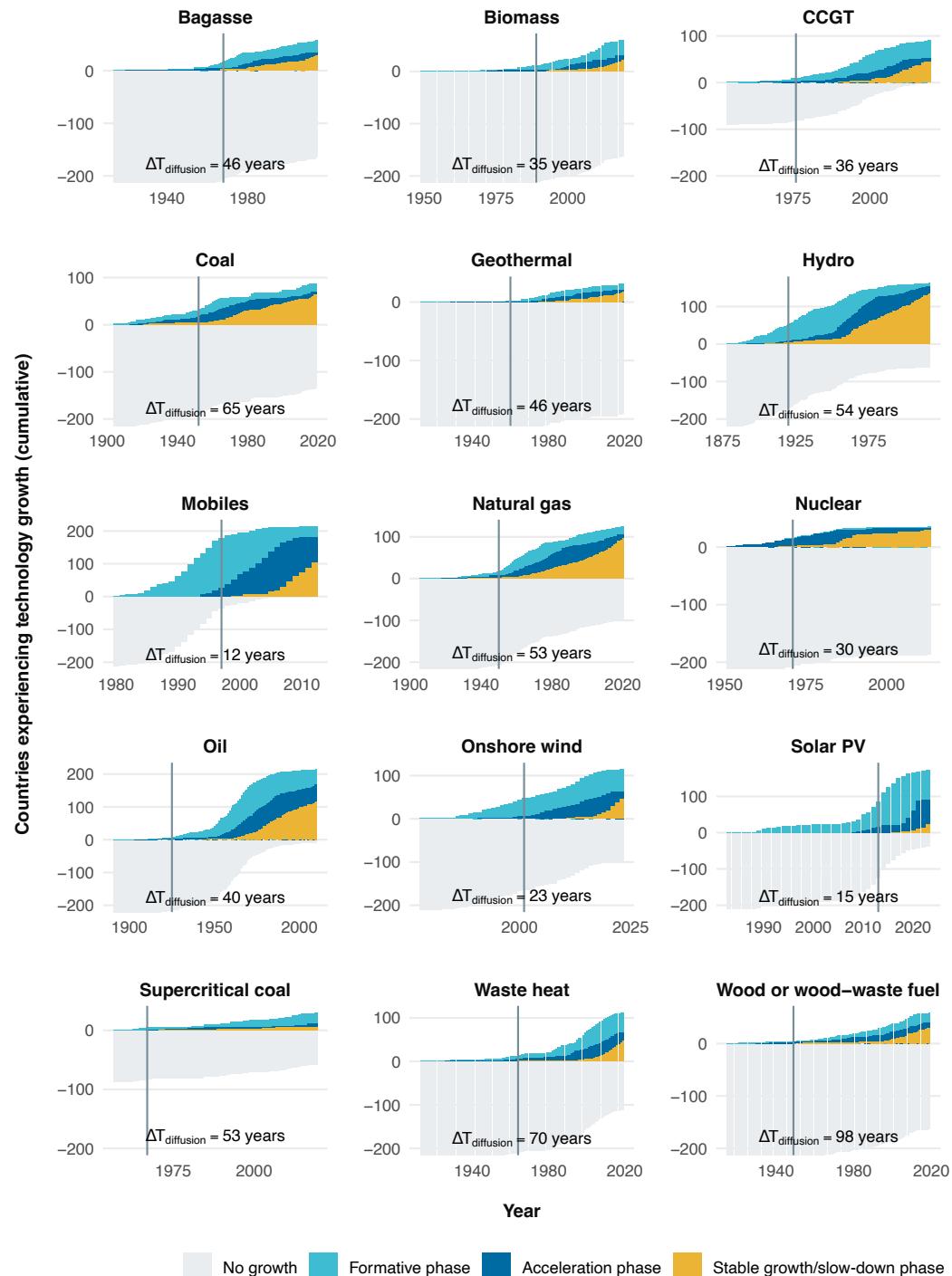
Supplementary Figure 1 National and global takeoff thresholds.

Faint blue dots show takeoff thresholds for individual countries, the boxplots highlight their median, IQR and ranges; red dots indicate global takeoff thresholds. Note: the horizontal axis is on a logarithmic scale.



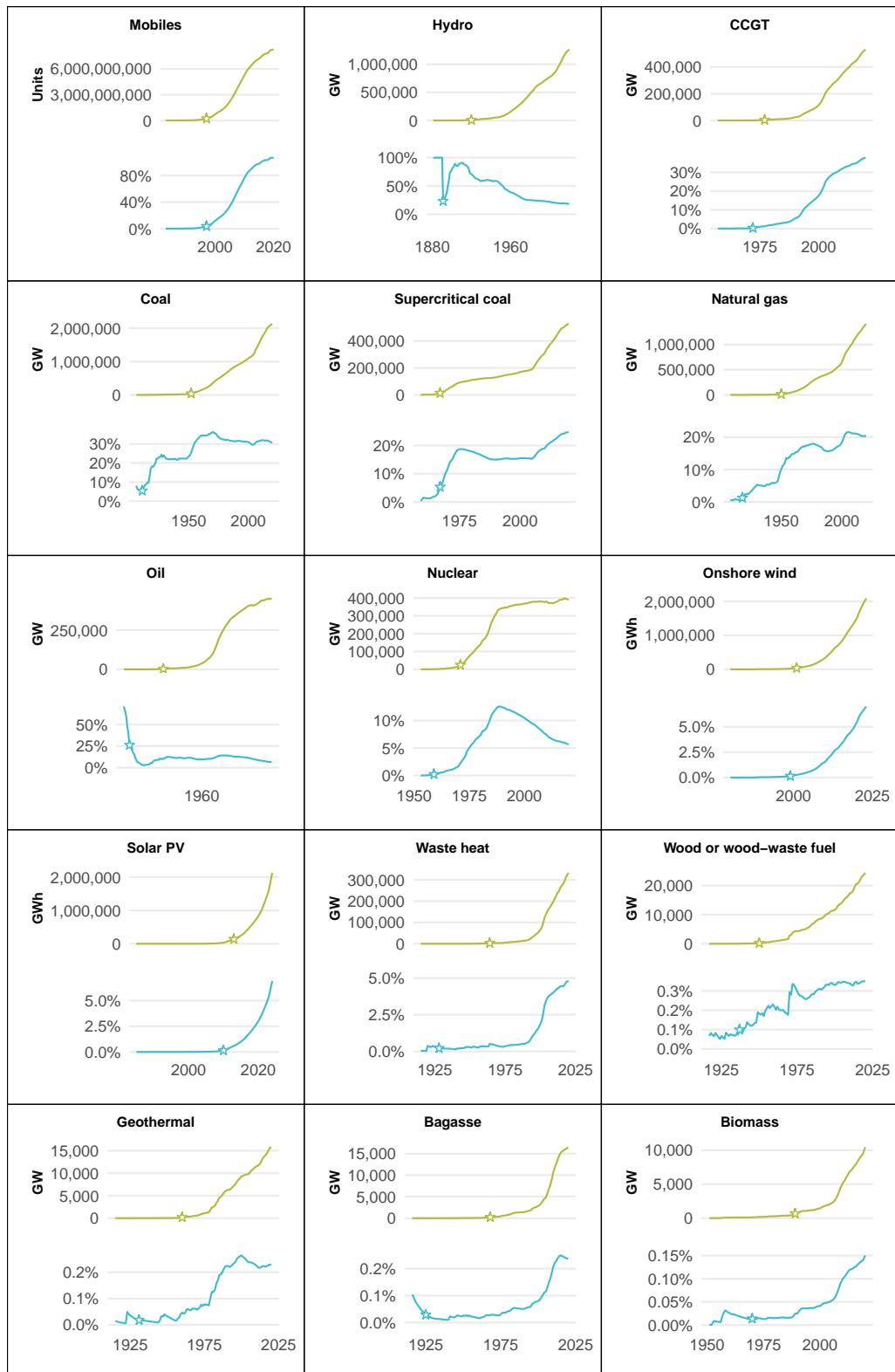
Supplementary Figure 2 Spatial diffusion of technologies.

The cumulative number of countries in different phases of technology growth at different years and the diffusion durations for different technologies. Bars show the number of countries with no deployment (gray), in the formative phases (light blue), in the acceleration phase (dark blue), and in or beyond the stable growth phase (yellow); the gray vertical line indicates the year of global takeoff.



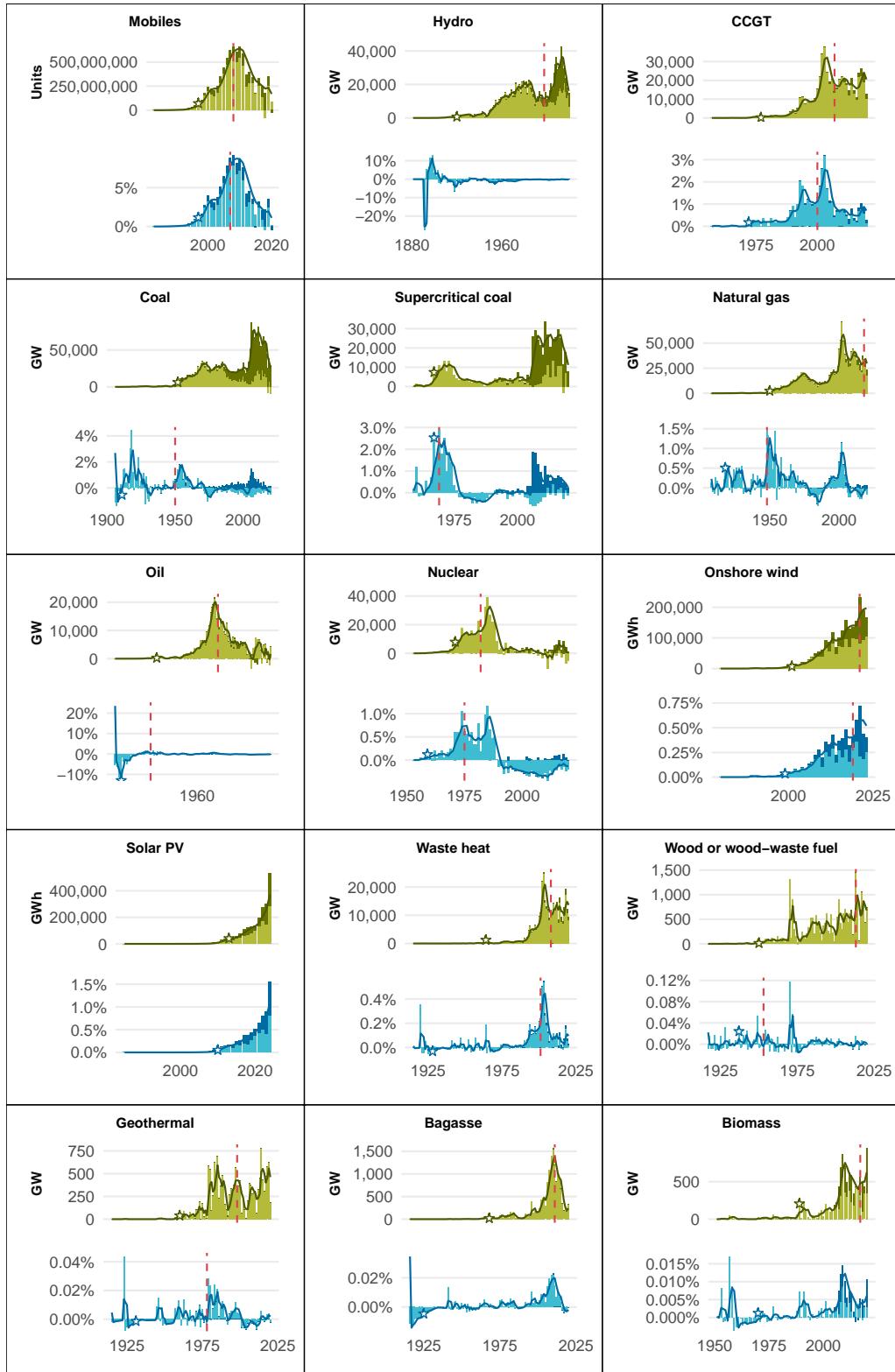
Supplementary Figure 3 Historical technology deployment curves.

Solid lines show global deployment measured in absolute units (green) and as percentage market share (blue); stars indicate takeoff.



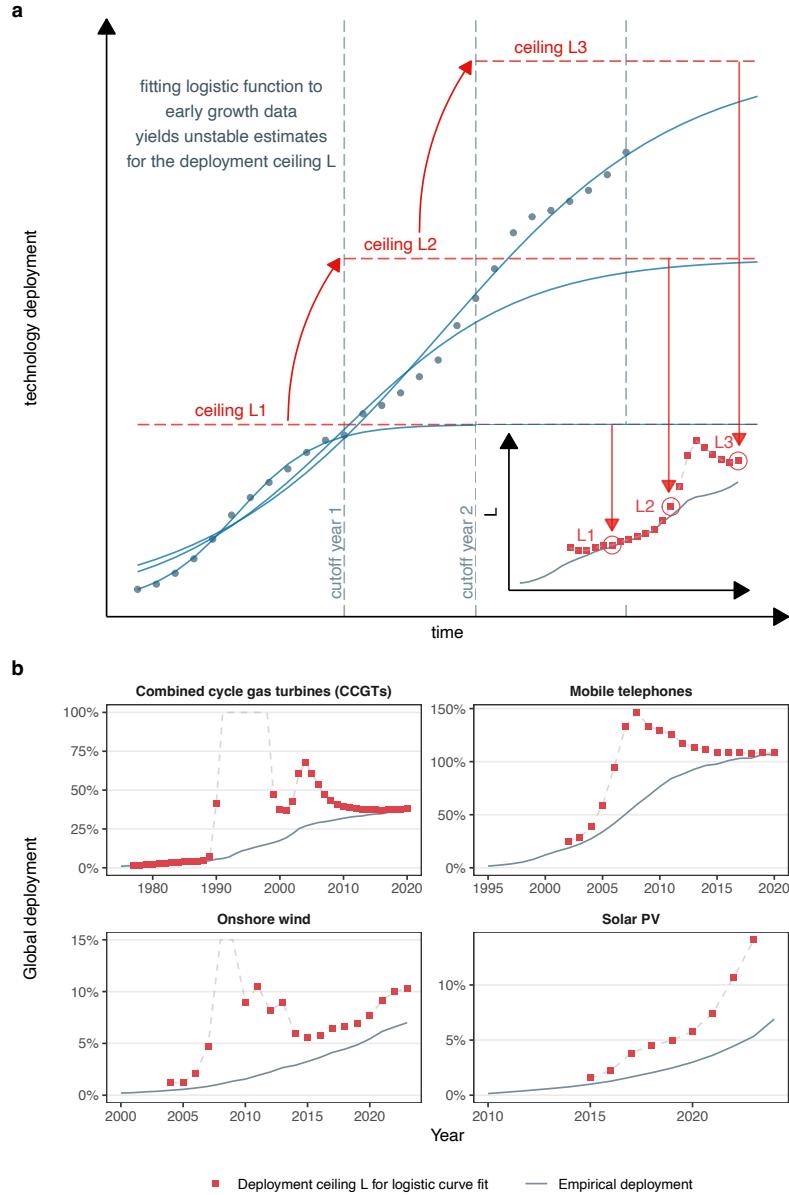
Supplementary Figure 4 Historical annual technology additions.

Bars show global annual additions measured in absolute units (green) and as percentage market share (blue) with Chinese shares highlighted in darker shades, solid lines show their three-year trailing average; stars indicate takeoff; red vertical dashed lines mark inflection points for logistic functions fit to the full deployment time-series.



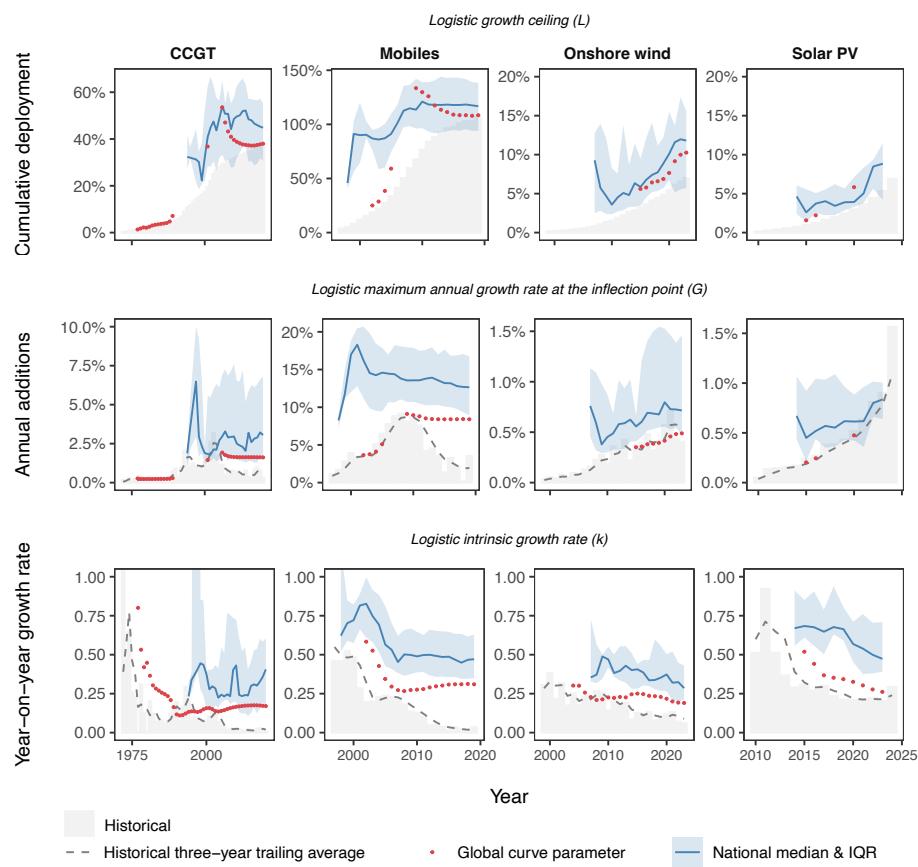
Supplementary Figure 5 The 'moving' L problem.

(a) Illustration of how logistic curves fit to incomplete deployment data struggle to correctly estimate the technology deployment ceiling, L . (b) Estimates for the deployment ceiling "L" (red squares) from logistic curves fit to empirical deployment data (solid gray line) curtailed at different years.



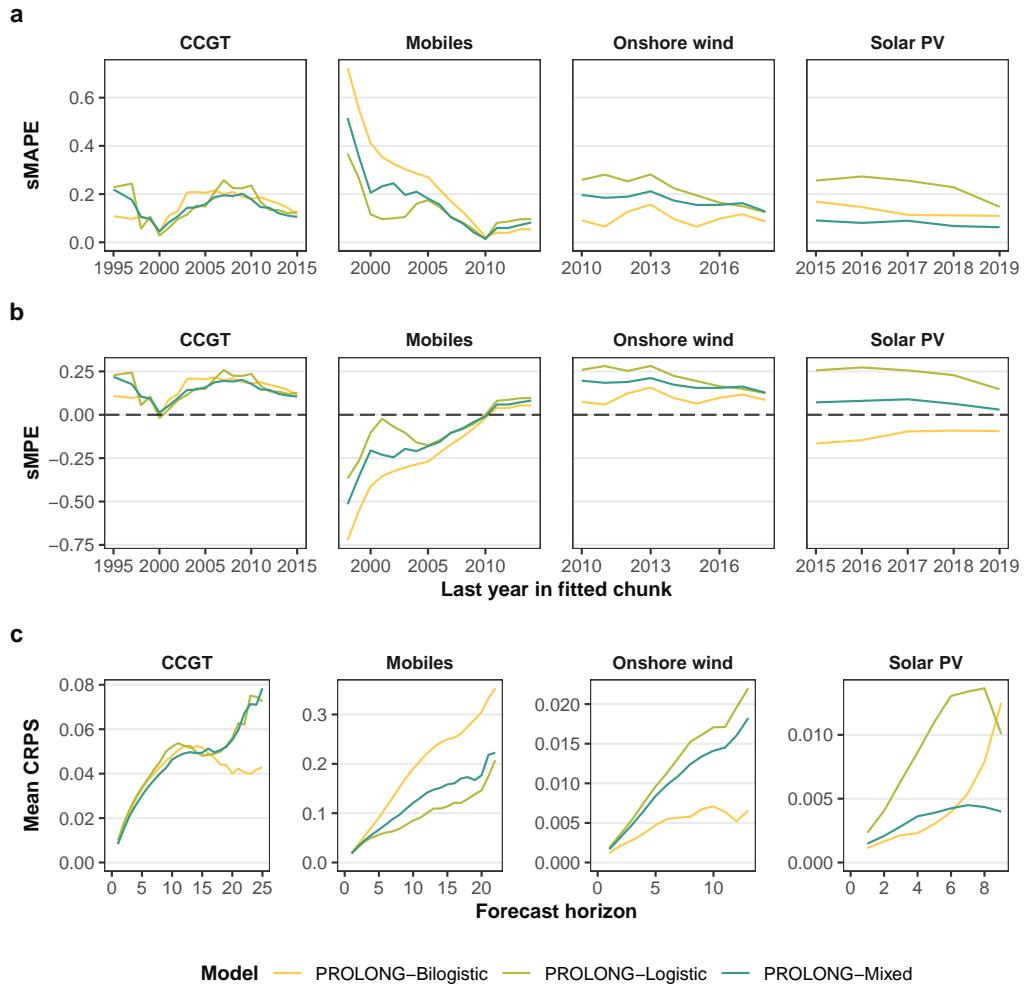
Supplementary Figure 6 The evolution of national and global logistic curve parameters.

Gray bars show historical values and gray dashed lines show their three-year trailing average. Red dots show parameters for logistic curves fit to global data. Solid blue lines and shaded blue intervals show the median and IQR for a sample of parameters for logistic curves fit to national data. Top row shows the global year-on-year growth rate, and the logistic intrinsic growth rate (k). Middle row shows the global deployment, and the logistic growth asymptote (L). Bottom row shows global annual additions, and the logistic maximum annual growth rate at the inflection point (G)

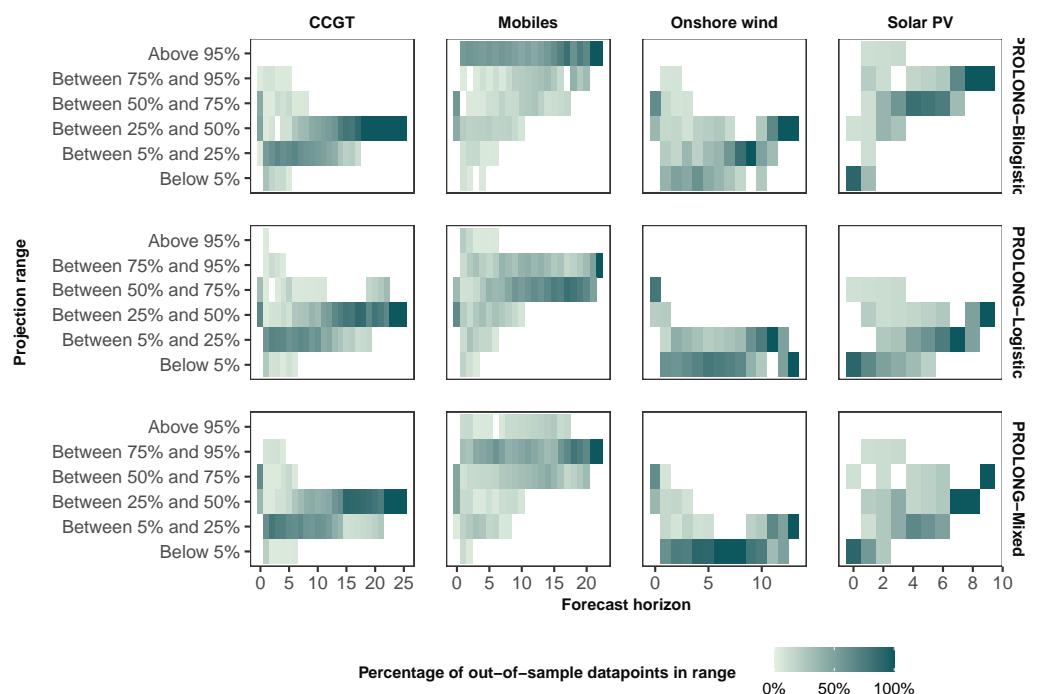


Supplementary Figure 7 Accuracy indicators for different variants of the PROLONG model.

Indicators measuring the projection performance of the PROLONG model trained on simulations assuming individuals countries follow only bilogistic functions (yellow), only logistic functions (olive), or are equally likely to follow either function ('Mixed', green). The symmetric Mean Absolute Percentage Error (a) and symmetric Mean Percentage Error (b) for the median global projections from each model variant at different curtail years. The mean Continuous Ranked Probability score (c) for each model variant for different forecast horizons.

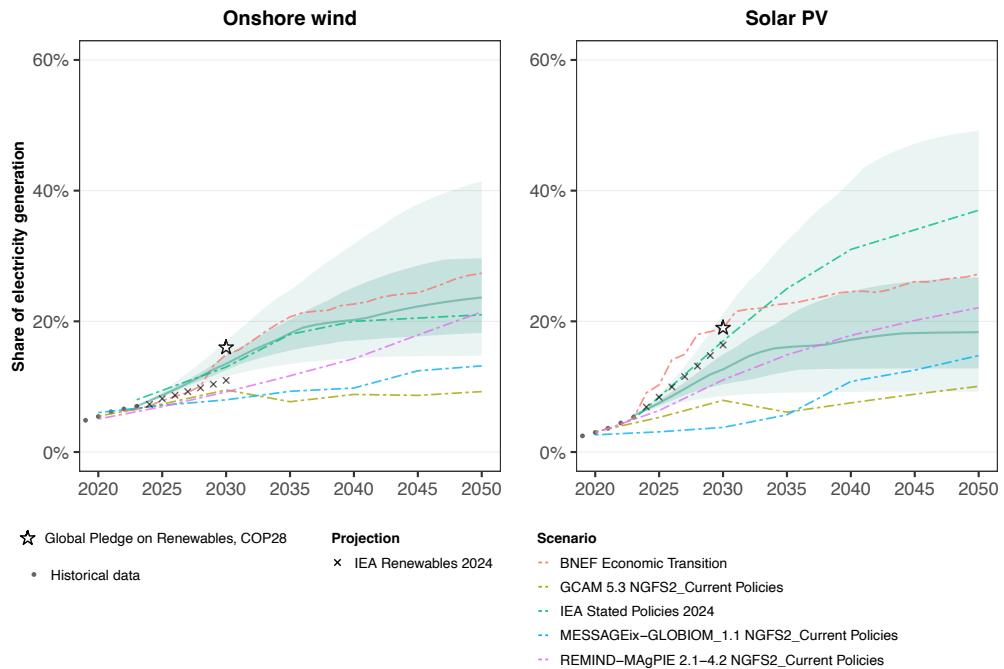


Supplementary Figure 8 Calibration of projection intervals for different variants of the PROLONG model



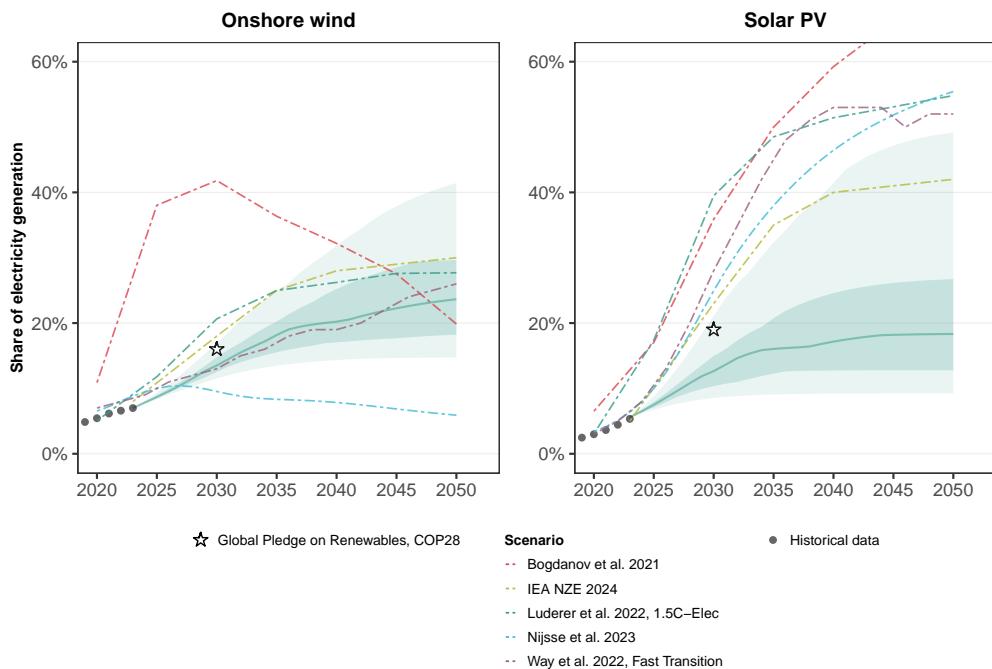
Supplementary Figure 9 Comparing the probabilistic projections for onshore wind and solar PV growth between 2023-2050 to current policy scenarios and market forecasts

Black dots show historical data; solid lines show the median, dark shaded intervals the 25-75th percentile, and light shaded intervals the 5-95th percentile projections from PROLONG; stars show deployment aligned with the COP28 Global Pledge on Renewables; crosses show forecasts from the IEA Renewables 2024 report; dot-dash lines show the IEA Stated Policies scenario (green), the BloombergNEF Economic Transition scenario (red), and three Current Policies scenarios from the IPCC AR6 report (magenta, blue, olive).



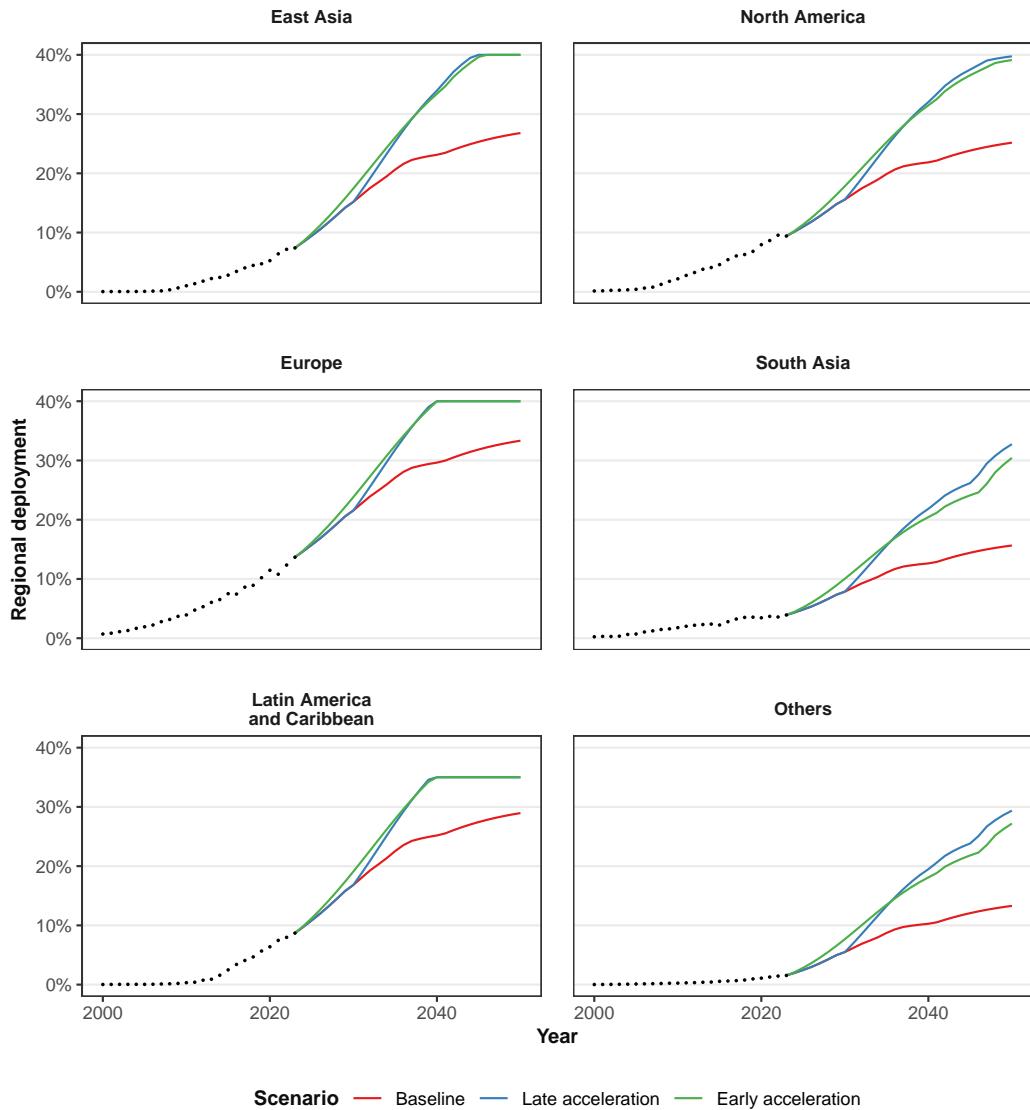
Supplementary Figure 10 Comparing the probabilistic projections for onshore wind and solar PV growth between 2023-2050 to scenarios from the literature.

Black dots show historical data; solid lines show the median, dark shaded intervals the 25-75th percentile, and light shaded intervals the 5-95th percentile projections from PROLONG; stars show deployment aligned with the COP28 Global Pledge on Renewables; dot-dash lines show deployment in refs. [1–5].



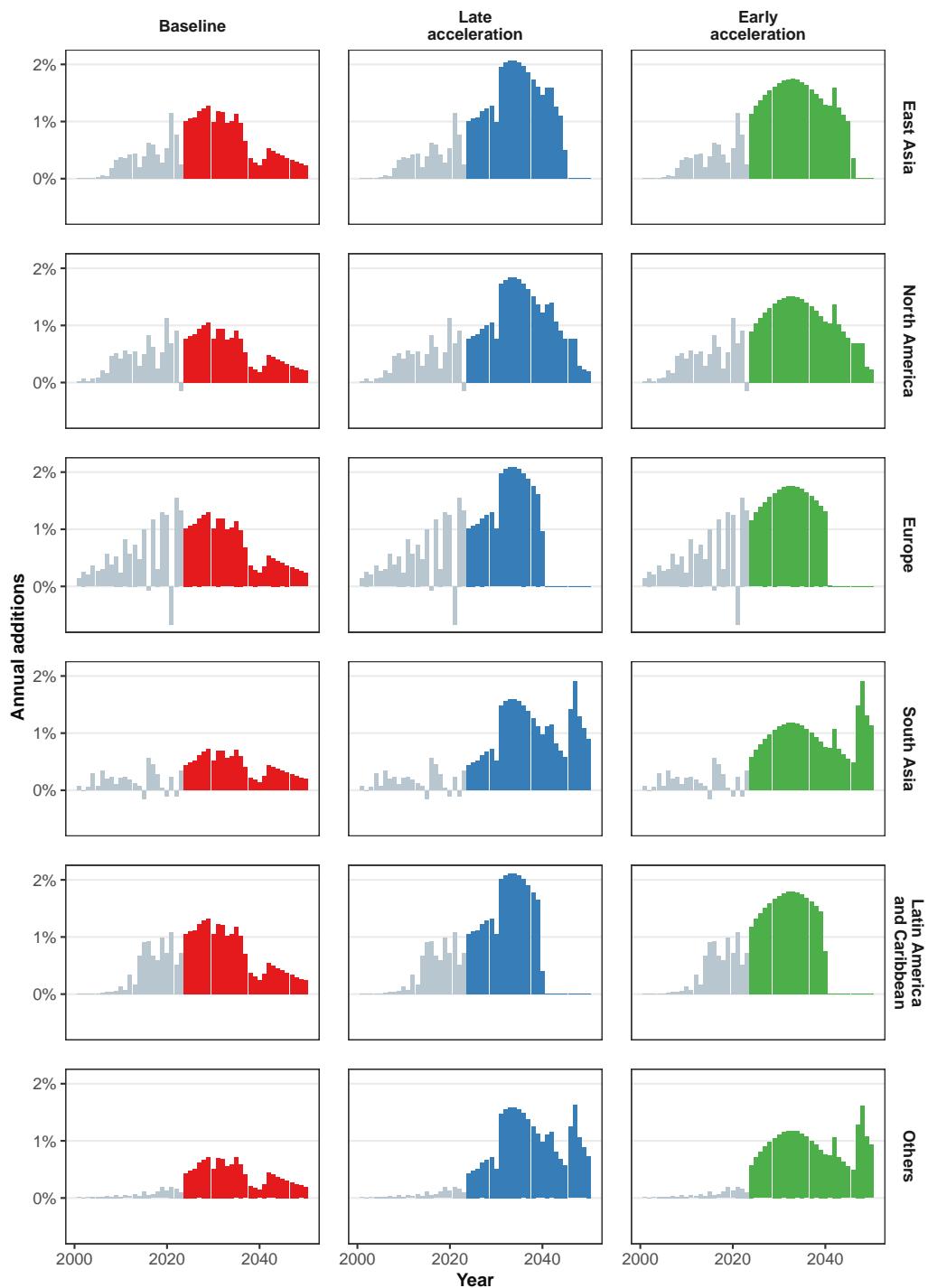
Supplementary Figure 11 Region-wise onshore wind deployment under the Baseline, Early and Late acceleration scenarios.

Dots show historical data; solid lines show deployment in the Baseline (red), Early acceleration (green) and Late acceleration scenarios (blue).



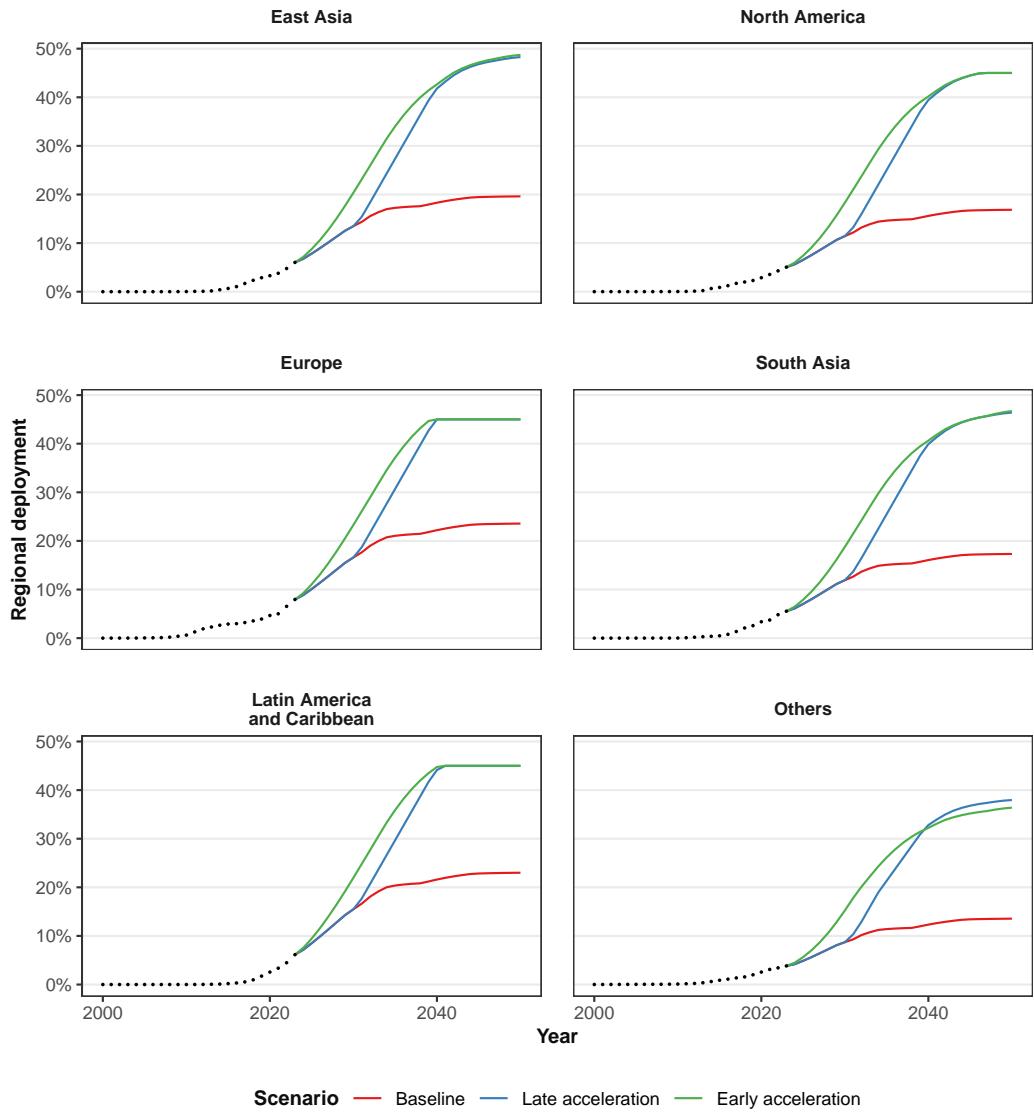
Supplementary Figure 12 Region-wise annual onshore wind additions under the Baseline, Early and Late acceleration scenarios.

Gray bars show historical data; coloured bars show deployment in the Baseline (red), Early acceleration (green) and Late acceleration scenarios (blue).



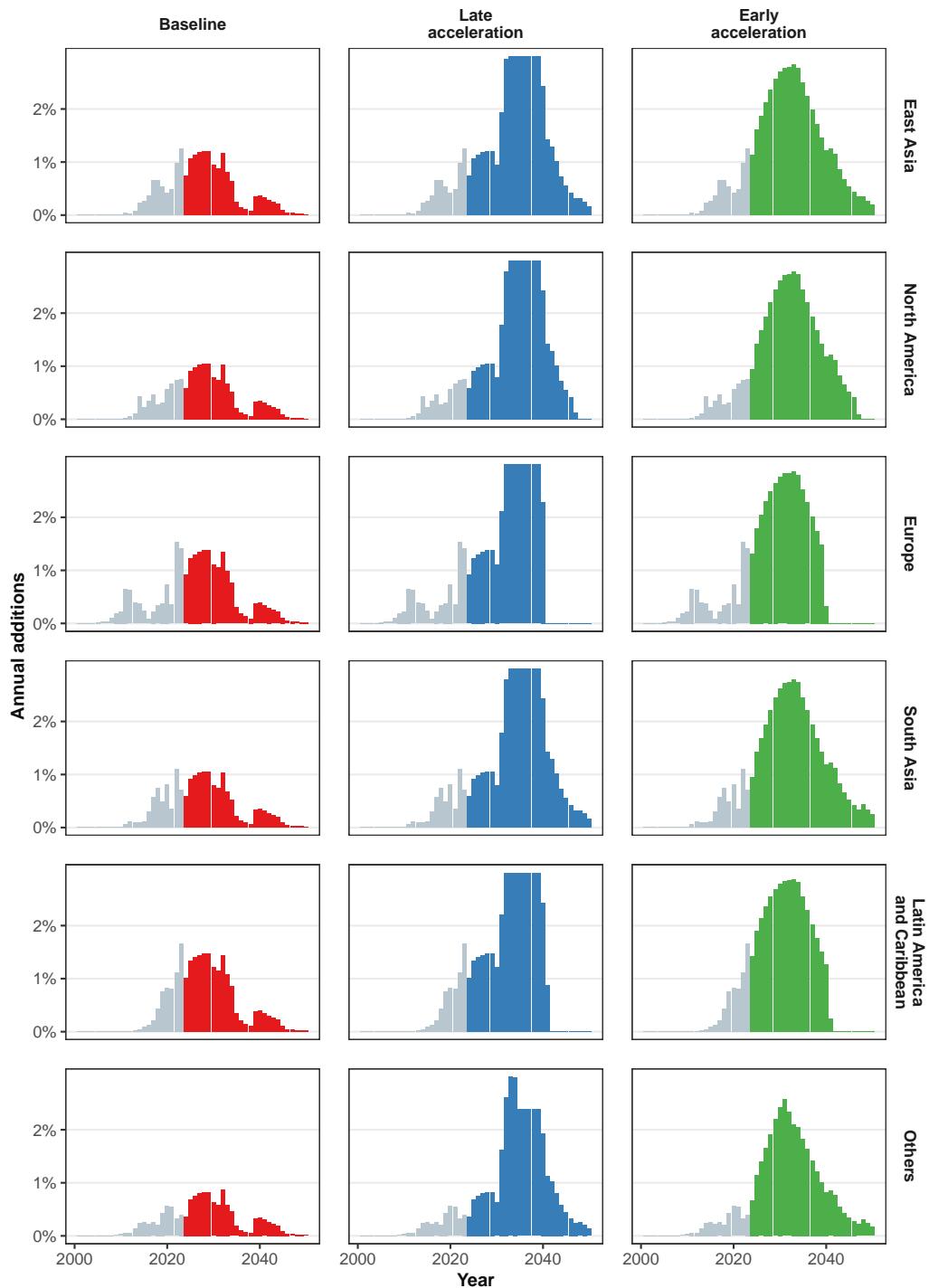
Supplementary Figure 13 Region-wise solar PV deployment under the Baseline, Early and Late acceleration scenarios.

Dots show historical data; solid lines show deployment in the Baseline (red), Early acceleration (green) and Late acceleration scenarios (blue).



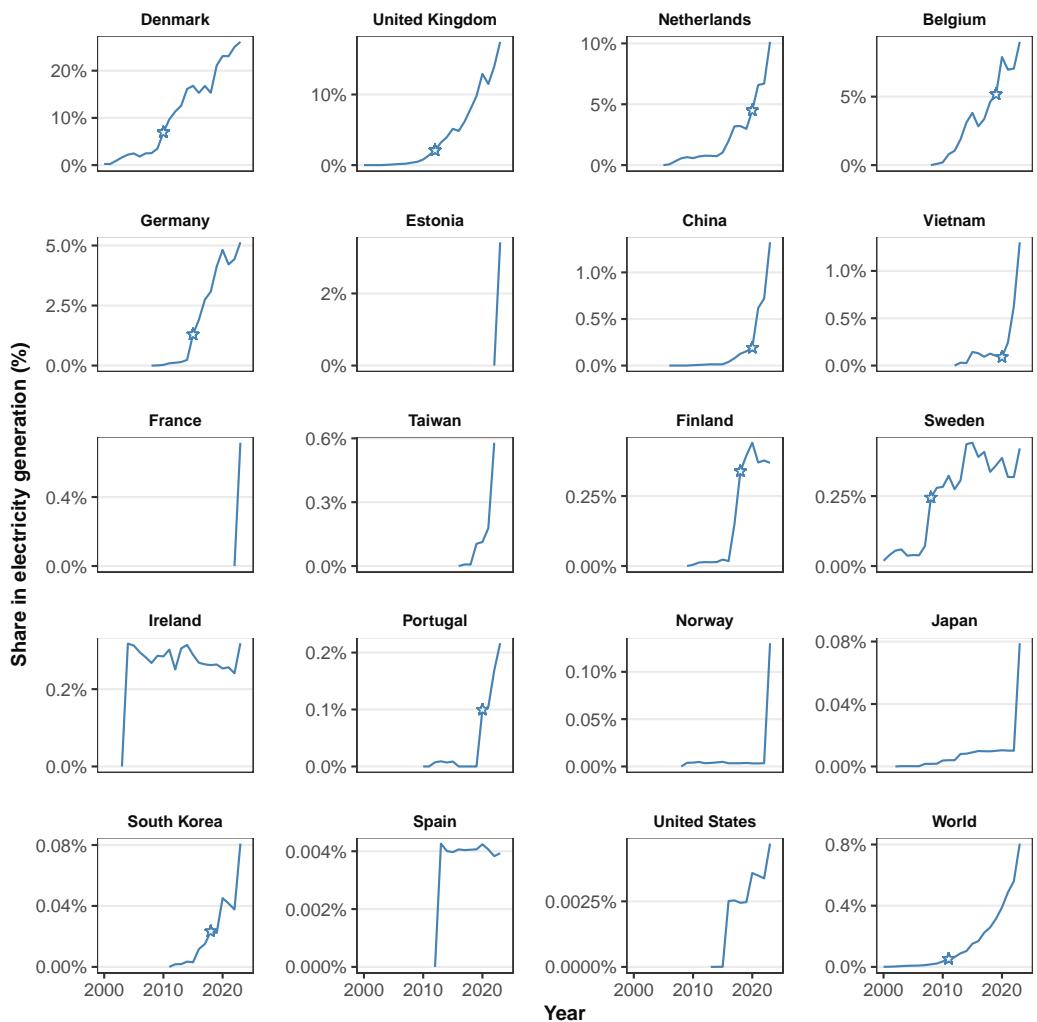
Supplementary Figure 14 Region-wise annual solar PV additions under the Baseline, Early and Late acceleration scenarios.

Gray bars show historical data; coloured bars show deployment in the Baseline (red), Early acceleration (green) and Late acceleration scenarios (blue).



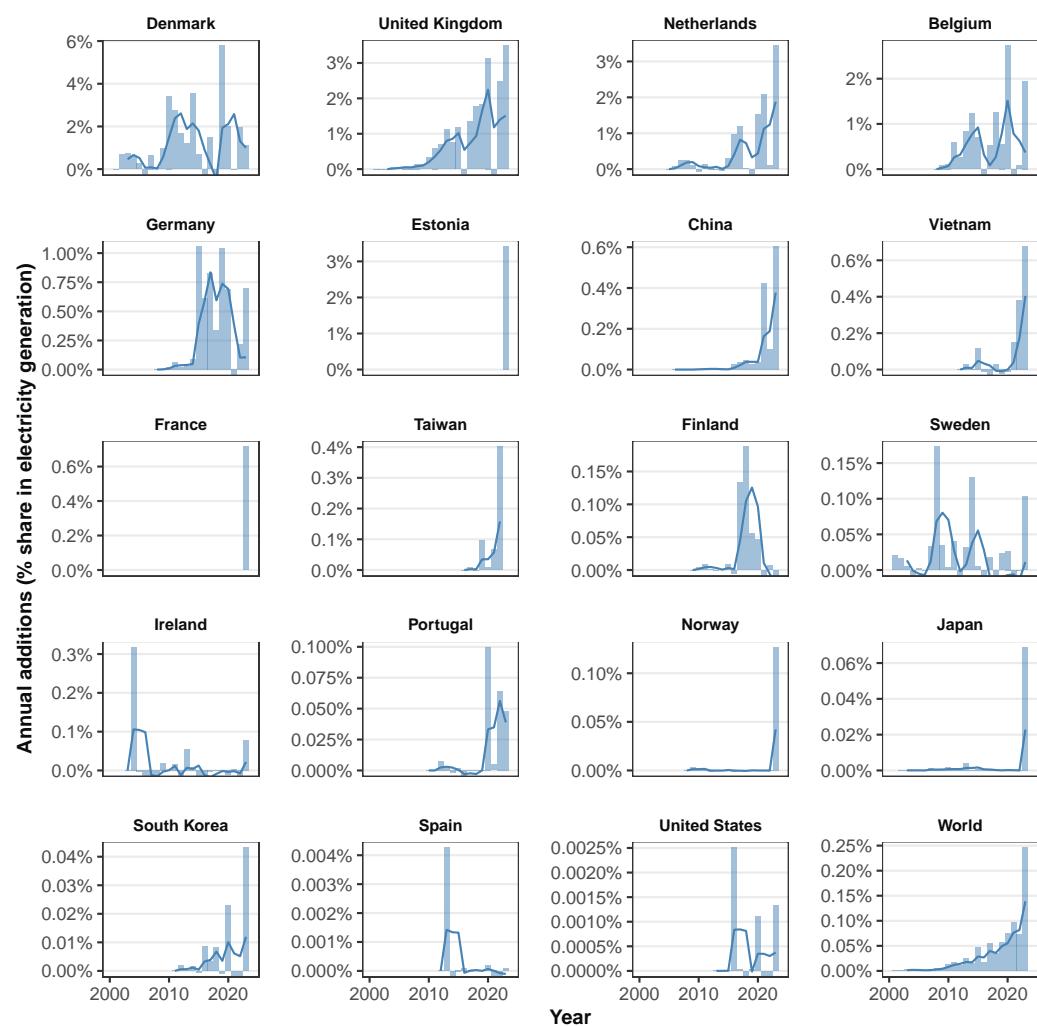
Supplementary Figure 15 Offshore wind deployment

Solid lines show historical deployment; stars indicate technology takeoff.



Supplementary Figure 16 Offshore wind rates

Bars show annual additions, solid lines show their three-year trailing average.



³³ **Supplementary Tables**

Supplementary Table 1 Takeoff years by country for onshore wind.

Country	TO.Year	Cherp et al. (2021)	Country	TO.Year	Cherp et al. (2021)
DK	1991	1989	FO	2014	-
DE	1998	2000	PE	2014	2015
NL	1999	2003	JO	2015	-
ES	2000	1999	UY	2015	-
GR	2000	2001	ZA	2015	2015
JP	2001	-	LT	2016	-
NZ	2003	2005	PK	2016	2016
AT	2004	2004	FK	2017	-
IN	2004	2006	IL	2017	-
PT	2004	2003	NO	2017	2011
AU	2005	2007	IR	2018	-
CA	2005	2009	LV	2018	-
IE	2005	2000	AR	2019	2019
IT	2005	2007	GP	2019	-
KR	2005	-	KE	2019	-
FR	2006	2008	RU	2019	-
NC	2006	-	CU	2020	-
US	2006	2008	KW	2020	-
GB	2007	2007	SK	2020	-
BE	2008	2009	TW	2020	-
CN	2008	2010	VN	2020	-
SE	2008	2008	MD	2021	-
PL	2009	2010	MQ	2021	-
TN	2009	-	OM	2021	-
TR	2009	2010	SA	2022	-
MX	2010	2012			
CH	2011	-			
HR	2011	-			
BR	2012	2013			
CV	2012	-			
LK	2012	-			
LU	2013	-			
MA	2013	-			
UA	2013	-			
CL	2014	2014			
CR	2014	-			
EG	2014	2010			
FI	2014	2014			

Supplementary Table 2 Takeoff years by country for solar PV.

Country	TO.Year	Cherp et al. 2021	Country	TO.Year	Cherp et al. 2021
DE	2008	2009	RU	2020	-
ES	2008	2009	SA	2020	-
PT	2009	2014	SD	2020	-
AT	2010	2014	SV	2020	-
AU	2010	2013	VN	2020	-
IT	2010	2011	AM	2021	-
CA	2011	-	BA	2021	-
FR	2011	2014	BE	2021	2011
IN	2011	2016	BG	2021	2012
CH	2012	2014	BJ	2021	-
GB	2012	2014	BR	2021	2019
JP	2012	2013	BZ	2021	-
TH	2012	2015	CD	2021	-
DK	2013	2013	CL	2021	2015
KR	2013	2017	CO	2021	-
LU	2013	-	GR	2021	2012
US	2013	2016	HK	2021	-
CN	2014	2016	HR	2021	-
ER	2014	-	KE	2021	-
NL	2014	2016	LT	2021	-
ZA	2014	2016	MK	2021	-
FI	2017	-	MZ	2021	-
AW	2018	-	PK	2021	-
BF	2018	-	PL	2021	-
IL	2018	2014	RO	2021	2014
PE	2018	2018	RS	2021	-
PR	2018	-	SE	2021	-
AE	2019	-	SG	2021	-
AR	2019	-	SI	2021	-
CU	2019	-	SL	2021	-
CV	2019	-	TN	2021	-
HU	2019	2018	UZ	2021	-
LK	2019	-	AL	2022	-
MN	2019	-	ZM	2022	-
MX	2019	2019			
MY	2019	-			
SR	2019	-			
TW	2019	-			
UA	2019	-			
ZW	2019	-			
AF	2020	-			
AG	2020	-			
AO	2020	-			
BD	2020	-			
CI	2020	-			
CY	2020	-			
DO	2020	-			
EE	2020	-			
EG	2020	-			
ID	2020	-			
KH	2020	-			
LC	2020	-			
ML	2020	-			
NG	2020	-			
NZ	2020	-			
QA	2020	-			

Supplementary Table 3 Parameter configurations for onshore wind Monte Carlo simulations.

Config	Growth rate (k)	Ceiling (L)	Takeoff year	Design type
<i>Base distribution parameters</i>				
Base	$\Gamma(4, 8.163)$	$\Gamma(3, 39.474)$	$\mathcal{N}(5.5, 3.0)$	–
<i>Grid exploration configurations</i>				
1	0.144	0.157	10.5	Grid (low k , low L)
2	0.331	0.157	10.5	Grid (mid k , low L)
3	0.519	0.157	10.5	Grid (high k , low L)
4	0.144	0.319	10.5	Grid (low k , mid L)
5	0.331	0.319	10.5	Grid (mid k , mid L)
6	0.519	0.319	10.5	Grid (high k , mid L)
7	0.144	0.481	10.5	Grid (low k , high L)
8	0.331	0.481	10.5	Grid (mid k , high L)
9	0.519	0.481	10.5	Grid (high k , high L)
<i>Face-centered configurations</i>				
10	0.238	0.238	10.5	Face-centered (lower diagonal)
11	0.238	0.400	10.5	Face-centered (upper row)
12	0.425	0.238	10.5	Face-centered (right column)
13	0.425	0.400	10.5	Face-centered (upper diagonal)

Note: Base distributions are bounded ($0.01 \leq L \leq 0.75$, $0.1 \leq k \leq 1.2$). Parameter distributions are shifted to the means shown while maintaining the shape of the base distribution.

Supplementary Table 4 Parameter configurations for solar PV Monte Carlo simulations

Config	Growth rate (k)	Ceiling (L)	Takeoff year	Design type
<i>Base distribution parameters</i>				
Base	$\Gamma(4, 5.181)$	$\Gamma(3, 74.074)$	$\mathcal{N}(5.4, 1.98)$	–
<i>Grid exploration configurations</i>				
1	0.225	0.160	10.4	Grid (low k , low L)
2	0.521	0.160	10.4	Grid (mid k , low L)
3	0.817	0.160	10.4	Grid (high k , low L)
4	0.225	0.381	10.4	Grid (low k , mid L)
5	0.521	0.381	10.4	Grid (mid k , mid L)
6	0.817	0.381	10.4	Grid (high k , mid L)
7	0.225	0.602	10.4	Grid (low k , high L)
8	0.521	0.602	10.4	Grid (mid k , high L)
9	0.817	0.602	10.4	Grid (high k , high L)
<i>Face-centered configurations</i>				
10	0.373	0.271	10.4	Face-centered (lower diagonal)
11	0.373	0.492	10.4	Face-centered (upper row)
12	0.669	0.271	10.4	Face-centered (right column)
13	0.669	0.492	10.4	Face-centered (upper diagonal)

Note: Base distributions are bounded ($0.01 \leq L \leq 0.95$, $0.1 \leq k \leq 1.2$). Parameter distributions are shifted to the means shown while maintaining the shape of the base distribution.

Supplementary Table 5 Parameter configurations for mobile phones Monte Carlo simulations

Config	Growth rate (k)	Ceiling (L)	Takeoff year	Design type
<i>Base distribution parameters</i>				
Base	$\Gamma(4, 5.096)$	$\Gamma(3, 6.508)$	$\mathcal{N}(5.92, 2.68)$	–
<i>Grid exploration configurations</i>				
1	0.229	0.634	10.92	Grid (low k , low L)
2	0.530	0.634	10.92	Grid (mid k , low L)
3	0.831	0.634	10.92	Grid (high k , low L)
4	0.229	0.981	10.92	Grid (low k , mid L)
5	0.530	0.981	10.92	Grid (mid k , mid L)
6	0.831	0.981	10.92	Grid (high k , mid L)
7	0.229	1.327	10.92	Grid (low k , high L)
8	0.530	1.327	10.92	Grid (mid k , high L)
9	0.831	1.327	10.92	Grid (high k , high L)
<i>Face-centered configurations</i>				
10	0.379	0.807	10.92	Face-centered (lower diagonal)
11	0.379	1.154	10.92	Face-centered (upper row)
12	0.680	0.807	10.92	Face-centered (right column)
13	0.680	1.154	10.92	Face-centered (upper diagonal)

Note: Base distributions are bounded ($0.10 \leq L \leq 2.0$, $0.1 \leq k \leq 1.2$). Parameter distributions are shifted to the means shown while maintaining the shape of the base distribution.

Supplementary Table 6 Parameter configurations for CCGT Monte Carlo simulations

Config	Growth rate (k)	Ceiling (L)	Takeoff year	Design type
<i>Base distribution parameters</i>				
Base	$\Gamma(4, 9.091)$	$\Gamma(3, 7.752)$	$\mathcal{N}(6.0, 5.0)$	–
<i>Grid exploration configurations</i>				
1	0.133	0.448	11.0	Grid (low k , low L)
2	0.300	0.448	11.0	Grid (mid k , low L)
3	0.467	0.448	11.0	Grid (high k , low L)
4	0.133	0.569	11.0	Grid (low k , mid L)
5	0.300	0.569	11.0	Grid (mid k , mid L)
6	0.467	0.569	11.0	Grid (high k , mid L)
7	0.133	0.690	11.0	Grid (low k , high L)
8	0.300	0.690	11.0	Grid (mid k , high L)
9	0.467	0.690	11.0	Grid (high k , high L)
<i>Face-centered configurations</i>				
10	0.217	0.508	11.0	Face-centered (lower diagonal)
11	0.217	0.629	11.0	Face-centered (upper row)
12	0.383	0.508	11.0	Face-centered (right column)
13	0.383	0.629	11.0	Face-centered (upper diagonal)

Note: All configurations use a mixture of logistic (50%) and bilogistic (50%) models. Base distributions are bounded ($0.01 \leq L \leq 1.0$, $0.1 \leq k \leq 1.2$).

Supplementary Table 7 Regional deployment ceilings for onshore wind and solar PV in the acceleration scenarios.

Region	Onshore wind ceiling (%)	Solar PV ceiling (%)
East Asia	40	50
North America	40	45
South Asia	35	55
Europe	40	45
Asia-Pacific Developed	30	30
South-East Asia and developing Pacific	35	55
Africa	40	55
Eurasia	50	40
Latin America and Caribbean	35	45
Middle East	40	55

Note: Ceiling values represent maximum deployment potential as percentage of electricity generation.

Supplementary Table 8 Onshore wind deployment by acceleration scenario and region.

Scenario	Region	Final Deployment (%)	Peak Rate (p.p./yr)	Total Growth (p.p.)	Growth Share (%)
Baseline	<i>Global</i>	23.6	—	16.6	—
	Eastern Asia	26.8	1.28	—	41
	Europe	33.3	1.29	—	15
	Latin America and Caribbean	29.0	1.33	—	7
	North America	25.2	1.04	—	16
	South Asia	15.7	0.72	—	5
	Others	13.3	0.72	—	15
Early acceleration	<i>Global</i>	36.0	—	29.0	—
	Eastern Asia	40.0	1.74	—	40
	Europe	40.0	1.76	—	11
	Latin America and Caribbean	35.0	1.79	—	5
	North America	39.1	1.51	—	17
	South Asia	30.4	1.90	—	7
	Others	27.2	1.61	—	19
Late acceleration	<i>Global</i>	36.8	—	29.7	—
	Eastern Asia	40.0	2.07	—	39
	Europe	40.0	2.09	—	11
	Latin America and Caribbean	35.0	2.12	—	5
	North America	39.7	1.84	—	17
	South Asia	32.8	1.90	—	7
	Others	29.4	1.62	—	20

Note: Final Deployment and Total Growth shown as percentage of electricity generation; Peak Rate shown as annual percentage point increase (p.p./yr); Growth Share represents regional contribution to total global growth between 2023-2050.

Supplementary Table 9 Solar PV deployment by acceleration scenario and region.

Scenario	Region	Final Deployment (%)	Peak Rate (p.p./yr)	Total Growth (p.p.)	Growth Share (%)
Baseline	<i>Global</i>	18.3	—	12.7	—
	East Asia	19.6	1.20	—	38
	Europe	23.6	1.37	—	15
	Latin America and Caribbean	23.0	1.47	—	8
	North America	16.9	1.05	—	15
	South Asia	17.3	1.05	—	7
	Others	13.6	0.88	—	17
Early acceleration	<i>Global</i>	44.6	—	39.0	—
	East Asia	48.7	2.83	—	39
	Europe	45.0	2.87	—	12
	Latin America and Caribbean	45.0	2.88	—	6
	North America	45.0	2.79	—	17
	South Asia	46.7	2.79	—	8
	Others	36.4	2.57	—	18
Late acceleration	<i>Global</i>	44.7	—	39.1	—
	East Asia	48.3	3.00	—	38
	Europe	45.0	3.00	—	12
	Latin America and Caribbean	45.0	3.00	—	6
	North America	45.0	3.00	—	17
	South Asia	46.4	3.00	—	8
	Others	38.0	3.00	—	19

Note: Final Deployment and Total Growth shown as percentage of electricity generation; Peak Rate shown as annual percentage point increase (p.p./yr); Growth Share represents regional contribution to total global growth between 2023-2050.

³⁴ **Supplementary Notes**

³⁵ **Supplementary Note 1: Technology growth and diffusion mechanisms and**
³⁶ **phases**

³⁷ The growth of new technologies is often represented as following an S-curve, where growth first
³⁸ accelerates, reaches a peak rate, and subsequently slows down and ends [6–8]. This mirrors the use
³⁹ of S-curves in disciplines like ecology and epidemiology and reflects the intuitive idea of early growth
⁴⁰ being driven by positive feedbacks before encountering increasing barriers and limits which ultimately
⁴¹ prove unsurmountable.

⁴² **The formative phase and technology take-off**

⁴³ Every new technology begins in the formative phase where its use is characterised by low deploy-
⁴⁴ ment levels and erratic, unpredictable growth within a small set of niches [9–13]. Here, the growth
⁴⁵ and evolution of the technology is shaped by innovation, experimentation, and failures and as it “is
⁴⁶ tested, refined and adapted to market conditions” [14] with little interaction with the wider system.
⁴⁷ Together with the emergence of actor networks, business models and regulatory and policy envi-
⁴⁸ ronments, these developments allow the socio-technical regimes around the technology to facilitate
⁴⁹ consistent growth [10, 11, 15, 16].

⁵⁰ This growth ‘take-off’ [11, 13, 17, 18] or “beginning of the movement” [6] signals the end of the
⁵¹ formative phase and marks the first turning point in the technology’s adoption. The existence of
⁵² the formative phase has been documented at both the global [13] and country levels [11, 18]. At the
⁵³ global level it involves technology learning to reduce costs, standardisation of designs and establishing
⁵⁴ global supply chains, while at the country level it involves establishing necessary regulatory and
⁵⁵ market conditions suited to a specific national context.

⁵⁶ The differences in when and which countries experience take-off illustrate the characteristics of the
⁵⁷ spatial diffusion of the technology [11]. However, while the literature proposes indicative thresholds
⁵⁸ for take-off – 2.5% [13] or between 0.3-1.8% [9] of the market, 100 MW installed capacity [19], 1% of
⁵⁹ total electricity supply [11, 20] – no take-off thresholds have been empirically established as yet. This
⁶⁰ presents a important challenge with regards to assessments of the role that emerging technologies
⁶¹ might play in the future energy system. A technology that is beyond the formative phase in multiple
⁶² markets may be judged to hold greater, more evidence-backed promise compared to one which isn’t,
⁶³ but how do we make these assessments in the absence of a way to reliably measure when the formative
⁶⁴ phase ends? This also has implications for which policies are designed and implemented to accelerate

65 technological change. Supportive policies can play an important role in shortening the duration of the
66 formative phase and enable earlier take-off within countries as well as faster cross-country diffusion.

67 Our contribution to this puzzle is two-fold: we first develop a method to empirically identify when
68 different technologies take-off in different countries (Methods), and then use these estimates (Sup-
69 plementary Figure 1) to measure how quickly technologies diffuse across countries (Supplementary
70 Figure 2).

71 To measure this 'diffusion duration' we fit a logistic curve to the cumulative count for the number
72 of countries where a technology has taken off and calculate $\Delta T_{diffusion} = \ln(81)/k$, where k is the
73 estimated growth constant. This metric indicates the years elapsed between the technology reaching
74 take-off in 10% and 90% of countries. We show that while this cross-national diffusion took over half
75 a century for older energy technologies like coal and hydropower, more recent (but still complex [21])
76 technologies like combined cycle gas turbines (CCGTs) and nuclear power have had shorter diffusion
77 of durations of 36 and 30 years respectively. On the other end of the spectrum, mobile telephones,
78 a granular [22], consumer-driven technology has had a diffusion duration of only 12 years. Solar PV
79 and onshore wind fall in-between these cases with diffusion durations of 15 and 23 years respectively
80 (Supplementary Figure 2).

81 **The acceleration phase**

82 After take-off, the technology enters the acceleration phase where it's growth begins to follow
83 an S-curve. The acceleration phase is characterised by a consistent increase in annual deployment
84 additions driven by positive feedbacks from technology and policy learning, and increasing investment
85 profitability. These 'increasing returns' [23] or 'cumulative causation' [24] may manifest as an increase
86 in the profitability of installing and operating new technologies or political gains from extending
87 support to them at the national level. At the global level they may result from increasing economies
88 of scale for manufacturing and servicing artifacts for the new technology and an expansion in the
89 number of countries adopting the technology.

90 Consistent with S-curve behaviour, technologies in the acceleration phase experience a consistent
91 decline in the year-on-year relative growth rates even as the annual additions are expanding in
92 absolute terms. The annual additions keep increasing until they reach their maximum rate – this
93 marks the second turning point in the technology's adoption where the positive feedbacks driving
94 accelerating growth are balanced out by countervailing barriers [11].

95 These barriers can take various shapes and forms and appear at different stages of the adoption
96 process, with their cumulative impact intensifying with increasing deployment. They can include

97 resistance from incumbents, declining social acceptance and increasing public opposition, system
98 integration challenges, land and other resource-use constraints, limits to supporting infrastructure,
99 supply chain congestion, or limits to institutional capacity [25–38].

100 **Growth pulses and the stable growth phase**

101 It is typically assumed that a technology's growth immediately slows and approaches the saturation
102 phase after it achieves its peak growth rate as the increasing barriers to adoption overpower the
103 mechanisms driving it. At the end of the saturation the technology's growth grinds to a complete
104 halt and stagnates at its peak market share or final deployment ceiling [39]. Following this point, the
105 technology may maintain its market share until it begins to lose ground to an emerging alternative.

106 Contrary to this idea, we find that in some cases, the technology may experience a fresh 'pulse' of
107 growth due to the availability of new markets, or the (re-)introduction of supportive measures. These
108 growth pulses can be observed for several technologies at both the national and global scales. At the
109 national scale, these pulses may be linked to the introduction of new policies, changing regulations,
110 market reforms, financial support schemes, or due to other changes in the socio-technical landscape.
111 At the global scale, they may result from market expansion as a technology diffuses to a new set of
112 countries, or renewed growth in countries where growth had previously begun to slow or stagnate.
113 For some technologies including nuclear power, coal and hydropower we see a renewed pulse of global
114 additions due to delayed but large-scale adoption in Asia with China driving a substantial share of
115 new growth (Supplementary Figure 4).

116 Together, the interplay of these mechanisms often culminates in a prolonged stable growth phase,
117 with a balance between drivers and barriers yielding a period of nearly-linear growth. The presence of
118 this stable phase hints at the role that targeted policy effort can play in sustaining growth over longer
119 periods of time and delaying saturation. Policy effort can induce diffusion through cross-country
120 technology transfers and knowledge spillovers, accelerate takeoff by helping curtail the duration of
121 the formative phase, prolong the stable growth phase by introducing measures that address emerging
122 barriers and delay saturation, and catalyse renewed growth pulses by creating new incentive
123 structures.

124 In sum, we argue that the growth of a new technology proceeds through a sequence of four
125 distinct phases – formative, acceleration, stable growth, and saturation. These phases are repeated in
126 every country at different points in time, and global deployment patterns emerge from the aggregate
127 effects of national adoption. Initially global growth is largely influenced by technology take-off and
128 acceleration in a small number of early adopters. Subsequently, it is shaped by asynchronicities

129 in cross-national diffusion, takeoff, acceleration, peaking and saturation which generate a myriad
130 co-evolving feedbacks, synergies and dissonance.

131 **The measurement of technology growth**

132 Our analysis also shows that there are different metrics which can be used to measure technology
133 adoption, and that the choice of metric influences the inferences one draws about the nature of a
134 technology's growth. We measure technology growth in relation to the larger market – shares in
135 electricity generation for solar and wind for which we have better generation data, shares in installed
136 electricity generation capacity for other energy technologies, and share in population for mobiles.

137 Technology adoption is also often measured in absolute units (e.g. GW of solar capacity or MWh
138 of solar electricity generation), but this ignores the crucial relationship between a technology and the
139 market it operates in – when we measure adoption, a technology's market share is not only influenced
140 by its own deployment growth dynamics but also those of the larger market within which it operates.

141 We show that the earliest electricity generating technologies based on coal, oil and hydropower
142 were often responsible for creating a new market for electricity when they first began to be deployed.
143 This led to their market shares starting at close to 100% and then declining when other technologies
144 entered the market (Supplementary Figure 3). Their deployment patterns are markedly different
145 from later technologies like nuclear power that entered a pre-existing market for electricity and saw
146 their shares gradually increase from zero. The example of nuclear power also illustrates how the size
147 of the overall market impacts the characteristics of the technology's adoption curve – because of the
148 relatively smaller size of the overall electricity system at the time of its adoption, even small increases
149 in absolute deployment could translate to relatively big jumps in the technology's market share.

150 Thus, for many historical technologies, focusing on absolute versus relative adoption metrics would
151 lead to significantly different inferences about the nature of growth. For more recent technologies like
152 CCGTs, mobiles, solar PV and onshore wind, we see a near-perfect alignment between the patterns
153 for the two, as absolute deployment went hand-in-hand with increasing market penetration amid
154 relatively modest changes in the size of the overall market.

155 **Supplementary Note 2: Mathematical models for technology growth**

156 Technology S-curves are frequently represented using the logistic model [40], a three parameter
157 function of the form

$$f(t) = \frac{L}{(1 + e^{-k(t-t_0)})} \quad (1)$$

, with parameters k (the growth constant), L (the final deployment asymptote or 'ceiling'), and t_0 (the inflection point). Deployment achieves its maximum annual growth rate at the inflection point, which can be expressed as $G = \frac{Lk}{4}$ [11].

Logistic curves fit to empirical deployment data have been widely used for ex-post description and comparison of growth for historical technologies which have already reached their final ceilings[6–8, 41]. Such analyses are less suited to emerging technologies with expanding deployment due to the limited reliability of parameters estimated by fitting logistic functions to time-series with continuing growth [11, 42, 43]

We posit that different parameters of the logistic curve reflect information about mechanisms shaping growth at different phases of the S-curve: the growth constant k captures the rate of deployment expansion during the acceleration phase, the inflection point t_0 marks the start of the quasi-linear stable growth phase, and the deployment ceiling L indicates where growth finishes. Parameters reflecting later phases cannot be reliably estimated from early observations because these data are unable to represent all phases of technology growth – as they are only able to capture dynamics from a limited set of early phases, they do not have any information about the evolving mechanisms that shape later phases of growth. Thus, fitting a logistic function to data from the acceleration phase with consistently increasing annual additions might give us a reasonable estimate for k , but will only be able to guess at the values of t_0 , or L as the underlying data does not have any information on the phases to come. The more data we have and the better its coverage of the whole deployment curve, the more reliable our parameter estimates.

We illustrate this phenomenon by fitting a logistic function to systematically truncated deployment timeseries for different technologies. For each technology, we track the evolution of the parameters estimated by fitting the curve to curtailed data ending in a specific year. Our analysis shows that while the estimate for k stabilises fairly early (essentially as soon as the technology is nearing the end of the acceleration phase), the estimate for L is extremely unstable until very close to true saturation (Supplementary Figure 6). This 'moving L' phenomenon (Supplementary Figure 5), where the estimate for the ceiling regularly changes with increasing deployment makes it particularly difficult to use logistic fits to project future technology growth and often leads to overfitting (when the curve describes the data it is fit to reasonably well but is unable to accurately predict future growth).

Several different approaches have attempted to address this parameter estimation challenge. We see these as falling into two broad categories – one focusing on modifying the standard logistic curve

190 fitting approach, and another looking beyond the logistic function and introducing alternative growth
 191 models.

192 In the first category, ref. [44] suggest using an exogenously assumed fixed value for L (aligning
 193 with a normative target or goal such as the 1.5°C target) with a set take-off year and empirically
 194 derived estimates for the ‘emergence rate’ (which is analogous to the growth constant k) to generate
 195 a logistic curve. While the trajectories generated using this approach can be used to assess if growth
 196 is on track to reach the desired level by a certain time given a certain emergence rate, the projected
 197 is purely conditional on the choice of L and the emergence rate.

198 Another modelling framework from ref. [43] improves on this ‘fixed L ’ approach by having L
 199 linearly increase with time at an exogenously define rate. This formulation more accurately captures
 200 the ‘moving L ’ phenomenon we highlight, but is again sensitive to assumptions about how fast L
 201 changes and at what level it peaks. Thus, while it is useful for constructing feasibility spaces for
 202 future growth under different assumptions about the emergence rate and the ‘demand pull’ raising
 203 L , it does not resolve the fundamental problem of empirically deducing L from early data.

204 The second category focuses on exploring alternatives to the logistic model, and has had a
 205 significantly longer history than the first.

206 Ref. [45] introduced the Gompertz model [46] to analyses of technology diffusion already in 1980.
 207 The Gompertz model, an asymmetric S-curve of the form

$$f(t) = Le^{-e^{-k(t-t_0)}} \quad (2)$$

208 with parameters k (the growth constant), L (the final deployment ceiling), and t_0 (the inflection
 209 point), has a longer growth phase with delayed saturation which mitigates some of the logistic model’s
 210 pessimism about the ceiling when used with earlier observations. However, it is also vulnerable to
 211 the same problem of being unable to reliably estimate parameters describing later phases from early
 212 data [11, 42].

213 Given the accelerating nature of growth early in the S-curve it is sometimes (implicitly [47–49]
 214 and explicitly [2, 43]) argued that the acceleration phase can be described by an exponential function.
 215 The exponential function is of the form

$$f(t) = y_i e^{K(t-t_i)} \quad (3)$$

216 where e is the exponential growth constant, and y_i is the value at initial time t_i . While it's unsuitabil-
217 ity for describing or projecting technology growth over the long-term due to its inherent inability to
218 account for any barriers and slow-down is quite obvious, we show that it is also ill-suited to describing
219 the acceleration phase because it does not capture the declining year-on-year growth rates charac-
220 terising it – by definition, the exponential model assumes a fixed growth rate equal to the growth
221 constant.

222 Recent studies [50, 51] have demonstrated yet another approach which attempts to mitigate the
223 deficiencies of individual models by using several different models and averaging projections from
224 across the ensemble. They fit different growth models to empirical data, generate projections, use
225 hindcasting to evaluate the performance of each model, and then generate weighted projections where
226 better performing models are assigned higher weights. While the use of a more diverse ensemble of
227 models coupled with iterative hindcasting makes this approach less vulnerable to overfitting compared
228 to projections based on a single model fit to a single timeseries, it still faces the same underlying
229 problem of estimating parameters corresponding to later phases using early data.

230 We argue that this parameter estimation problem is not limited to a particular growth model but
231 extends to the broader enterprise of using models fit to empirical data to make projections.

232 **Supplementary Note 3: PROLONG (PRobabilistic mOdeL Of techNology 233 Growth)**

234 Models fit to a single set of historical observations are implicitly constrained in their ability to
235 anticipate future technology growth dynamics. A logistic function fit to solar PV data until 2015
236 does not reliably project global deployment in 2023 because it only captures dynamics from the
237 acceleration phase. We face the same problem when we try and project deployment until 2030 or 2040
238 using the latest data for wind or solar PV because these technologies are still in the acceleration phase
239 at the global scale. But this does not preclude the possibility of us making meaningful projections
240 altogether as there are individual countries where these technologies are already at more advanced
241 phases of adoption [11]. We argue that even though deployment data from these countries do not
242 yet capture slow-down and saturation, they offer us an empirical window into studying the evolving
243 balance of drivers and barriers across the acceleration and stable growth phases. Here, we develop
244 an approach to use these ‘incomplete’ national deployment time-series to probabilistically project
245 global growth over the near to medium-term.

246 We find that statistical ranges for the growth constant (k) and peak growth rate (G) from logistic
247 curves fit to national data are relatively stable over time and can help anchor our expectations for the
248 eventual values of these parameters for the world as a whole (Supplementary Figure 6). At the same
249 time, our analysis also shows that similar statistics for L at the national scale are not informative
250 for estimating L at the global scale. We posit that early national k and G from countries at more
251 advanced phases of adoption could be used to inform projections of global growth. However, doing
252 so requires addressing some important challenges.

253 First, we would need to be able to identify the mathematical relationship between national
254 parameter statistics measured at earlier points in time and the parameters of a curve describing the
255 completed global deployment trajectory. This presents the same problem contemporary approaches
256 struggle with – in the absence of a crystal ball that shows us data from the future, we have no way
257 of knowing what the parameters of the eventual global trajectory will be.

258 One way to overcome this challenge would be to study historical technologies for which we have
259 data spanning the whole S-curve and use them as reference cases. We could quantify the relationships
260 between early national curve parameters and final global curve parameters, and then use them with
261 other technologies. But how do we know if the relationships measured for one reference technology
262 also hold for another? Given the specificity of technological characteristics and the socio-political,
263 economic context in which each technology is deployed, it is difficult to guarantee that patterns for
264 one technology can be used to predict those for another. If we want to project the future deployment
265 of solar power, is it likelier to follow patterns observed for other energy technologies like nuclear
266 power or CCGTs during the 20th century, or for granular consumer technologies like mobiles in more
267 recent years?

268 Another challenge relates to the actual process of quantifying these relationships between national
269 and global parameters – what methods can we use to capture these complex, non-linear relationships
270 that might vary in shape and form across different technologies?

271 We resolve these challenges by using computational simulations to explore different possibilities
272 for the growth and diffusion of a given technology in an ensemble of virtual worlds, and using a
273 machine learning model to capture the quantitative relationships between parameters describing
274 incomplete national growth and completed global trajectories.

275 We argue that a diverse enough possibility space composed of thousands of simulated global tra-
276 jectories, each of which is the aggregate outcome of a unique set of national growth dynamics, captures
277 adoption patterns similar to those unfolding in the real world, as well as those where the technology

278 is more/less successful. In generating these simulations, we make explicit assumptions about what we
279 see as a plausible range for the takeoff timing, for the shape and form of national growth trajectories,
280 and for permissible deployment speeds and ceilings. Our approach uses computational simulations to
281 train a machine learning model to recognise the relationships between early national growth param-
282 eter statistics and the parameters of a technology's final global trajectory, and then use the trained
283 model to make probabilistic projections for global growth using empirical national data.

284 The implementation of our modelling framework consists of the following steps:

- 285 • **Step 0:** Defining rules for the virtual worlds
- 286 • **Step 1:** Exploring diverse technology futures using Monte Carlo simulations
- 287 • **Step 2:** Generating training data from the ensemble of simulated trajectories
- 288 • **Step 3:** Using machine learning to identify the relationships between curtailed national and final
289 global parameters
- 290 • **Step 4:** Generating probabilistic projections from empirical data
- 291 • **Step 5:** Model validation and hindcasting

292 **Step 0: Defining rules for the virtual worlds**

293 Before we start generating simulations we define a set of core assumptions that form the basic
294 structure for the model.

295 Our simulation module represents a virtual world composed of 150 countries, with the distribution
296 of their relative, technology-specific market sizes carefully calibrated to reflect real-world market
297 sizes. We quantify the market shares as normalised shares (summing to 1). For solar PV and onshore
298 wind, market shares are derived from national total electricity generation, reflecting each country's
299 relative electricity system size. For mobile phones, market shares are proportional to population
300 counts, representing the potential user base. For CCGTs, market shares are calculated based on each
301 country's existing natural gas electricity generation capacity. These market shares directly weight
302 each country's contribution to global aggregate deployment. For example, a country with 5% of global
303 electricity generation would contribute five times more to global solar deployment than a country
304 with 1% generation share, assuming identical percentage-based deployment within each country.
305 This market-weighted approach ensures our simulations properly account for the outsized influence
306 of large markets on global technology diffusion patterns, while still capturing the diversity of growth
307 dynamics across different national contexts.

308 We simulate technology growth in each country separately, and global deployment at each time
309 step is the weighted sum of all national deployment at that instant.

310 We assume that each country can follow trajectories modelled by one of two shapes – a standard
311 S-curve (using a logistic function) or a curve with two pulses (using a bi-logistic function). For the
312 logistic trajectories, we need to assign each country a takeoff year (the year when deployment first
313 exceeds 1%), intrinsic growth rate (k) and deployment ceiling (L), after which we can calculate the
314 inflection point using the equation $t_0 = \text{takeoff}_\text{year} + (1/k)\log(L/0.01 - 1)$, where t_0 is the inflection
315 point year. For the bi-logistic trajectories, we need to assign each country a takeoff year, intrinsic
316 growth rate for the first pulse (k_1) and the final deployment ceiling (L). The final ceiling is split
317 between the two pulses with respective ceilings L_1 and L_2 using a random fraction between 20-80%.
318 We calculate the inflection point for the first pulse (t_{01}) and its peak annual growth rate (G_1). The
319 second pulse starts after a random delay between 1-10 years after t_{01} , and is assigned a peak annual
320 growth rate (G_2) calculated by multiplying G_1 by a random multiplier that is centred around 1 –
321 this allows for the equal possibility of the second pulse exhibiting faster/slower growth than the first.
322 The intrinsic growth rate (k_2) for the second pulse is calculated as $k = 4G_2/L_2$, and its inflection
323 point (t_{02}) as $t_{02} = \text{takeoff}_\text{year}_2 + (1/k_2)\log(L_2/0.01 - 1)$. The choice of a 1-10 year delay for the
324 second pulse allows for both quick transitions between pulses (1 year) and longer pauses between
325 growth phases (up to 10 years).

326 Real-world technology deployment rarely follows perfect (bi-)logistic curves due to policy changes,
327 economic fluctuations, supply chain disruptions, and other temporal factors. To replicate this variabil-
328 ity, we implement a correlated noise model with three parameters. First, we apply multiplicative noise
329 with an initial amplitude of 5% of the current deployment value. This ensures deviations scale pro-
330 portionally with deployment levels – smaller variations in early adoption phases and larger absolute
331 fluctuations during rapid growth periods. Second, we implement year-to-year correlation ($\rho = 0.7$)
332 to create persistent effects that mimic how real-world drivers and barriers typically influence deploy-
333 ment over multiple consecutive years. For instance, the implementation of a new policy might affect
334 deployment over several years rather than causing independent annual fluctuations. Third, we incor-
335 porate amplitude decay (2% annual reduction from the initial 5%) to reflect how mature markets
336 tend to demonstrate more stable, predictable growth with reduced volatility. This three-component
337 noise structure creates trajectories with realistic short-term variability while preserving the under-
338 lying diffusion pattern, avoiding both the artificial smoothness of perfect curves and the unrealistic
339 randomness of uncorrelated noise.

340 Here is an example to illustrate how the noise works. Let's consider a country with 10%
341 deployment in year t . With a 5% noise amplitude, the deployment value might be adjusted to
342 $10\%(1 + 0.05) = 10.5\%$ or $10\%(1 - 0.05) = 9.5\%$, depending on the random noise value. In year $t + 1$,
343 if deployment grows to 15% and the previous year's noise was +5%, the correlated noise would be
344 calculated as $0.7(+5\%) + 0.3$ (the new random noise). If the new random component is -3%, then
345 the noise in year $t + 1$ would be $0.7(+5\%) + 0.3(-3\%) = +2.6\%$. The deployment would then be
346 adjusted to $15\%(1 + 0.026) = 15.39\%$. By year $t + 5$, the noise amplitude would have decayed to
347 $5\%(0.98)^5 \approx 4.5\%$, reducing the magnitude of potential fluctuations as the market matures.

348 We introduce spatial heterogeneity in when growth starts, how fast it happens, and where it ends
349 by assigning countries different parameters from different statistical distributions such as normal or
350 gamma distributions which vary between technologies. We use a Monte Carlo simulation engine to
351 simulate technology growth in thousands of virtual worlds, where each country follows a new, unique
352 trajectory every single time, leading to the emergence of a diverse set of global growth patterns.
353 The Monte Carlo simulation is implemented using R's parallel processing capabilities through the
354 'parallel', 'foreach', and 'doParallel' packages, allowing for efficient computation across multiple CPU
355 cores simultaneously.

356 We simulate technology growth and diffusion over a time period of 50 years; long enough for
357 countries to move from the formative to slow-down phases.

358 **Step 1: Exploring diverse technology futures using Monte Carlo simulations**

359 **Establishing parameter distributions**

360 To start generating simulations, we first define the distributions which control the national growth
361 dynamics.

362 We first look at early empirical data for the technology – up to 2015 for solar PV, 2010 for onshore
363 wind, 1998 for mobiles, 1985 for CCGTs – and fit normal distributions to the available national
364 takeoff years, and gamma distributions to logistic k and logistic L for mature countries (with logistic
365 curve maturity $\geq 50\%$). These distributions inform our priors about national curve parameters for the
366 specific technology at an early stage of adoption and define our 'base configuration'. Given what we
367 know from empirical analyses of technology growth, these distributions most certainly do not capture
368 the 'true' parameter space for the eventual growth of the technology and very likely underestimate
369 its full potential. The gamma distribution is chosen for modeling k and L parameters because it
370 naturally constrains values to be positive while allowing for right-skewed patterns.

371 We address this limitation by first defining a broader range of plausible values for the takeoff year,
372 k and L for each technology (with the specific aim of accounting for a diverse set of diffusion patterns)
373 and then systematically shifting the distributions for each parameter to explore different regions of
374 the technology’s possibility space. We use a structured approach that ensures thorough coverage
375 of parameter combinations—creating worlds where technologies grow quickly but saturate at low
376 levels, others where growth is slower but reaches higher penetration levels, and various combinations
377 in between. For example, one configuration might combine higher k values with moderate L , while
378 another might pair slower k with higher L (Supplementary Tables 3-6).

379 We implement this parameterization using a hybrid coverage approach that combines a full fac-
380 torial design with face-centered points to efficiently explore the parameter space. Our code creates
381 a grid of parameter values by dividing each parameter range (k , L , and takeoff year) into multi-
382 ple divisions and selecting points at these positions. For example, with $k_{divisions} = 3$, we sample 3
383 different mean values for the gamma distribution of k , from lower to higher growth rates. Consider
384 two adjacent grid points in our parameter space: one with $k_{mean} = 0.2$, $L_{mean} = 0.4$ and another
385 with $k_{mean} = 0.3$, $L_{mean} = 0.6$. The face-centered approach adds an additional point between them
386 at $k_{mean} = 0.25$, $L_{mean} = 0.5$. This ensures we capture not just corner cases but also intermediate
387 parameter combinations, providing more comprehensive coverage of the parameter space. For each
388 configuration, we adjust the underlying distribution parameters (shape and rate for gamma distri-
389 butions, mean and standard deviation for normal distributions) to achieve the target mean values
390 while maintaining appropriate dispersion. This approach generates 13 distinct configurations that
391 systematically explore different combinations of early/late takeoff, fast/slow growth, and low/high
392 saturation levels.

393 **Running Monte Carlo simulations**

394 We generate 13 different configurations and then use each one to simulate 1000 different technology
395 diffusion pathways. For each configuration, we run a Monte Carlo simulation engine which randomly
396 assigns parameter values to individual countries by drawing from the distributions defined in this
397 configuration. Each country is assigned its own takeoff year, intrinsic growth rate (k) and deployment
398 ceiling (L), which are then used to generate its deployment trajectory. We account for different
399 market sizes by weighting each country’s contribution proportionally to its share of the global market,
400 simulating how technologies might spread differently in large versus small countries.

401 These country-level trajectories are then aggregated into a global adoption curve for each sim-
402 ulation run. By repeating this process 1000 times for each configuration, we generate a dataset of

403 13,000 plausible global diffusion trajectories—some showing rapid global adoption, others displaying
404 more gradual growth patterns, and many exhibiting complex multi-phase growth.

405 In addition to exploring the possibility space by varying the parameter configurations, we also run
406 these simulations under differing assumptions about the shape of national growth trajectories. We
407 run three different batches of simulations – one where all countries have logistic growth, one where
408 all countries have bi-logistic growth, and one where each country has an equal chance of following
409 logistic or bi-logistic growth and there’s an even split in the number of countries following either
410 pattern in each run. Subsequent steps involving the generation of training data and producing a
411 trained machine learning model are followed separately for each batch – see Step 4 for more details.

412 We can make our coverage of the possibility space more comprehensive by running a larger number
413 of simulations and using more granularly differentiated configurations, but each addition comes at
414 the cost of significantly higher computational requirements.

415 To make subsequent analysis more computationally tractable, we apply a strategic filtering process
416 to select a smaller, more diverse subset for our final training dataset. Rather than randomly sampling
417 or using all runs (which would be computationally expensive and potentially include redundant
418 runs), we employ a clustering-based approach that identifies distinct pattern families within each
419 configuration’s simulation runs. The algorithm analyses the characteristics of each trajectory – such
420 as k , inflection points, and final saturation levels – and groups similar trajectories together. From
421 each cluster, we select representative runs that best capture that pattern family’s essential features.
422 This approach ensures our training dataset maintains the full diversity of possible diffusion patterns
423 while substantially reducing its size – from 1000 total runs down to 200 representative runs per
424 configuration. The selection process works as follows:

- 425 • For each run, we extract feature vectors that characterize the growth patterns, including
426 growth parameters of large countries, correlations between market size and growth parameters,
427 heterogeneity in growth rates, and leader-follower dynamics
- 428 • We normalize these features and apply principal component analysis (PCA) to reduce dimension-
429 ality while preserving approximately 85% of the variance
- 430 • We then apply k-means clustering (implemented in R’s base ‘kmeans’ function) to group similar
431 trajectories
- 432 • From each cluster, we select the medoid run (the run closest to the cluster center) as the
433 representative for that pattern family.

434 The selection of 200 runs per configuration was determined through experiments balancing com-
435 putational efficiency with maintaining diversity – we found this range provided sufficient pattern
436 coverage while substantially reducing computation time for subsequent model training.

437 **Step 2: Generating training data from the ensemble of simulated trajectories**

438 For the final step in our data preparation, we transform our simulation data into a format that teaches
439 the model how to make predictions with limited information. Here, we systematically truncate the
440 national deployment data from each simulation run at various early years (years 12, 15, 18, 21, 24,
441 and 30) to create snapshots of what the diffusion pattern would look like if observed at those points
442 in time. This exercise mimics the real-world challenge of forecasting from partial historical data. For
443 each curtailed snapshot, we fit logistic growth curves to the curtailed national-level data, extracting
444 parameters that characterise the diffusion process in each country up to that point. These include
445 median, Q1 and Q3 for k and G , as well as the number of "mature" countries in the stable growth
446 phase and their combined market share. We only use observations from those countries where the
447 logistic curve maturity is identified as being over 50

448 The parameter extraction process employs a curve-fitting procedure implemented adapted from
449 ref. [11]. For each country with sufficient data points (at least 5) and meaningful deployment ($\geq 1\%$),
450 we fit a logistic curve and extract the key parameters. We then calculate distributional statistics
451 (median, first quartile, third quartile) across all mature countries to characterise the overall pattern of
452 national growth. This approach captures both the central tendency and variation in growth patterns
453 among early adopters.

454 We then pair these early-stage national parameters for each simulation run with the known
455 parameters of a logistic curve fit to its full global trajectory, creating training data that connect "what
456 we know so far" at the national level with "what eventually happens" at the global scale. We feed
457 this data into a quantile random forest model – an ensemble learning method that builds hundreds of
458 decision trees, each of which learns decision rules that connect early-stage national diffusion patterns
459 to their ultimate global outcomes.

460 **Step 3: Using machine learning to identify the relationships between curtailed
461 national and final global parameters**

462 We implement the quantile random forest using the 'ranger' package in R, a high-performance imple-
463 mentation of random forests particularly well-suited for large datasets. Our model uses 1000 trees,

464 which we found sufficient to achieve stable predictions while balancing computational efficiency. We
465 enable the "quantreg" option in ranger to estimate conditional quantiles rather than just the condi-
466 tional mean. The importance of features is calculated using the impurity-based method, allowing us
467 to identify which national parameters most strongly influence global outcomes.

468 The forest's structure captures the complex, non-linear relationships between early diffusion sig-
469 nals and long-term outcomes, while being robust against outliers and noise. Unlike standard regression
470 models that predict only mean outcomes, our quantile forest approach estimates the entire conditional
471 distribution of possible futures.

472 We train two separate models – one that uses early national data to predict the global k , and
473 another which uses the same data to predict the global G . By training on a diverse set of simulated
474 histories with known outcomes, the models develop an understanding of how partial patterns tend to
475 evolve, enabling them to look at real-world data up to the present day and make informed projections
476 about the full spectrum of likely future evolutions—from conservative lower bounds to ambitious
477 upper estimates.

478 **Step 4: Generating probabilistic projections from empirical data**

479 To use the model to make projections, we prepare input data capture the median, Q1 and Q3 k and
480 G for mature logistic fits to empirical national data, the number of mature countries in the sample,
481 their combined global market share, and the current global deployment level.

482 The model takes these inputs and predicts the quantiles for k and G , which are then used to
483 derive a value for the saturation level (L). We consider all possible combinations of k and G quantiles
484 (5x5=25 combinations), and filter out those combinations where $L \leq$ the current deployment. Each
485 combination is then used to generate a complete logistic curve, with the inflection point calculated
486 using the current global deployment (y_i) and current year (t_i) using the equation $t_0 = ((1/k) *$
487 $\log((L/y_i) - 1)) + t_i$, where t_0 is the inflection point year, k is the growth rate, L is the saturation
488 level, y_i is the current deployment, and t_i is the current year.

489 For each valid k - G combination, we generate a full trajectory up to the desired projection horizon.
490 The global growth constant (k) directly influences how quickly deployment accelerates and then
491 decelerates, while the peak annual growth rate (G) helps determine the saturation level (L) through
492 the relationship $L = 4G/k$. This approach captures the mathematical relationship between these
493 parameters while ensuring consistency with current observed deployment levels.

494 To identify the most representative trajectory for each quantile level (5th, 25th, median, 75th,
495 and 95th), we calculate the area difference between each generated trajectory and the year-by-year
496 quantile values derived from all valid trajectories. The trajectory with the minimum area differ-
497 ence becomes the representative curve for that quantile, providing a coherent set of parameters that
498 best represents that particular future pathway. This area-based matching ensures that the represen-
499 tative trajectories maintain consistent parameter relationships while closely tracking the statistical
500 properties of the full ensemble.

501 For each year in the projection horizon, we collect the predicted deployment values from all
502 valid trajectories and calculate summary statistics across the full set which gives us a year-by-year
503 probability distribution for future global deployment.

504 Our probabilistic framework explicitly acknowledges multiple dimensions of uncertainty. First,
505 the use of quantile random forests captures the uncertainty inherent in technology diffusion
506 processes—the natural variability observed even when initial conditions are similar. Second, by gen-
507 erating projections from diverse parameter combinations rather than single parameter values, we
508 address parametric uncertainty about the true values of growth parameters. Finally, by training sep-
509 arate models on different trajectory shapes (logistic, bilogistic, and mixed), we incorporate structural
510 uncertainty about the underlying model form. This comprehensive treatment of uncertainty provides
511 a more realistic view of possible futures than deterministic approaches or those that address only a
512 single dimension of uncertainty.

513 **Step 5: Model validation and hindcasting**

514 To validate the predictive capabilities of our approach, we implement a comprehensive hindcast-
515 ing framework that systematically evaluates how well our models can project known historical
516 deployment patterns from earlier, incomplete data.

517 We perform a series of hindcasting tests to evaluate the performance of our projection model. We
518 do so by using the model with empirical national data truncated at different years in the past, and
519 then comparing the resulting projections to ‘out-of-sample’ global data.

520 Our hindcasting approach follows these steps:

- 521 1. For each technology, we select multiple historical cutoff years (e.g., 2005, 2010, and 2015 for solar
522 PV)
- 523 2. For each cutoff year, we extract national deployment data up to that year only
- 524 3. We apply our model to this truncated data to generate projections

525 4. We compare these projections against the actual observed deployment in subsequent years
 526 5. We repeat this process for models trained on logistic, bilogistic, and mixed trajectory data

527 This process mimics real-world forecasting scenarios and provides an objective assessment of each
 528 model variant's predictive performance.

529 To estimate the absolute error, we use the symmetric mean absolute percentage error (sMAPE)
 530 [52] which quantifies the absolute magnitude of point errors (thereby avoiding the cancellation of
 531 negative and positive errors) and also accounts for the relative scale of the quantity being mea-
 532 sured (thereby avoiding asymmetry). We use it to assess the overall out-of-sample forecasting
 533 performance for each model when informed by in-sample observations until year z :

$$sMAPE = \frac{1}{t_{end} - z} \sum_{i=z}^{t_{end}} \frac{|y_z - f(z)|}{(|y_z| + |f(z)|)/2} * 100 \quad (4)$$

534 To estimate the directional error, we calculate the symmetric mean percentage error (sMPE) [52]
 535 which quantifies both the magnitude and direction of the point errors and avoids asymmetry and
 536 large errors (when the out-of-sample values are close to zero). We use it to assess the tendency of
 537 a model informed by in-sample observations until year z , to over- or under-predict out-of-sample
 538 deployment:

$$sMPE = \frac{1}{t_{end} - z} \sum_{i=z}^{t_{end}} \frac{y_z - f(z)}{y_z} * 100 \quad (5)$$

539 To measure the skill of our probabilistic projections we use the Continuous Ranked Probability
 540 Score (CRPS) [53] measures "how well the marginal distributions of the forecast represent the ground
 541 truth" [54].

542 For each technology, we compare the performance of the models trained on logistic, bilogistic and
 543 mixed data to identify which model most accurately captures empirically observed growth dynamics.
 544 We identify the best performing models for onshore wind (bilogistic data), solar PV (mixed data),
 545 mobiles (logistic data), and CCGTs (ambiguous), and use these models for subsequent tests and
 546 comparisons.

547 The selection of the best model variant for each technology is based on an evaluation of sMAPE,
 548 sMPE and CRPS scores and prediction interval coverage (Supplementary Figures 7, 8). We found
 549 that technologies with more complex adoption patterns (like onshore wind, which often shows multi-
 550 phase growth) are better captured by the bilogistic model, while technologies with smoother adoption
 551 curves (like mobile phones) are better represented by the simpler logistic model. For solar PV, the

552 mixed model performed best, suggesting its deployment patterns so far show characteristics of both
553 single-phase and multi-phase growth across different countries.

554 Here, we compare the projections from our main model for each technology to projections made
555 by fitting logistic and exponential curves to global data. These hindcasting tests show that our
556 model using national data out-performs these other models in accurately projecting out-of-sample
557 deployment at the global scale.

558 **Supplementary Note 4: Acceleration scenarios for onshore wind and solar
559 PV**

560 To illustrate the scale of policy effort required to achieve global deployment trajectories in-line with
561 keeping warming below 1.5°C, we develop two sets of stylised counterfactual trajectories. The first,
562 Early Acceleration trajectories assume that the growth of solar PV and onshore wind continues along
563 a logistic curve with additional policy effort accelerating additions by expanding the deployment
564 ceiling. This is achieved by adjusting the logistic curve ceiling (L) to achieve the desired deployment
565 level in 2040 while keeping the intrinsic growth rate (k) fixed. The second, Late Acceleration trajec-
566 tories assume that the technologies follow our median projection until 2030 and then experience a
567 fresh pulse of accelerating growth modelled using a second logistic curve with another ceiling and a
568 high intrinsic growth rate, essentially producing a bilogistic trajectory. Here, additional policy effort
569 introduces a new growth pulse which alters both, the effective deployment ceiling as well as the rate
570 of growth acceleration.

571 These counterfactual scenarios represent distinct policy approaches: Early Acceleration reflects
572 immediate, sustained policy intervention that shifts the technology's long-term trajectory by raising
573 its deployment ceiling and addressing emergent barriers, while Late Acceleration represents a delayed
574 but more intensive intervention that creates a distinct second wave of adoption. By modeling both
575 approaches, we can examine trade-offs between timing and intensity of policy intervention, as well
576 as the feasibility of meeting climate targets through different policy pathways.

577 These trajectories are compared against Baseline trajectories based on the median probabilistic
578 projections from PROLONG. For onshore wind, this baseline is modelled using a logistic function
579 with $k = 0.16$ and $L = 25\%$. For solar PV, it is modelled using a logistic function with $k = 0.25$ and
580 $L = 18\%$.

581 For onshore wind, we model the Early Acceleration trajectory using a logistic function with
582 $k = 0.16$ (matching the Baseline) and an increased ceiling $L = 38\%$ (more than 2× higher than the

583 Baseline). We model the Late Acceleration trajectory using a bilogistic function with an initial pulse
 584 with $k_1 = 0.16$ and $L_1 = 25\%$ (same as the Baseline), and a second pulse from 2030 with $k_2 = 0.2$
 585 and $L_2 = 13\%$, which gives an effective L ($L_1 + L_2$) of 38%.

586 For solar PV, we model the Early Acceleration trajectory using a logistic function with $k = 0.25$
 587 (matching the Baseline) and an increased ceiling $L = 45\%$ (more than 2 \times higher than the Baseline).
 588 We model the Late Acceleration trajectory using a bilogistic function with an initial pulse with
 589 $k_1 = 0.25$ and $L_1 = 18\%$ (same as the Baseline), and a second pulse from 2030 with $k_2 = 0.3$ and
 590 $L_2 = 27\%$, which gives an effective L ($L_1 + L_2$) of 45%.

591 For the Early Acceleration trajectories, we:

- 592 1. Start with the baseline projection's parameters (k , G , and L)
- 593 2. Maintain the growth rate parameter (k) while increasing the ceiling parameter (L)
- 594 3. Recalculate the inflection point (t_0) to ensure the curve passes through the current deployment
 595 level using the equation:

$$t_0 = \left(\frac{1}{k} \times \log \left(\frac{L}{y_i} - 1 \right) \right) + t_i \quad (6)$$

596 where y_i is the current deployment level and t_i is the current year

- 597 4. Generate the full trajectory using the logistic function:

$$y(t) = \frac{L}{1 + \exp(-k \times (t - t_0))} \quad (7)$$

598 For Late Acceleration trajectories, we:

- 599 1. Take the baseline trajectory up to the second phase start year (2030)
- 600 2. Create a second logistic curve with new parameters (k_2 , L)
- 601 3. Combine the two trajectories using a transition function that shifts from the first to the second
 602 curve.

603 This approach allows us to model the effect of delayed but intensive policy intervention that
 604 produces a distinct second wave of technology adoption starting in 2030.

605 This exercise gives us a set of six global trajectories. For each of these trajectories, we use a linear
 606 optimisation approach to distribute the required growth in each year from 2023 to 2050 between 10
 607 regions – East Asia, North America, Europe, South Asia, Asia-Pacific Developed, South-East Asia
 608 and Developing Pacific, Africa, Eurasia, Latin America and the Caribbean, and the Middle East. We

609 introduce constraints on the maximum deployment ceiling for each region for each technology, and
 610 on the maximum annual growth rate, and the maximum annual growth acceleration.

611 The maximum deployment ceilings for each technology in each region are adapted from peak
 612 deployment in IPCC AR6 scenarios [55], and have been deliberately set higher than what these
 613 scenarios consider achievable in some regions to avoid artificially constraining the optimization
 614 (Supplementary Table 7).

615 The algorithm takes as inputs the current deployment levels ($d_{i,t}$) and growth rates ($r_{i,t}$) for each
 616 region i at time t , regional weights (w_i) that sum to unity, and a target global deployment trajec-
 617 tory (D_t^*). It incorporates three key constraints that reflect physical and institutional limitations:
 618 maximum allowable deployment in each region ($d_{i,\max}$), maximum annual growth rate (r_{\max}), and
 619 maximum year-on-year acceleration in growth rates (a_{\max}).

620 For each timestep, the algorithm optimizes regional growth rates through an iterative process
 621 that converges when the weighted sum of regional deployments matches the global target within a
 622 specified tolerance ε :

$$\left| \sum_i (w_i \times d_{i,t}) - D_t^* \right| < \varepsilon \quad (8)$$

623 The regional deployment in each year is given by:

$$d_{i,t} = d_{i,t-1} + r_{i,t} \quad (9)$$

624 subject to the constraints:

$$0 \leq d_{i,t} \leq d_{i,\max} \quad (\text{deployment bounds}) \quad (10)$$

$$0 \leq r_{i,t} \leq r_{\max} \quad (\text{growth rate bounds}) \quad (11)$$

$$-a_{\max} \leq r_{i,t} - r_{i,t-1} \leq a_{\max} \quad (\text{acceleration bounds}) \quad (12)$$

625 Based on empirical observations of historical technology diffusion rates, we set $r_{\max} = 0.03$ (3
 626 percentage points increase in market share per year) and $a_{\max} = 0.01$ (maximum 1 percentage point
 627 change in annual growth rate). These constraints reflect the practical limitations observed in how
 628 quickly technologies can be deployed at regional scales.

629 For each year, the algorithm first calculates the required global increase in deployment ($\Delta D_t^* =$
 630 $D_t^* - D_{t-1}^*$). It then distributes this increase among regions proportionally to their available headroom
 631 ($h_{i,t} = d_{i,\max} - d_{i,t}$). The distribution factor ($f_{i,t}$) for each region is calculated as:

$$f_{i,t} = \frac{h_{i,t}}{\sum_j h_{j,t}} \quad (13)$$

632 where the sum is over all regions j that have not reached their constraints.

633 To prevent overshooting the global target, the algorithm implements a conservative adjustment
 634 mechanism. When $|\Delta D_t^*| < 0.01$, the algorithm applies a damping factor of 0.5 to the growth rate
 635 adjustments. If overshooting occurs ($\sum_i (w_i \times d_{i,t}) > D_t$), the algorithm allows growth rates to decline
 636 while maintaining $r_{i,t} \geq 0$ and respecting the acceleration constraint $|r_{i,t} - r_{i,t-1}| \leq a_{\max}$.

637 The algorithm verifies whether the specified global deployment trajectory is achievable under the
 638 given constraints by checking that the weighted sum of maximum regional deployments exceeds the
 639 global target:

$$\sum_i (w_i \times d_{i,\max}) \geq D_t^* \quad \forall t \quad (14)$$

640 If this condition is not met, the algorithm terminates, as the regional constraints preclude
 641 achievement of the global target.

642 This approach allows us to generate regional trajectories (Supplementary Figures 11, 14) that help
 643 quantify the regional policy effort required to achieve different global growth trajectories while main-
 644 taining consistency with empirically-observed limits on how quickly regions can accelerate technology
 645 deployment (Supplementary Figures 12, 14).

646 **Supplementary Note 5: The case of offshore wind power**

647 Our analysis in this paper focuses on the growth of onshore wind power and excludes offshore wind pri-
 648 marily because the sample of countries for this technology is not sufficiently large. Although offshore
 649 wind power shares many fundamental characteristics with its onshore counterpart, it possesses sev-
 650 eral distinguishing features that warrant separate consideration. Its comparatively lower technological
 651 maturity, heightened technical complexity, generally larger turbine unit sizes, unique investment pro-
 652 files, and specific geophysical requirements all contribute to potentially different temporal and spatial
 653 diffusion patterns.

654 At the global scale, the growth of offshore wind achieved takeoff in 2011 and as of 2023, accounted
655 for roughly 7% of total global installed wind capacity and less than 0.8% of global electricity gen-
656 eration. Unlike onshore wind, its cross-country diffusion has remained rather limited. As of 2023, it
657 participated in electricity generation in 19 countries, of which we have identified take-off in 11 coun-
658 tries – Sweden (2008), Denmark (2010), the UK (2011), Germany (2015), the Netherlands (2016),
659 Finland & South Korea (both 2018), Belgium (2019), China, Portugal and Vietnam (all 2020).

660 Of these 11, 8 countries have seen deployment levels exceed 1% of annual electricity generation
661 with Denmark (26.1%), the UK (17.5%), the Netherlands (10.1%), Belgium (9%), Germany (5.1%)
662 and Vietnam (1.3%) showing particularly strong growth (Supplementary Figures 15, 16). Together,
663 these 7 countries are responsible for about 54% of global offshore wind deployment. China leads
664 deployment in absolute terms and contributes to 52% of the global total – this means that over 96%
665 of global offshore wind deployment is concentrated in just 8 countries.

666 Only Belgium, Denmark, Finland, Germany, South Korea, Sweden and the UK have ≥ 5 dat-
667 apoints after take-off and are eligible for curve-fitting. As of 2023, only Denmark, Germany and
668 Sweden had exhibited logistic curve maturities over 50%, indicating that growth is still accelerating
669 in most countries. This leaves us with a sample far too small to use with our approach based on using
670 evidence from countries at more mature phases of adoption to inform projections for global growth.

671 References

672 [1] Bogdanov, D. *et al.* Low-cost renewable electricity as the key driver of the global energy
673 transition towards sustainability. *Energy* **227**, 120467 (2021).

674 [2] Way, R., Ives, M. C., Mealy, P. & Farmer, J. D. Empirically grounded technology forecasts and
675 the energy transition. *Joule* **6**, 2057–2082 (2022).

676 [3] IEA. World energy outlook 2024. Tech. Rep. (2024). URL <https://iea.blob.core.windows.net/assets/140a0470-5b90-4922-a0e9-838b3ac6918c/WorldEnergyOutlook2024.pdf>.

678 [4] Luderer, G. *et al.* Impact of declining renewable energy costs on electrification in low-emission
679 scenarios. *Nature Energy* **7**, 32–42 (2022).

680 [5] Nijssse, F. J. M. M. *et al.* The momentum of the solar energy transition. *Nature Communications*
681 **14**, 6542 (2023).

682 [6] Griliches, Z. Hybrid corn: An exploration in the economics of technological change. *Econometrica*
683 **25**, 501 (1957).

684 [7] Rogers, E. M. *Diffusion of Innovations* 3 edn (The Free Press, New York; United States, 1983).

685 [8] Grubler, A. *The Rise and Fall of Infrastructures Dynamics of Evolution and Technological*
686 *Change* (Physica-Verlag Heidelberg, Heidelberg; Germany, 1990). URL <https://pure.iiasa.ac.at/id/eprint/3351/>.

688 [9] Kazlou, T., Cherp, A. & Jewell, J. Feasible deployment of carbon capture and storage and the
689 requirements of climate targets. *accepted to Nature Climate Change* (2024).

690 [10] Brutschin, E., Cherp, A. & Jewell, J. Failing the formative phase: The global diffusion of nuclear
691 power is limited by national markets. *Energy Research & Social Science* **80**, 102221 (2021).

692 [11] Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A. & Jewell, J. National growth dynamics
693 of wind and solar power compared to the growth required for global climate targets. *Nature*
694 *Energy* **6**, 742–754 (2021).

695 [12] Bento, N., Wilson, C. & Anadon, L. D. Time to get ready: Conceptualizing the temporal
696 and spatial dynamics of formative phases for energy technologies. *Energy Policy* **119**, 282–293
697 (2018). URL <https://doi.org/10.1016/j.enpol.2018.04.015>.

698 [13] Bento, N. & Wilson, C. Measuring the duration of formative phases for energy technologies.
699 *Environmental Innovation and Societal Transitions* **21**, 95–112 (2016). URL <http://dx.doi.org/10.1016/j.eist.2016.04.004>.

700 [14] Grubler, A., Wilson, C. & Nemet, G. Apples, oranges, and consistent comparisons of the
701 temporal dynamics of energy transitions. *Energy Research & Social Science* **22**, 18–25 (2016).

702 [15] Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S. & Rickne, A. Analyzing the functional
703 dynamics of technological innovation systems: A scheme of analysis. *Research Policy* **37**, 407–429
704 (2008). URL message:%3CCAPfknAVYNJ2orwYcemUZECisCE_AS5mZhGcgJN4i7SiyiTgt-Q@mail.gmail.com%3E.

705 [16] Jacobsson, S. & Bergek, A. Transforming the energy sector: the evolution of technological
706 systems in renewable energy technology. *Industrial and Corporate Change* **13**, 815–849 (2004).

709 [17] Markard, J. The next phase of the energy transition and its implications for research and policy.
710 *Nature Energy* **3**, 628–633 (2018). URL <http://dx.doi.org/10.1038/s41560-018-0171-7>. First,
711 policy support for now mature technologies such as wind and solar is likely to decrease (sic!).

712 [18] Jacobsson, S. & Lauber, V. The politics and policy of energy system transformation—explaining
713 the german diffusion of renewable energy technology. *Energy Policy* **34**, 256–276 (2006).

714 [19] Gosens, J., Hedenus, F. & Sandén, B. A. Faster market growth of wind and PV in late adopters
715 due to global experience build-up. *Energy* **131**, 267–278 (2017).

716 [20] Vinichenko, V., Jewell, J., Jacobsson, J. & Cherp, A. Historical diffusion of nuclear, wind
717 and solar power in different national contexts: implications for climate mitigation pathways.
718 *Environmental Research Letters* **18** (2023).

719 [21] Malhotra, A. & Schmidt, T. S. Accelerating low-carbon innovation. *Joule* **4**, 2259–2267 (2020).

720 [22] Wilson, C. *et al.* Granular technologies to accelerate decarbonization. *Science* **368**, 36–39 (2020).

721 [23] Pierson, P. Increasing returns, path dependence, and the study of politics. *American Political
722 Science Review* **94**, 251–267 (2000).

723 [24] Jacobsson, S. & Johnson, A. The diffusion of renewable energy technology: an analytical
724 framework and key issues for research. *Energy Policy* **28**, 625–640 (2000).

725 [25] Ioannidis, R. & Koutsoyiannis, D. A review of land use, visibility and public perception of
726 renewable energy in the context of landscape impact. *Applied Energy* **276**, 115367 (2020).

727 [26] Frantál, B., Frolova, M. & Liñán-Chacón, J. Conceptualizing the patterns of land use conflicts
728 in wind energy development: Towards a typology and implications for practice. *Energy Research
729 & Social Science* **95**, 102907 (2023).

730 [27] Mulvaney, D. Identifying the roots of green civil war over utility-scale solar energy projects on
731 public lands across the american southwest. *Journal of Land Use Science* **12**, 493–515 (2017).

732 [28] Stokes, L. C., Franzblau, E., Lovering, J. R. & Miljanich, C. Prevalence and predictors of wind
733 energy opposition in north america. *Proceedings of the National Academy of Sciences* **120**,
734 e2302313120 (2023).

735 [29] Ko, I. Rural opposition to landscape change from solar energy: Explaining the diffusion of
736 setback restrictions on solar farms across south korean counties. *Energy Research & Social*
737 *Science* **99**, 103073 (2023).

738 [30] Crawford, J., Bessette, D. & Mills, S. B. Rallying the anti-crowd: Organized opposition, demo-
739 cratic deficit, and a potential social gap in large-scale solar energy. *Energy Research & Social*
740 *Science* **90**, 102597 (2022).

741 [31] Patterson, J. J. Backlash to climate policy. *Global Environmental Politics* **23**, 68–90 (2023).

742 [32] Breetz, H., Mildenberger, M. & Stokes, L. The political logics of clean energy transitions.
743 *Business and Politics* **20**, 492–522 (2018).

744 [33] Stokes, L. C. & Breetz, H. L. Politics in the u.s. energy transition: Case studies of solar, wind,
745 biofuels and electric vehicles policy. *Energy Policy* **113**, 76–86 (2018).

746 [34] Stokes, L. C. Electoral backlash against climate policy: A natural experiment on retrospective
747 voting and local resistance to public policy. *American Journal of Political Science* **60**, 958–974
748 (2016).

749 [35] Gorman, W. *et al.* Grid connection barriers to renewable energy deployment in the united states.
750 *Joule* **9**, 101791 (2025).

751 [36] Johnston, S., Liu, Y. & Yang, C. An empirical analysis of the interconnection queue (2023).

752 [37] Heptonstall, P. J. & Gross, R. J. K. A systematic review of the costs and impacts of integrating
753 variable renewables into power grids. *Nature Energy* **6**, 72–83 (2021).

754 [38] Martinot, E. Grid integration of renewable energy: Flexibility, innovation, and experience.
755 *Annual Review of Environment and Resources* **41**, 223–251 (2016).

756 [39] Markard, J., Bento, N., Kittner, N. & Nuñez-Jimenez, A. Destined for decline? examining
757 nuclear energy from a technological innovation systems perspective. *Energy Research & Social*
758 *Science* **67**, 101512 (2020).

759 [40] Verhulst, P. Recherches mathématiques sur la loi d'accroissement de la population. *Nouveaux*
760 *Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles* **18**, 1–45 (1845).

761 [41] Wilson, C., Grubler, A., Bauer, N., Krey, V. & Riahi, K. Future capacity growth of energy
762 technologies: are scenarios consistent with historical evidence? *Climatic Change* **118**, 381–395
763 (2013).

764 [42] Debecker, A. & Modis, T. Determination of the uncertainties in s-curve logistic fits. *Technological
765 Forecasting and Social Change* **46**, 153–173 (1994). Estimate the level of maturity of the logistic
766 curve which is necessary to reliably estimate K from empirical data.

767 [43] Odenweller, A., Ueckerdt, F., Nemet, G. F., Jensterle, M. & Luderer, G. Probabilistic feasibility
768 space of scaling up green hydrogen supply. *Nature Energy* **7**, 854–865 (2022).

769 [44] Grubb, M., Drummond, P. & Hughes, N. *The shape and pace of change in
770 the electricity transition* (We Mean Business Coalition, Washington, DC; USA,
771 2020). URL <https://www.wemeanbusinesscoalition.org/wp-content/uploads/2020/10/Shape-and-Pace-of-Change-in-the-Electricity-Transition-1.pdf>.

772 [45] Dixon, R. Hybrid corn revisited. *Econometrica* **48**, 1451 (1980).

773 [46] Gompertz, B. On the nature of the function expressive of the law of human mortality and on
774 a new mode of determining the value of life contingencies. *Phil. Trans. Roy. Soc.* **123**, 513–585
775 (1825).

776 [47] Haegel, N. M. *et al.* Photovoltaics at multi-terawatt scale: Waiting is not an option. *Science*
777 **380**, 39–42 (2023).

778 [48] Victoria, M. *et al.* Solar photovoltaics is ready to power a sustainable future. *Joule* **5**, 1041–1056
779 (2021).

780 [49] Creutzig, F. *et al.* The underestimated potential of solar energy to mitigate climate change.
781 *Nature Energy* **2**, 17140 (2017).

782 [50] Zielonka, N. & Trutnevyyte, E. Probabilities of reaching required diffusion of granular energy
783 technologies in european countries. *iScience* **28**, 111825 (2025).

784 [51] Zielonka, N., Wen, X. & Trutnevyyte, E. Probabilistic projections of granular energy technology
785 diffusion at subnational level. *PNAS Nexus* **2**, pgad321 (2023).

787 [52] Wen, X., Jaxa-Rozen, M. & Trutnevyyte, E. Accuracy indicators for evaluating retrospective
788 performance of energy system models (2022).

789 [53] Gneiting, T. & Raftery, A. E. Strictly proper scoring rules, prediction, and estimation. *Journal
790 of the American Statistical Association* **102**, 359–378 (2007).

791 [54] Price, I. *et al.* Probabilistic weather forecasting with machine learning. *Nature* **637**, 84–90
792 (2025).

793 [55] Byers, E. *et al.* AR6 scenarios database (2022). URL <https://doi.org/10.5281/zenodo.5886912>.