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Supplementary Figures32

Supplementary Figure 1 National and global takeoff thresholds.
Faint blue dots show takeoff thresholds for individual countries, the boxplots highlight their median, IQR and ranges;
red dots indicate global takeoff thresholds. Note: the horizontal axis is on a logarithmic scale.

median = 1.0% (IQR:0.4−2.8%)

median = 0.8% (IQR:0.4−1.9%)

median = 17.9% (IQR:6.9−34.0%)

median = 13.1% (IQR:7.8−25.2%)

0.32 %

3.66 %

0.15 %

0.15 %
Solar PV

Onshore wind

CCGT

Mobiles

0.1% 1.0% 10.0% 100.0%

Takeoff threshold (% market share), log scale

3



Supplementary Figure 2 Spatial diffusion of technologies.
The cumulative number of countries in different phases of technology growth at different years and the diffusion
durations for different technologies. Bars show the number of countries with no deployment (gray), in the formative
phases (light blue), in the acceleration phase (dark blue), and in or beyond the stable growth phase (yellow); the gray
vertical line indicates the year of global takeoff.
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Supplementary Figure 3 Historical technology deployment curves.
Solid lines show global deployment measured in absolute units (green) and as percentage market share (blue); stars
indicate takeoff.
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Supplementary Figure 4 Historical annual technology additions.
Bars show global annual additions measured in absolute units (green) and as percentage market share (blue) with
Chinese shares highlighted in darker shades, solid lines show their three-year trailing average; stars indicate takeoff;
red vertical dashed lines mark inflection points for logistic functions fit to the full deployment time-series.
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Supplementary Figure 5 The ’moving’ L problem.
(a) Illustration of how logistic curves fit to incomplete deployment data struggle to correctly estimate the technology
deployment ceiling, L. (b) Estimates for the deployment ceiling ”L” (red squares) from logistic curves fit to empirical
deployment data (solid gray line) curtailed at different years.
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Supplementary Figure 6 The evolution of national and global logistic curve parameters.
Gray bars show historical values and gray dashed lines show their three-year trailing average. Red dots show parameters
for logistic curves fit to global data. Solid blue lines and shaded blue intervals show the median and IQR for a sample of
parameters for logistic curves fit to national data. Top row shows the global year-on-year growth rate, and the logistic
intrinsic growth rate (k). Middle row shows the global deployment, and the logistic growth asymptote (L). Bottom
row shows global annual additions, and the logistic maximum annual growth rate at the inflection point (G)
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Supplementary Figure 7 Accuracy indicators for different variants of the PROLONG model.
Indicators measuring the projection performance of the PROLONG model trained on simulations assuming individuals
countries follow only bilogistic functions (yellow), only logistic functions (olive), or are equally likely to follow either
function (’Mixed’, green). The symmetric Mean Absolute Percentage Error (a) and symmetric Mean Percentage Error
(b) for the median global projections from each model variant at different curtail years. The mean Continuous Ranked
Probability score (c) for each model variant for different forecast horizons.

CCGT Mobiles Onshore wind Solar PV

1995 2000 2005 2010 2015 2000 2005 2010 2010 2013 2016 2015 2016 2017 2018 2019
0.0

0.2

0.4

0.6

sM
A

P
E

a

CCGT Mobiles Onshore wind Solar PV

1995 2000 2005 2010 2015 2000 2005 2010 2010 2013 2016 2015 2016 2017 2018 2019
−0.75

−0.50

−0.25

0.00

0.25

Last year in fitted chunk

sM
P

E

b

0.000

0.005

0.010

0.000

0.005

0.010

0.015

0.020

0.0

0.1

0.2

0.3

CCGT Mobiles Onshore wind Solar PV

0 5 10 15 20 25 0 5 10 15 20 0 5 10 0 2 4 6 8
0.00

0.02

0.04

0.06

0.08

Forecast horizon

M
ea

n 
C

R
P

S

c

Model PROLONG−Bilogistic PROLONG−Logistic PROLONG−Mixed

9



Supplementary Figure 8 Calibration of projection intervals for different variants of the PROLONG
model
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Supplementary Figure 9 Comparing the probabilistic projections for onshore wind and solar PV
growth between 2023-2050 to current policy scenarios and market forecasts
Black dots show historical data; solid lines show the median, dark shaded intervals the 25-75th percentile, and light
shaded intervals the 5-95th percentile projections from PROLONG; stars show deployment aligned with the COP28
Global Pledge on Renewables; crosses show forecasts from the IEA Renewables 2024 report; dot-dash lines show the
IEA Stated Policies scenario (green), the BloombergNEF Economic Transition scenario (red), and three Current Poli-
cies scenarios from the IPCC AR6 report (magenta, blue, olive).
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Supplementary Figure 10 Comparing the probabilistic projections for onshore wind and solar PV
growth between 2023-2050 to scenarios from the literature.
Black dots show historical data; solid lines show the median, dark shaded intervals the 25-75th percentile, and light
shaded intervals the 5-95th percentile projections from PROLONG; stars show deployment aligned with the COP28
Global Pledge on Renewables; dot-dash lines show deployment in refs. [1–5].
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Supplementary Figure 11 Region-wise onshore wind deployment under the Baseline, Early and Late
acceleration scenarios.
Dots show historical data; solid lines show deployment in the Basline (red), Early acceleration (green) and Late
acceleration scenarios (blue).
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Supplementary Figure 12 Region-wise annual onshore wind additions under the Baseline, Early and
Late acceleration scenarios.
Gray bars show historical data; coloured bars show deployment in the Basline (red), Early acceleration (green) and
Late acceleration scenarios (blue).
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Supplementary Figure 13 Region-wise solar PV deployment under the Baseline, Early and Late accel-
eration scenarios.
Dots show historical data; solid lines show deployment in the Basline (red), Early acceleration (green) and Late accel-
eration scenarios (blue).
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Supplementary Figure 14 Region-wise annual solar PV additions under the Baseline, Early and Late
acceleration scenarios.
Gray bars show historical data; coloured bars show deployment in the Basline (red), Early acceleration (green) and
Late acceleration scenarios (blue).
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Supplementary Figure 15 Offshore wind deployment
Solid lines show historical deployment; stars indicate technology takeoff.
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Supplementary Figure 16 Offshore wind rates
Bars show annual additions, solid lines show their three-year trailing average.
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Supplementary Tables33

Supplementary Table 1 Takeoff years by country for onshore wind.

Country TO.Year Cherp et al. (2021) Country TO.Year Cherp et al. (2021)
DK 1991 1989 FO 2014 -
DE 1998 2000 PE 2014 2015
NL 1999 2003 JO 2015 -
ES 2000 1999 UY 2015 -
GR 2000 2001 ZA 2015 2015
JP 2001 - LT 2016 -
NZ 2003 2005 PK 2016 2016
AT 2004 2004 FK 2017 -
IN 2004 2006 IL 2017 -
PT 2004 2003 NO 2017 2011
AU 2005 2007 IR 2018 -
CA 2005 2009 LV 2018 -
IE 2005 2000 AR 2019 2019
IT 2005 2007 GP 2019 -
KR 2005 - KE 2019 -
FR 2006 2008 RU 2019 -
NC 2006 - CU 2020 -
US 2006 2008 KW 2020 -
GB 2007 2007 SK 2020 -
BE 2008 2009 TW 2020 -
CN 2008 2010 VN 2020 -
SE 2008 2008 MD 2021 -
PL 2009 2010 MQ 2021 -
TN 2009 - OM 2021 -
TR 2009 2010 SA 2022 -
MX 2010 2012
CH 2011 -
HR 2011 -
BR 2012 2013
CV 2012 -
LK 2012 -
LU 2013 -
MA 2013 -
UA 2013 -
CL 2014 2014
CR 2014 -
EG 2014 2010
FI 2014 2014
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Supplementary Table 2 Takeoff years by country for solar PV.

Country TO.Year Cherp et al. 2021 Country TO.Year Cherp et al. 2021
DE 2008 2009 RU 2020 -
ES 2008 2009 SA 2020 -
PT 2009 2014 SD 2020 -
AT 2010 2014 SV 2020 -
AU 2010 2013 VN 2020 -
IT 2010 2011 AM 2021 -
CA 2011 - BA 2021 -
FR 2011 2014 BE 2021 2011
IN 2011 2016 BG 2021 2012
CH 2012 2014 BJ 2021 -
GB 2012 2014 BR 2021 2019
JP 2012 2013 BZ 2021 -
TH 2012 2015 CD 2021 -
DK 2013 2013 CL 2021 2015
KR 2013 2017 CO 2021 -
LU 2013 - GR 2021 2012
US 2013 2016 HK 2021 -
CN 2014 2016 HR 2021 -
ER 2014 - KE 2021 -
NL 2014 2016 LT 2021 -
ZA 2014 2016 MK 2021 -
FI 2017 - MZ 2021 -
AW 2018 - PK 2021 -
BF 2018 - PL 2021 -
IL 2018 2014 RO 2021 2014
PE 2018 2018 RS 2021 -
PR 2018 - SE 2021 -
AE 2019 - SG 2021 -
AR 2019 - SI 2021 -
CU 2019 - SL 2021 -
CV 2019 - TN 2021 -
HU 2019 2018 UZ 2021 -
LK 2019 - AL 2022 -
MN 2019 - ZM 2022 -
MX 2019 2019
MY 2019 -
SR 2019 -
TW 2019 -
UA 2019 -
ZW 2019 -
AF 2020 -
AG 2020 -
AO 2020 -
BD 2020 -
CI 2020 -
CY 2020 -
DO 2020 -
EE 2020 -
EG 2020 -
ID 2020 -
KH 2020 -
LC 2020 -
ML 2020 -
NG 2020 -
NZ 2020 -
QA 2020 -
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Supplementary Table 3 Parameter configurations for onshore wind Monte Carlo simulations.

Config Growth rate (k) Ceiling (L) Takeoff year Design type

Base distribution parameters
Base Γ(4, 8.163) Γ(3, 39.474) N (5.5, 3.0) –

Grid exploration configurations
1 0.144 0.157 10.5 Grid (low k, low L)
2 0.331 0.157 10.5 Grid (mid k, low L)
3 0.519 0.157 10.5 Grid (high k, low L)
4 0.144 0.319 10.5 Grid (low k, mid L)
5 0.331 0.319 10.5 Grid (mid k, mid L)
6 0.519 0.319 10.5 Grid (high k, mid L)
7 0.144 0.481 10.5 Grid (low k, high L)
8 0.331 0.481 10.5 Grid (mid k, high L)
9 0.519 0.481 10.5 Grid (high k, high L)

Face-centered configurations
10 0.238 0.238 10.5 Face-centered (lower diagonal)
11 0.238 0.400 10.5 Face-centered (upper row)
12 0.425 0.238 10.5 Face-centered (right column)
13 0.425 0.400 10.5 Face-centered (upper diagonal)

Note: Base distributions are bounded (0.01 ≤ L ≤ 0.75, 0.1 ≤ k ≤ 1.2). Parameter distributions are shifted
to the means shown while maintaining the shape of the base distribution.

Supplementary Table 4 Parameter configurations for solar PV Monte Carlo simulations

Config Growth rate (k) Ceiling (L) Takeoff year Design type

Base distribution parameters
Base Γ(4, 5.181) Γ(3, 74.074) N (5.4, 1.98) –

Grid exploration configurations
1 0.225 0.160 10.4 Grid (low k, low L)
2 0.521 0.160 10.4 Grid (mid k, low L)
3 0.817 0.160 10.4 Grid (high k, low L)
4 0.225 0.381 10.4 Grid (low k, mid L)
5 0.521 0.381 10.4 Grid (mid k, mid L)
6 0.817 0.381 10.4 Grid (high k, mid L)
7 0.225 0.602 10.4 Grid (low k, high L)
8 0.521 0.602 10.4 Grid (mid k, high L)
9 0.817 0.602 10.4 Grid (high k, high L)

Face-centered configurations
10 0.373 0.271 10.4 Face-centered (lower diagonal)
11 0.373 0.492 10.4 Face-centered (upper row)
12 0.669 0.271 10.4 Face-centered (right column)
13 0.669 0.492 10.4 Face-centered (upper diagonal)

Note: Base distributions are bounded (0.01 ≤ L ≤ 0.95, 0.1 ≤ k ≤ 1.2). Parameter distributions are shifted
to the means shown while maintaining the shape of the base distribution.
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Supplementary Table 5 Parameter configurations for mobile phones Monte Carlo simulations

Config Growth rate (k) Ceiling (L) Takeoff year Design type

Base distribution parameters
Base Γ(4, 5.096) Γ(3, 6.508) N (5.92, 2.68) –

Grid exploration configurations
1 0.229 0.634 10.92 Grid (low k, low L)
2 0.530 0.634 10.92 Grid (mid k, low L)
3 0.831 0.634 10.92 Grid (high k, low L)
4 0.229 0.981 10.92 Grid (low k, mid L)
5 0.530 0.981 10.92 Grid (mid k, mid L)
6 0.831 0.981 10.92 Grid (high k, mid L)
7 0.229 1.327 10.92 Grid (low k, high L)
8 0.530 1.327 10.92 Grid (mid k, high L)
9 0.831 1.327 10.92 Grid (high k, high L)

Face-centered configurations
10 0.379 0.807 10.92 Face-centered (lower diagonal)
11 0.379 1.154 10.92 Face-centered (upper row)
12 0.680 0.807 10.92 Face-centered (right column)
13 0.680 1.154 10.92 Face-centered (upper diagonal)

Note: Base distributions are bounded (0.10 ≤ L ≤ 2.0, 0.1 ≤ k ≤ 1.2). Parameter distributions are shifted
to the means shown while maintaining the shape of the base distribution.

Supplementary Table 6 Parameter configurations for CCGT Monte Carlo simulations

Config Growth rate (k) Ceiling (L) Takeoff year Design type

Base distribution parameters
Base Γ(4, 9.091) Γ(3, 7.752) N (6.0, 5.0) –

Grid exploration configurations
1 0.133 0.448 11.0 Grid (low k, low L)
2 0.300 0.448 11.0 Grid (mid k, low L)
3 0.467 0.448 11.0 Grid (high k, low L)
4 0.133 0.569 11.0 Grid (low k, mid L)
5 0.300 0.569 11.0 Grid (mid k, mid L)
6 0.467 0.569 11.0 Grid (high k, mid L)
7 0.133 0.690 11.0 Grid (low k, high L)
8 0.300 0.690 11.0 Grid (mid k, high L)
9 0.467 0.690 11.0 Grid (high k, high L)

Face-centered configurations
10 0.217 0.508 11.0 Face-centered (lower diagonal)
11 0.217 0.629 11.0 Face-centered (upper row)
12 0.383 0.508 11.0 Face-centered (right column)
13 0.383 0.629 11.0 Face-centered (upper diagonal)

Note: All configurations use a mixture of logistic (50%) and bilogistic (50%) models. Base distributions
are bounded (0.01 ≤ L ≤ 1.0, 0.1 ≤ k ≤ 1.2).

Supplementary Table 7 Regional deployment ceilings for onshore wind and solar PV in the
acceleration scenarios.

Region Onshore wind ceiling Solar PV ceiling
(%) (%)

East Asia 40 50
North America 40 45
South Asia 35 55
Europe 40 45
Asia-Pacific Developed 30 30
South-East Asia and developing Pacific 35 55
Africa 40 55
Eurasia 50 40
Latin America and Caribbean 35 45
Middle East 40 55

Note: Ceiling values represent maximum deployment potential as percentage of electricity
generation.
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Supplementary Table 8 Onshore wind deployment by acceleration scenario and region.

Scenario Region Final Peak Total Growth
Deployment Rate Growth Share

(%) (p.p./yr) (p.p.) (%)

Baseline

Global 23.6 – 16.6 –
Eastern Asia 26.8 1.28 – 41
Europe 33.3 1.29 – 15
Latin America and Caribbean 29.0 1.33 – 7
North America 25.2 1.04 – 16
South Asia 15.7 0.72 – 5
Others 13.3 0.72 – 15

Early acceleration

Global 36.0 – 29.0 –
Eastern Asia 40.0 1.74 – 40
Europe 40.0 1.76 – 11
Latin America and Caribbean 35.0 1.79 – 5
North America 39.1 1.51 – 17
South Asia 30.4 1.90 – 7
Others 27.2 1.61 – 19

Late acceleration

Global 36.8 – 29.7 –
Eastern Asia 40.0 2.07 – 39
Europe 40.0 2.09 – 11
Latin America and Caribbean 35.0 2.12 – 5
North America 39.7 1.84 – 17
South Asia 32.8 1.90 – 7
Others 29.4 1.62 – 20

Note: Final Deployment and Total Growth shown as percentage of electricity generation; Peak Rate
shown as annual percentage point increase (p.p./yr); Growth Share represents regional contribution
to total global growth between 2023-2050.

Supplementary Table 9 Solar PV deployment by acceleration scenario and region.

Scenario Region Final Peak Total Growth
Deployment Rate Growth Share

(%) (p.p./yr) (p.p.) (%)

Baseline

Global 18.3 – 12.7 –
East Asia 19.6 1.20 – 38
Europe 23.6 1.37 – 15
Latin America and Caribbean 23.0 1.47 – 8
North America 16.9 1.05 – 15
South Asia 17.3 1.05 – 7
Others 13.6 0.88 – 17

Early acceleration

Global 44.6 – 39.0 –
East Asia 48.7 2.83 – 39
Europe 45.0 2.87 – 12
Latin America and Caribbean 45.0 2.88 – 6
North America 45.0 2.79 – 17
South Asia 46.7 2.79 – 8
Others 36.4 2.57 – 18

Late acceleration

Global 44.7 – 39.1 –
East Asia 48.3 3.00 – 38
Europe 45.0 3.00 – 12
Latin America and Caribbean 45.0 3.00 – 6
North America 45.0 3.00 – 17
South Asia 46.4 3.00 – 8
Others 38.0 3.00 – 19

Note: Final Deployment and Total Growth shown as percentage of electricity generation; Peak Rate
shown as annual percentage point increase (p.p./yr); Growth Share represents regional contribution
to total global growth between 2023-2050.
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Supplementary Notes34

Supplementary Note 1: Technology growth and diffusion mechanisms and35

phases36

The growth of new technologies is often represented as following an S-curve, where growth first37

accelerates, reaches a peak rate, and subsequently slows down and ends [6–8]. This mirrors the use38

of S-curves in disciplines like ecology and epidemiology and reflects the intuitive idea of early growth39

being driven by positive feedbacks before encountering increasing barriers and limits which ultimately40

prove unsurmountable.41

The formative phase and technology take-off42

Every new technology begins in the formative phase where its use is characterised by low deploy-43

ment levels and erratic, unpredictable growth within a small set of niches [9–13]. Here, the growth44

and evolution of the technology is shaped by innovation, experimentation, and failures and as it “is45

tested, refined and adapted to market conditions” [14] with little interaction with the wider system.46

Together with the emergence of actor networks, business models and regulatory and policy envi-47

ronments, these developments allow the socio-technical regimes around the technology to facilitate48

consistent growth [10, 11, 15, 16].49

This growth ‘take-off’ [11, 13, 17, 18] or “beginning of the movement” [6] signals the end of the50

formative phase and marks the first turning point in the technology’s adoption. The existence of51

the formative phase has been documented at both the global [13] and country levels [11, 18]. At the52

global level it involves technology learning to reduce costs, standardisation of designs and establishing53

global supply chains, while at the country level it involves establishing necessary regulatory and54

market conditions suited to a specific national context.55

The differences in when and which countries experience take-off illustrate the characteristics of the56

spatial diffusion of the technology [11]. However, while the literature proposes indicative thresholds57

for take-off – 2.5% [13] or between 0.3-1.8% [9] of the market, 100 MW installed capacity [19], 1% of58

total electricity supply [11, 20] – no take-off thresholds have been empirically established as yet. This59

presents a important challenge with regards to assessments of the role that emerging technologies60

might play in the future energy system. A technology that is beyond the formative phase in multiple61

markets may be judged to hold greater, more evidence-backed promise compared to one which isn’t,62

but how do we make these assessments in the absence of a way to reliably measure when the formative63

phase ends? This also has implications for which policies are designed and implemented to accelerate64
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technological change. Supportive policies can play an important role in shortening the duration of the65

formative phase and enable earlier take-off within countries as well as faster cross-country diffusion.66

Our contribution to this puzzle is two-fold: we first develop a method to empirically identify when67

different technologies take-off in different countries (Methods), and then use these estimates (Sup-68

plementary Figure 1) to measure how quickly technologies diffuse across countries (Supplementary69

Figure 2).70

To measure this ’diffusion duration’ we fit a logistic curve to the cumulative count for the number71

of countries where a technology has taken off and calculate ∆Tdiffusion = ln(81)/k, where k is the72

estimated growth constant. This metric indicates the years elapsed between the technology reaching73

take-off in 10% and 90% of countries. We show that while this cross-national diffusion took over half74

a century for older energy technologies like coal and hydropower, more recent (but still complex [21])75

technologies like combined cycle gas turbines (CCGTs) and nuclear power have had shorter diffusion76

of durations of 36 and 30 years respectively. On the other end of the spectrum, mobile telephones,77

a granular [22], consumer-driven technology has had a diffusion duration of only 12 years. Solar PV78

and onshore wind fall in-between these cases with diffusion durations of 15 and 23 years respectively79

(Supplementary Figure 2).80

The acceleration phase81

After take-off, the technology enters the acceleration phase where it’s growth begins to follow82

an S-curve. The acceleration phase is characterised by a consistent increase in annual deployment83

additions driven by positive feedbacks from technology and policy learning, and increasing investment84

profitability. These ‘increasing returns’ [23] or ‘cumulative causation’ [24] may manifest as an increase85

in the profitability of installing and operating new technologies or political gains from extending86

support to them at the national level. At the global level they may result from increasing economies87

of scale for manufacturing and servicing artifacts for the new technology and an expansion in the88

number of countries adopting the technology.89

Consistent with S-curve behaviour, technologies in the acceleration phase experience a consistent90

decline in the year-on-year relative growth rates even as the annual additions are expanding in91

absolute terms. The annual additions keep increasing until they reach their maximum rate – this92

marks the second turning point in the technology’s adoption where the positive feedbacks driving93

accelerating growth are balanced out by countervailing barriers [11].94

These barriers can take various shapes and forms and appear at different stages of the adoption95

process, with their cumulative impact intensifying with increasing deployment. They can include96

25



resistance from incumbents, declining social acceptance and increasing public opposition, system97

integration challenges, land and other resource-use constraints, limits to supporting infrastructure,98

supply chain congestion, or limits to institutional capacity [25–38].99

Growth pulses and the stable growth phase100

It is typically assumed that a technology’s growth immediately slows and approaches the satura-101

tion phase after it achieves its peak growth rate as the increasing barriers to adoption overpower the102

mechanisms driving it. At the end of the saturation the technology’s growth grinds to a complete103

halt and stagnates at its peak market share or final deployment ceiling [39]. Following this point, the104

technology may maintain its market share until it begins to lose ground to an emerging alternative.105

Contrary to this idea, we find that in some cases, the technology may experience a fresh ’pulse’ of106

growth due to the availability of new markets, or the (re-)introduction of supportive measures. These107

growth pulses can be observed for several technologies at both the national and global scales. At the108

national scale, these pulses may be linked to the introduction of new policies, changing regulations,109

market reforms, financial support schemes, or due to other changes in the socio-technical landscape.110

At the global scale, they may result from market expansion as a technology diffuses to a new set of111

countries, or renewed growth in countries where growth had previously begun to slow or stagnate.112

For some technologies including nuclear power, coal and hydropower we see a renewed pulse of global113

additions due to delayed but large-scale adoption in Asia with China driving a substantial share of114

new growth (Supplementary Figure 4).115

Together, the interplay of these mechanisms often culminates in a prolonged stable growth phase,116

with a balance between drivers and barriers yielding a period of nearly-linear growth. The presence of117

this stable phase hints at the role that targeted policy effort can play in sustaining growth over longer118

periods of time and delaying saturation. Policy effort can induce diffusion through cross-country119

technology transfers and knowledge spillovers, accelerate takeoff by helping curtail the duration of120

the formative phase, prolong the stable growth phase by introducing measures that address emerg-121

ing barriers and delay saturation, and catalyse renewed growth pulses by creating new incentive122

structures.123

In sum, we argue that the growth of a new technology proceeds through a sequence of four124

distinct phases – formative, acceleration, stable growth, and saturation. These phases are repeated in125

every country at different points in time, and global deployment patterns emerge from the aggregate126

effects of national adoption. Initially global growth is largely influenced by technology take-off and127

acceleration in a small number of early adopters. Subsequently, it is shaped by asynchronicities128
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in cross-national diffusion, takeoff, acceleration, peaking and saturation which generate a myriad129

co-evolving feedbacks, synergies and dissonance.130

The measurement of technology growth131

Our analysis also shows that there are different metrics which can be used to measure technology132

adoption, and that the choice of metric influences the inferences one draws about the nature of a133

technology’s growth. We measure technology growth in relation to the larger market – shares in134

electricity generation for solar and wind for which we have better generation data, shares in installed135

electricity generation capacity for other energy technologies, and share in population for mobiles.136

Technology adoption is also often measured in absolute units (e.g. GW of solar capacity or MWh137

of solar electricity generation), but this ignores the crucial relationship between a technology and the138

market it operates in – when we measure adoption, a technology’s market share is not only influenced139

by its own deployment growth dynamics but also those of the larger market within which it operates.140

We show that the earliest electricity generating technologies based on coal, oil and hydropower141

were often responsible for creating a new market for electricity when they first began to be deployed.142

This led to their market shares starting at close to 100% and then declining when other technologies143

entered the market (Supplementary Figure 3). Their deployment patterns are markedly different144

from later technologies like nuclear power that entered a pre-existing market for electricity and saw145

their shares gradually increase from zero. The example of nuclear power also illustrates how the size146

of the overall market impacts the characteristics of the technology’s adoption curve – because of the147

relatively smaller size of the overall electricity system at the time of its adoption, even small increases148

in absolute deployment could translate to relatively big jumps in the technology’s market share.149

Thus, for many historical technologies, focusing on absolute versus relative adoption metrics would150

lead to significantly different inferences about the nature of growth. For more recent technologies like151

CCGTs, mobiles, solar PV and onshore wind, we see a near-perfect alignment between the patterns152

for the two, as absolute deployment went hand-in-hand with increasing market penetration amid153

relatively modest changes in the size of the overall market.154

Supplementary Note 2: Mathematical models for technology growth155

Technology S-curves are frequently represented using the logistic model [40], a three parameter156

function of the form157

f(t) =
L

(1 + e−k(t−t0))
(1)
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, with parameters k (the growth constant), L (the final deployment asymptote or ’ceiling’), and t0158

(the inflection point). Deployment achieves its maximum annual growth rate at the inflection point,159

which can be expressed as G = Lk
4 [11].160

Logistic curves fit to empirical deployment data have been widely used for ex-post description and161

comparison of growth for historical technologies which have already reached their final ceilings[6–162

8, 41]. Such analyses are less suited to emerging technologies with expanding deployment due to the163

limited reliability of parameters estimated by fitting logistic functions to time-series with continuing164

growth [11, 42, 43]165

We posit that different parameters of the logistic curve reflect information about mechanisms166

shaping growth at different phases of the S-curve: the growth constant k captures the rate of167

deployment expansion during the acceleration phase, the inflection point t0 marks the start of the168

quasi-linear stable growth phase, and the deployment ceiling L indicates where growth finishes.169

Parameters reflecting later phases cannot be reliably estimated from early observations because these170

data are unable to represent all phases of technology growth – as they are only able to capture171

dynamics from a limited set of early phases, they do not have any information about the evolving172

mechanisms that shape later phases of growth. Thus, fitting a logistic function to data from the173

acceleration phase with consistently increasing annual additions might give us a reasonable estimate174

for k, but will only be able to guess at the values of t0, or L as the underlying data does not have175

any information on the phases to come. The more data we have and the better its coverage of the176

whole deployment curve, the more reliable our parameter estimates.177

We illustrate this phenomenon by fitting a logistic function to systematically truncated deploy-178

ment timeseries for different technologies. For each technology, we track the evolution of the179

parameters estimated by fitting the curve to curtailed data ending in a specific year. Our analysis180

shows that while the estimate for k stabilises fairly early (essentially as soon as the technology is181

nearing the end of the acceleration phase), the estimate for L is extremely unstable until very close182

to true saturation (Supplementary Figure 6). This ‘moving L’ phenomenon (Supplementary Figure183

5), where the estimate for the ceiling regularly changes with increasing deployment makes it partic-184

ularly difficult to use logistic fits to project future technology growth and often leads to overfitting185

(when the curve describes the data it is fit to reasonably well but is unable to accurately predict186

future growth).187

Several different approaches have attempted to address this parameter estimation challenge. We188

see these as falling into two broad categories – one focusing on modifying the standard logistic curve189
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fitting approach, and another looking beyond the logistic function and introducing alternative growth190

models.191

In the first category, ref. [44] suggest using an exogenously assumed fixed value for L (aligning192

with a normative target or goal such as the 1.5ºC target) with a set take-off year and empirically193

derived estimates for the ‘emergence rate’ (which is analogous to the growth constant k) to generate194

a logistic curve. While the trajectories generated using this approach can be used to assess if growth195

is on track to reach the desired level by a certain time given a certain emergence rate, the projected196

is purely conditional on the choice of L and the emergence rate.197

Another modelling framework from ref. [43] improves on this ‘fixed L’ approach by having L198

linearly increase with time at an exogenously define rate. This formulation more accurately captures199

the ‘moving L’ phenomenon we highlight, but is again sensitive to assumptions about how fast L200

changes and at what level it peaks. Thus, while it is useful for constructing feasibility spaces for201

future growth under different assumptions about the emergence rate and the ‘demand pull’ raising202

L, it does not resolve the fundamental problem of empirically deducing L from early data.203

The second category focuses on exploring alternatives to the logistic model, and has had a204

significantly longer history than the first.205

Ref. [45] introduced the Gompertz model [46] to analyses of technology diffusion already in 1980.206

The Gompertz model, an asymmetric S-curve of the form207

f(t) = Le−e−k(t−t0)

(2)

with parameters k (the growth constant), L (the final deployment ceiling), and t0 (the inflection208

point), has a longer growth phase with delayed saturation which mitigates some of the logistic model’s209

pessimism about the ceiling when used with earlier observations. However, it is also vulnerable to210

the same problem of being unable to reliably estimate parameters describing later phases from early211

data [11, 42].212

Given the accelerating nature of growth early in the S-curve it is sometimes (implicitly [47–49]213

and explicitly [2, 43]) argued that the acceleration phase can be described by an exponential function.214

The exponential function is of the form215

f(t) = yie
K(t−ti) (3)
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where e is the exponential growth constant, and yi is the value at initial time ti. While it’s unsuitabil-216

ity for describing or projecting technology growth over the long-term due to its inherent inability to217

account for any barriers and slow-down is quite obvious, we show that it is also ill-suited to describing218

the acceleration phase because it does not capture the declining year-on-year growth rates charac-219

terising it – by definition, the exponential model assumes a fixed growth rate equal to the growth220

constant.221

Recent studies [50, 51] have demonstrated yet another approach which attempts to mitigate the222

deficiencies of individual models by using several different models and averaging projections from223

across the ensemble. They fit different growth models to empirical data, generate projections, use224

hindcasting to evaluate the performance of each model, and then generate weighted projections where225

better performing models are assigned higher weights. While the use of a more diverse ensemble of226

models coupled with iterative hindcasting makes this approach less vulnerable to overfitting compared227

to projections based on a single model fit to a single timeseries, it still faces the same underlying228

problem of estimating parameters corresponding to later phases using early data.229

We argue that this parameter estimation problem is not limited to a particular growth model but230

extends to the broader enterprise of using models fit to empirical data to make projections.231

Supplementary Note 3: PROLONG (PRobabilistic mOdeL Of techNology232

Growth)233

Models fit to a single set of historical observations are implicitly constrained in their ability to234

anticipate future technology growth dynamics. A logistic function fit to solar PV data until 2015235

does not reliably project global deployment in 2023 because it only captures dynamics from the236

acceleration phase. We face the same problem when we try and project deployment until 2030 or 2040237

using the latest data for wind or solar PV because these technologies are still in the acceleration phase238

at the global scale. But this does not preclude the possibility of us making meaningful projections239

altogether as there are individual countries where these technologies are already at more advanced240

phases of adoption [11]. We argue that even though deployment data from these countries do not241

yet capture slow-down and saturation, they offer us an empirical window into studying the evolving242

balance of drivers and barriers across the acceleration and stable growth phases. Here, we develop243

an approach to use these ‘incomplete’ national deployment time-series to probabilistically project244

global growth over the near to medium-term.245
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We find that statistical ranges for the growth constant (k) and peak growth rate (G) from logistic246

curves fit to national data are relatively stable over time and can help anchor our expectations for the247

eventual values of these parameters for the world as a whole (Supplementary Figure 6). At the same248

time, our analysis also shows that similar statistics for L at the national scale are not informative249

for estimating L at the global scale. We posit that early national k and G from countries at more250

advanced phases of adoption could be used to inform projections of global growth. However, doing251

so requires addressing some important challenges.252

First, we would need to be able to identify the mathematical relationship between national253

parameter statistics measured at earlier points in time and the parameters of a curve describing the254

completed global deployment trajectory. This presents the same problem contemporary approaches255

struggle with – in the absence of a crystal ball that shows us data from the future, we have no way256

of knowing what the parameters of the eventual global trajectory will be.257

One way to overcome this challenge would be to study historical technologies for which we have258

data spanning the whole S-curve and use them as reference cases. We could quantify the relationships259

between early national curve parameters and final global curve parameters, and then use them with260

other technologies. But how do we know if the relationships measured for one reference technology261

also hold for another? Given the specificity of technological characteristics and the socio-political,262

economic context in which each technology is deployed, it is difficult to guarantee that patterns for263

one technology can be used to predict those for another. If we want to project the future deployment264

of solar power, is it likelier to follow patterns observed for other energy technologies like nuclear265

power or CCGTs during the 20th century, or for granular consumer technologies like mobiles in more266

recent years?267

Another challenge relates to the actual process of quantifying these relationships between national268

and global parameters – what methods can we use to capture these complex, non-linear relationships269

that might vary in shape and form across different technologies?270

We resolve these challenges by using computational simulations to explore different possibilities271

for the growth and diffusion of a given technology in an ensemble of virtual worlds, and using a272

machine learning model to capture the quantitative relationships between parameters describing273

incomplete national growth and completed global trajectories.274

We argue that a diverse enough possibility space composed of thousands of simulated global tra-275

jectories, each of which is the aggregate outcome of a unique set of national growth dynamics, captures276

adoption patterns similar to those unfolding in the real world, as well as those where the technology277
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is more/less successful. In generating these simulations, we make explicit assumptions about what we278

see as a plausible range for the takeoff timing, for the shape and form of national growth trajectories,279

and for permissible deployment speeds and ceilings. Our approach uses computational simulations to280

train a machine learning model to recognise the relationships between early national growth param-281

eter statistics and the parameters of a technology’s final global trajectory, and then use the trained282

model to make probabilistic projections for global growth using empirical national data.283

The implementation of our modelling framework consists of the following steps:284

• Step 0: Defining rules for the virtual worlds285

• Step 1: Exploring diverse technology futures using Monte Carlo simulations286

• Step 2: Generating training data from the ensemble of simulated trajectories287

• Step 3: Using machine learning to identify the relationships between curtailed national and final288

global parameters289

• Step 4: Generating probabilistic projections from empirical data290

• Step 5: Model validation and hindcasting291

Step 0: Defining rules for the virtual worlds292

Before we start generating simulations we define a set of core assumptions that form the basic293

structure for the model.294

Our simulation module represents a virtual world composed of 150 countries, with the distribution295

of their relative, technology-specific market sizes carefully calibrated to reflect real-world market296

sizes. We quantify the market shares as normalised shares (summing to 1). For solar PV and onshore297

wind, market shares are derived from national total electricity generation, reflecting each country’s298

relative electricity system size. For mobile phones, market shares are proportional to population299

counts, representing the potential user base. For CCGTs, market shares are calculated based on each300

country’s existing natural gas electricity generation capacity. These market shares directly weight301

each country’s contribution to global aggregate deployment. For example, a country with 5% of global302

electricity generation would contribute five times more to global solar deployment than a country303

with 1% generation share, assuming identical percentage-based deployment within each country.304

This market-weighted approach ensures our simulations properly account for the outsized influence305

of large markets on global technology diffusion patterns, while still capturing the diversity of growth306

dynamics across different national contexts.307
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We simulate technology growth in each country separately, and global deployment at each time308

step is the weighted sum of all national deployment at that instant.309

We assume that each country can follow trajectories modelled by one of two shapes – a standard310

S-curve (using a logistic function) or a curve with two pulses (using a bi-logistic function). For the311

logistic trajectories, we need to assign each country a takeoff year (the year when deployment first312

exceeds 1%), intrinsic growth rate (k) and deployment ceiling (L), after which we can calculate the313

inflection point using the equation t0 = takeoffyear+(1/k)log(L/0.01−1), where t0 is the inflection314

point year. For the bi-logistic trajectories, we need to assign each country a takeoff year, intrinsic315

growth rate for the first pulse (k1) and the final deployment ceiling (L). The final ceiling is split316

between the two pulses with respective ceilings L1 and L2 using a random fraction between 20-80%.317

We calculate the inflection point for the first pulse (t01) and its peak annual growth rate (G1). The318

second pulse starts after a random delay between 1-10 years after t01 , and is assigned a peak annual319

growth rate (G2) calculated by multiplying G1 by a random multiplier that is centred around 1 –320

this allows for the equal possibility of the second pulse exhibiting faster/slower growth than the first.321

The intrinsic growth rate (k2) for the second pulse is calculated as k = 4G2/L2, and its inflection322

point (t02) as t02 = takeoffyear2 + (1/k2)log(L2/0.01 − 1). The choice of a 1-10 year delay for the323

second pulse allows for both quick transitions between pulses (1 year) and longer pauses between324

growth phases (up to 10 years).325

Real-world technology deployment rarely follows perfect (bi-)logistic curves due to policy changes,326

economic fluctuations, supply chain disruptions, and other temporal factors. To replicate this variabil-327

ity, we implement a correlated noise model with three parameters. First, we apply multiplicative noise328

with an initial amplitude of 5% of the current deployment value. This ensures deviations scale pro-329

portionally with deployment levels – smaller variations in early adoption phases and larger absolute330

fluctuations during rapid growth periods. Second, we implement year-to-year correlation (ρ = 0.7)331

to create persistent effects that mimic how real-world drivers and barriers typically influence deploy-332

ment over multiple consecutive years. For instance, the implementation of a new policy might affect333

deployment over several years rather than causing independent annual fluctuations. Third, we incor-334

porate amplitude decay (2% annual reduction from the initial 5%) to reflect how mature markets335

tend to demonstrate more stable, predictable growth with reduced volatility. This three-component336

noise structure creates trajectories with realistic short-term variability while preserving the under-337

lying diffusion pattern, avoiding both the artificial smoothness of perfect curves and the unrealistic338

randomness of uncorrelated noise.339
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Here is an example to illustrate how the noise works. Let’s consider a country with 10%340

deployment in year t. With a 5% noise amplitude, the deployment value might be adjusted to341

10%(1+0.05) = 10.5% or 10%(1−0.05) = 9.5%, depending on the random noise value. In year t+1,342

if deployment grows to 15% and the previous year’s noise was +5%, the correlated noise would be343

calculated as 0.7(+5%) + 0.3 (the new random noise). If the new random component is -3%, then344

the noise in year t + 1 would be 0.7(+5%) + 0.3(−3%) = +2.6%. The deployment would then be345

adjusted to15%(1 + 0.026) = 15.39%. By year t + 5, the noise amplitude would have decayed to346

5%(0.98)5 ≈ 4.5%, reducing the magnitude of potential fluctuations as the market matures.347

We introduce spatial heterogeneity in when growth starts, how fast it happens, and where it ends348

by assigning countries different parameters from different statistical distributions such as normal or349

gamma distributions which vary between technologies. We use a Monte Carlo simulation engine to350

simulate technology growth in thousands of virtual worlds, where each country follows a new, unique351

trajectory every single time, leading to the emergence of a diverse set of global growth patterns.352

The Monte Carlo simulation is implemented using R’s parallel processing capabilities through the353

‘parallel‘, ‘foreach‘, and ‘doParallel‘ packages, allowing for efficient computation across multiple CPU354

cores simultaneously.355

We simulate technology growth and diffusion over a time period of 50 years; long enough for356

countries to move from the formative to slow-down phases.357

Step 1: Exploring diverse technology futures using Monte Carlo simulations358

Establishing parameter distributions359

To start generating simulations, we first define the distributions which control the national growth360

dynamics.361

We first look at early empirical data for the technology – up to 2015 for solar PV, 2010 for onshore362

wind, 1998 for mobiles, 1985 for CCGTs – and fit normal distributions to the available national363

takeoff years, and gamma distributions to logistic k and logistic L for mature countries (with logistic364

curve maturity ≥ 50%). These distributions inform our priors about national curve parameters for the365

specific technology at an early stage of adoption and define our ‘base configuration’. Given what we366

know from empirical analyses of technology growth, these distributions most certainly do not capture367

the ‘true’ parameter space for the eventual growth of the technology and very likely underestimate368

its full potential. The gamma distribution is chosen for modeling k and L parameters because it369

naturally constrains values to be positive while allowing for right-skewed patterns.370
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We address this limitation by first defining a broader range of plausible values for the takeoff year,371

k and L for each technology (with the specific aim of accounting for a diverse set of diffusion patterns)372

and then systematically shifting the distributions for each parameter to explore different regions of373

the technology’s possibility space. We use a structured approach that ensures thorough coverage374

of parameter combinations—creating worlds where technologies grow quickly but saturate at low375

levels, others where growth is slower but reaches higher penetration levels, and various combinations376

in between. For example, one configuration might combine higher k values with moderate L, while377

another might pair slower k with higher L (Supplementary Tables 3-6).378

We implement this parameterization using a hybrid coverage approach that combines a full fac-379

torial design with face-centered points to efficiently explore the parameter space. Our code creates380

a grid of parameter values by dividing each parameter range (k, L, and takeoff year) into multi-381

ple divisions and selecting points at these positions. For example, with kdivisions = 3, we sample 3382

different mean values for the gamma distribution of k, from lower to higher growth rates. Consider383

two adjacent grid points in our parameter space: one with kmean = 0.2, Lmean = 0.4 and another384

with kmean = 0.3, Lmean = 0.6. The face-centered approach adds an additional point between them385

at kmean = 0.25, Lmean = 0.5. This ensures we capture not just corner cases but also intermediate386

parameter combinations, providing more comprehensive coverage of the parameter space. For each387

configuration, we adjust the underlying distribution parameters (shape and rate for gamma distri-388

butions, mean and standard deviation for normal distributions) to achieve the target mean values389

while maintaining appropriate dispersion. This approach generates 13 distinct configurations that390

systematically explore different combinations of early/late takeoff, fast/slow growth, and low/high391

saturation levels.392

Running Monte Carlo simulations393

We generate 13 different configurations and then use each one to simulate 1000 different technology394

diffusion pathways. For each configuration, we run a Monte Carlo simulation engine which randomly395

assigns parameter values to individual countries by drawing from the distributions defined in this396

configuration. Each country is assigned its own takeoff year, intrinsic growth rate (k) and deployment397

ceiling (L), which are then used to generate its deployment trajectory. We account for different398

market sizes by weighting each country’s contribution proportionally to its share of the global market,399

simulating how technologies might spread differently in large versus small countries.400

These country-level trajectories are then aggregated into a global adoption curve for each sim-401

ulation run. By repeating this process 1000 times for each configuration, we generate a dataset of402
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13,000 plausible global diffusion trajectories—some showing rapid global adoption, others displaying403

more gradual growth patterns, and many exhibiting complex multi-phase growth.404

In addition to exploring the possibility space by varying the parameter configurations, we also run405

these simulations under differing assumptions about the shape of national growth trajectories. We406

run three different batches of simulations – one where all countries have logistic growth, one where407

all countries have bi-logistic growth, and one where each country has an equal chance of following408

logistic or bi-logistic growth and there’s an even split in the number of countries following either409

pattern in each run. Subsequent steps involving the generation of training data and producing a410

trained machine learning model are followed separately for each batch – see Step 4 for more details.411

We can make our coverage of the possibility space more comprehensive by running a larger number412

of simulations and using more granularly differentiated configurations, but each addition comes at413

the cost of significantly higher computational requirements.414

To make subsequent analysis more computationally tractable, we apply a strategic filtering process415

to select a smaller, more diverse subset for our final training dataset. Rather than randomly sampling416

or using all runs (which would be computationally expensive and potentially include redundant417

runs), we employ a clustering-based approach that identifies distinct pattern families within each418

configuration’s simulation runs. The algorithm analyses the characteristics of each trajectory – such419

as k, inflection points, and final saturation levels – and groups similar trajectories together. From420

each cluster, we select representative runs that best capture that pattern family’s essential features.421

This approach ensures our training dataset maintains the full diversity of possible diffusion patterns422

while substantially reducing its size – from 1000 total runs down to 200 representative runs per423

configuration. The selection process works as follows:424

• For each run, we extract feature vectors that characterize the growth patterns, including425

growth parameters of large countries, correlations between market size and growth parameters,426

heterogeneity in growth rates, and leader-follower dynamics427

• We normalize these features and apply principal component analysis (PCA) to reduce dimension-428

ality while preserving approximately 85% of the variance429

• We then apply k-means clustering (implemented in R’s base ‘kmeans‘ function) to group similar430

trajectories431

• From each cluster, we select the medoid run (the run closest to the cluster center) as the432

representative for that pattern family.433
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The selection of 200 runs per configuration was determined through experiments balancing com-434

putational efficiency with maintaining diversity – we found this range provided sufficient pattern435

coverage while substantially reducing computation time for subsequent model training.436

Step 2: Generating training data from the ensemble of simulated trajectories437

For the final step in our data preparation, we transform our simulation data into a format that teaches438

the model how to make predictions with limited information. Here, we systematically truncate the439

national deployment data from each simulation run at various early years (years 12, 15, 18, 21, 24,440

and 30) to create snapshots of what the diffusion pattern would look like if observed at those points441

in time. This exercise mimics the real-world challenge of forecasting from partial historical data. For442

each curtailed snapshot, we fit logistic growth curves to the curtailed national-level data, extracting443

parameters that characterise the diffusion process in each country up to that point. These include444

median, Q1 and Q3 for k and G, as well as the number of ”mature” countries in the stable growth445

phase and their combined market share. We only use observations from those countries where the446

logistic curve maturity is identified as being over 50447

The parameter extraction process employs a curve-fitting procedure implemented adapted from448

ref. [11]. For each country with sufficient data points (at least 5) and meaningful deployment (≥ 1%),449

we fit a logistic curve and extract the key parameters. We then calculate distributional statistics450

(median, first quartile, third quartile) across all mature countries to characterise the overall pattern of451

national growth. This approach captures both the central tendency and variation in growth patterns452

among early adopters.453

We then pair these early-stage national parameters for each simulation run with the known454

parameters of a logistic curve fit to its full global trajectory, creating training data that connect ”what455

we know so far” at the national level with ”what eventually happens” at the global scale. We feed456

this data into a quantile random forest model – an ensemble learning method that builds hundreds of457

decision trees, each of which learns decision rules that connect early-stage national diffusion patterns458

to their ultimate global outcomes.459

Step 3: Using machine learning to identify the relationships between curtailed460

national and final global parameters461

We implement the quantile random forest using the ‘ranger‘ package in R, a high-performance imple-462

mentation of random forests particularly well-suited for large datasets. Our model uses 1000 trees,463
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which we found sufficient to achieve stable predictions while balancing computational efficiency. We464

enable the ”quantreg” option in ranger to estimate conditional quantiles rather than just the condi-465

tional mean. The importance of features is calculated using the impurity-based method, allowing us466

to identify which national parameters most strongly influence global outcomes.467

The forest’s structure captures the complex, non-linear relationships between early diffusion sig-468

nals and long-term outcomes, while being robust against outliers and noise. Unlike standard regression469

models that predict only mean outcomes, our quantile forest approach estimates the entire conditional470

distribution of possible futures.471

We train two separate models – one that uses early national data to predict the global k, and472

another which uses the same data to predict the global G. By training on a diverse set of simulated473

histories with known outcomes, the models develop an understanding of how partial patterns tend to474

evolve, enabling them to look at real-world data up to the present day and make informed projections475

about the full spectrum of likely future evolutions—from conservative lower bounds to ambitious476

upper estimates.477

Step 4: Generating probabilistic projections from empirical data478

To use the model to make projections, we prepare input data capture the median, Q1 and Q3 k and479

G for mature logistic fits to empirical national data, the number of mature countries in the sample,480

their combined global market share, and the current global deployment level.481

The model takes these inputs and predicts the quantiles for k and G, which are then used to482

derive a value for the saturation level (L). We consider all possible combinations of k and G quantiles483

(5x5=25 combinations), and filter out those combinations where L ≤ the current deployment. Each484

combination is then used to generate a complete logistic curve, with the inflection point calculated485

using the current global deployment (yi) and current year (ti) using the equationt0 = ((1/k) ∗486

log((L/yi) − 1)) + ti, where t0 is the inflection point year, k is the growth rate, L is the saturation487

level, yi is the current deployment, and ti is the current year.488

For each valid k-G combination, we generate a full trajectory up to the desired projection horizon.489

The global growth constant (k) directly influences how quickly deployment accelerates and then490

decelerates, while the peak annual growth rate (G) helps determine the saturation level (L) through491

the relationship L = 4G/k. This approach captures the mathematical relationship between these492

parameters while ensuring consistency with current observed deployment levels.493
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To identify the most representative trajectory for each quantile level (5th, 25th, median, 75th,494

and 95th), we calculate the area difference between each generated trajectory and the year-by-year495

quantile values derived from all valid trajectories. The trajectory with the minimum area differ-496

ence becomes the representative curve for that quantile, providing a coherent set of parameters that497

best represents that particular future pathway. This area-based matching ensures that the represen-498

tative trajectories maintain consistent parameter relationships while closely tracking the statistical499

properties of the full ensemble.500

For each year in the projection horizon, we collect the predicted deployment values from all501

valid trajectories and calculate summary statistics across the full set which gives us a year-by-year502

probability distribution for future global deployment.503

Our probabilistic framework explicitly acknowledges multiple dimensions of uncertainty. First,504

the use of quantile random forests captures the uncertainty inherent in technology diffusion505

processes—the natural variability observed even when initial conditions are similar. Second, by gen-506

erating projections from diverse parameter combinations rather than single parameter values, we507

address parametric uncertainty about the true values of growth parameters. Finally, by training sep-508

arate models on different trajectory shapes (logistic, bilogistic, and mixed), we incorporate structural509

uncertainty about the underlying model form. This comprehensive treatment of uncertainty provides510

a more realistic view of possible futures than deterministic approaches or those that address only a511

single dimension of uncertainty.512

Step 5: Model validation and hindcasting513

To validate the predictive capabilities of our approach, we implement a comprehensive hindcast-514

ing framework that systematically evaluates how well our models can project known historical515

deployment patterns from earlier, incomplete data.516

We perform a series of hindcasting tests to evaluate the performance of our projection model. We517

do so by using the model with empirical national data truncated at different years in the past, and518

then comparing the resulting projections to ‘out-of-sample’ global data.519

Our hindcasting approach follows these steps:520

1. For each technology, we select multiple historical cutoff years (e.g., 2005, 2010, and 2015 for solar521

PV)522

2. For each cutoff year, we extract national deployment data up to that year only523

3. We apply our model to this truncated data to generate projections524
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4. We compare these projections against the actual observed deployment in subsequent years525

5. We repeat this process for models trained on logistic, bilogistic, and mixed trajectory data526

This process mimics real-world forecasting scenarios and provides an objective assessment of each527

model variant’s predictive performance.528

To estimate the absolute error, we use the symmetric mean absolute percentage error (sMAPE)529

[52] which quantifies the absolute magnitude of point errors (thereby avoiding the cancellation of530

negative and positive errors) and also accounts for the relative scale of the quantity being mea-531

sured (thereby avoiding asymmetricity). We use it to assess the overall out-of-sample forecasting532

performance for each model when informed by in-sample observations until year z:533

sMAPE =
1

tend − z

tend∑
i=z

|yz − f(z)|
(|yz|+ |f(z)|)/2

∗ 100 (4)

To estimate the directional error, we calculate the symmetric mean percentage error (sMPE) [52]534

which quantifies both the magnitude and direction of the point errors and avoids asymmetricity and535

large errors (when the out-of-sample values are close to zero). We use it to assess the tendency of536

a model informed by in-sample observations until year z, to over- or under-predict out-of-sample537

deployment:538

sMPE =
1

tend − z

tend∑
i=z

yz − f(z)

yz
∗ 100 (5)

To measure the skill of our probabilistic projections we use the Continuous Ranked Probability539

Score (CRPS) [53] measures ”how well the marginal distributions of the forecast represent the ground540

truth” [54].541

For each technology, we compare the performance of the models trained on logistic, bilogistic and542

mixed data to identify which model most accurately captures empirically observed growth dynamics.543

We identify the best performing models for onshore wind (bilogistic data), solar PV (mixed data),544

mobiles (logistic data), and CCGTs (ambiguous), and use these models for subsequent tests and545

comparisons.546

The selection of the best model variant for each technology is based on an evaluation of sMAPE,547

sMPE and CRPS scores and prediction interval coverage (Supplementary Figures 7, 8). We found548

that technologies with more complex adoption patterns (like onshore wind, which often shows multi-549

phase growth) are better captured by the bilogistic model, while technologies with smoother adoption550

curves (like mobile phones) are better represented by the simpler logistic model. For solar PV, the551
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mixed model performed best, suggesting its deployment patterns so far show characteristics of both552

single-phase and multi-phase growth across different countries.553

Here, we compare the projections from our main model for each technology to projections made554

by fitting logistic and exponential curves to global data. These hindcasting tests show that our555

model using national data out-performs these other models in accurately projecting out-of-sample556

deployment at the global scale.557

Supplementary Note 4: Acceleration scenarios for onshore wind and solar558

PV559

To illustrate the scale of policy effort required to achieve global deployment trajectories in-line with560

keeping warming below 1.5◦C, we develop two sets of stylised counterfactual trajectories. The first,561

Early Acceleration trajectories assume that the growth of solar PV and onshore wind continues along562

a logistic curve with additional policy effort accelerating additions by expanding the deployment563

ceiling. This is achieved by adjusting the logistic curve ceiling (L) to achieve the desired deployment564

level in 2040 while keeping the intrinsic growth rate (k) fixed. The second, Late Acceleration trajec-565

tories assume that the technologies follow our median projection until 2030 and then experience a566

fresh pulse of accelerating growth modelled using a second logistic curve with another ceiling and a567

high intrinsic growth rate, essentially producing a bilogistic trajectory. Here, additional policy effort568

introduces a new growth pulse which alters both, the effective deployment ceiling as well as the rate569

of growth acceleration.570

These counterfactual scenarios represent distinct policy approaches: Early Acceleration reflects571

immediate, sustained policy intervention that shifts the technology’s long-term trajectory by raising572

it’s deployment ceiling and addressing emergent barriers, while Late Acceleration represents a delayed573

but more intensive intervention that creates a distinct second wave of adoption. By modeling both574

approaches, we can examine trade-offs between timing and intensity of policy intervention, as well575

as the feasibility of meeting climate targets through different policy pathways.576

These trajectories are compared against Baseline trajectories based on the median probabilistic577

projections from PROLONG. For onshore wind, this baseline is modelled using a logistic function578

with k = 0.16 and L = 25%. For solar PV, it is modelled using a logistic function with k = 0.25 and579

L = 18%.580

For onshore wind, we model the Early Acceleration trajectory using a logistic function with581

k = 0.16 (matching the Baseline) and an increased ceiling L = 38% (more than 2× higher than the582
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Baseline). We model the Late Acceleration trajectory using a bilogistic function with an initial pulse583

with k1 = 0.16 and L1 = 25% (same as the Baseline), and a second pulse from 2030 with k2 = 0.2584

and L2 = 13%, which gives an effective L (L1 + L2) of 38%.585

For solar PV, we model the Early Acceleration trajectory using a logistic function with k = 0.25586

(matching the Baseline) and an increased ceiling L = 45% (more than 2× higher than the Baseline).587

We model the Late Acceleration trajectory using a bilogistic function with an initial pulse with588

k1 = 0.25 and L1 = 18% (same as the Baseline), and a second pulse from 2030 with k2 = 0.3 and589

L2 = 27%, which gives an effective L (L1 + L2) of 45%.590

For the Early Acceleration trajectories, we:591

1. Start with the baseline projection’s parameters (k, G, and L)592

2. Maintain the growth rate parameter (k) while increasing the ceiling parameter (L)593

3. Recalculate the inflection point (t0) to ensure the curve passes through the current deployment594

level using the equation:595

t0 =

(
1

k
× log

(
L

yi
− 1

))
+ ti (6)

where yi is the current deployment level and ti is the current year596

4. Generate the full trajectory using the logistic function:597

y(t) =
L

1 + exp(−k × (t− t0))
(7)

For Late Acceleration trajectories, we:598

1. Take the baseline trajectory up to the second phase start year (2030)599

2. Create a second logistic curve with new parameters (k2, L)600

3. Combine the two trajectories using a transition function that shifts from the first to the second601

curve.602

This approach allows us to model the effect of delayed but intensive policy intervention that603

produces a distinct second wave of technology adoption starting in 2030.604

This exercise gives us a set of six global trajectories. For each of these trajectories, we use a linear605

optimisation approach to distribute the required growth in each year from 2023 to 2050 between 10606

regions – East Asia, North America, Europe, South Asia, Asia-Pacific Developed, South-East Asia607

and Developing Pacific, Africa, Eurasia, Latin America and the Caribbean, and the Middle East. We608
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introduce constraints on the maximum deployment ceiling for each region for each technology, and609

on the maximum annual growth rate, and the maximum annual growth acceleration.610

The maximum deployment ceilings for each technology in each region are adapted from peak611

deployment in IPCC AR6 scenarios [55], and have been deliberately set higher than what these612

scenarios consider achievable in some regions to avoid artificially constraining the optimization613

(Supplementary Table 7).614

The algorithm takes as inputs the current deployment levels (di,t) and growth rates (ri,t) for each615

region i at time t, regional weights (wi) that sum to unity, and a target global deployment trajec-616

tory (D∗
t ). It incorporates three key constraints that reflect physical and institutional limitations:617

maximum allowable deployment in each region (di,max), maximum annual growth rate (rmax), and618

maximum year-on-year acceleration in growth rates (amax).619

For each timestep, the algorithm optimizes regional growth rates through an iterative process620

that converges when the weighted sum of regional deployments matches the global target within a621

specified tolerance ε:622

∣∣∣∣∣∑
i

(wi × di,t)−D∗
t

∣∣∣∣∣ < ε (8)

The regional deployment in each year is given by:623

di,t = di,t−1 + ri,t (9)

subject to the constraints:624

0 ≤ di,t ≤ di,max (deployment bounds) (10)

0 ≤ ri,t ≤ rmax (growth rate bounds) (11)

−amax ≤ ri,t − ri,t−1 ≤ amax (acceleration bounds) (12)

Based on empirical observations of historical technology diffusion rates, we set rmax = 0.03 (3625

percentage points increase in market share per year) and amax = 0.01 (maximum 1 percentage point626

change in annual growth rate). These constraints reflect the practical limitations observed in how627

quickly technologies can be deployed at regional scales.628
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For each year, the algorithm first calculates the required global increase in deployment (∆D∗
t =629

D∗
t −D∗

t−1). It then distributes this increase among regions proportionally to their available headroom630

(hi,t = di,max − di,t). The distribution factor (fi,t) for each region is calculated as:631

fi,t =
hi,t∑
j hj,t

(13)

where the sum is over all regions j that have not reached their constraints.632

To prevent overshooting the global target, the algorithm implements a conservative adjustment633

mechanism. When |∆D∗
t | < 0.01, the algorithm applies a damping factor of 0.5 to the growth rate634

adjustments. If overshooting occurs (
∑

i(wi×di,t) > Dt), the algorithm allows growth rates to decline635

while maintaining ri,t ≥ 0 and respecting the acceleration constraint |ri,t − ri,t−1| ≤ amax.636

The algorithm verifies whether the specified global deployment trajectory is achievable under the637

given constraints by checking that the weighted sum of maximum regional deployments exceeds the638

global target:639

∑
i

(wi × di,max) ≥ D∗
t ∀t (14)

If this condition is not met, the algorithm terminates, as the regional constraints preclude640

achievement of the global target.641

This approach allows us to generate regional trajectories (Supplementary Figures 11, 14) that help642

quantify the regional policy effort required to achieve different global growth trajectories while main-643

taining consistency with empirically-observed limits on how quickly regions can accelerate technology644

deployment (Supplementary Figures 12, 14).645

Supplementary Note 5: The case of offshore wind power646

Our analysis in this paper focuses on the growth of onshore wind power and excludes offshore wind pri-647

marily because the sample of countries for this technology is not sufficiently large. Although offshore648

wind power shares many fundamental characteristics with its onshore counterpart, it possesses sev-649

eral distinguishing features that warrant separate consideration. Its comparatively lower technological650

maturity, heightened technical complexity, generally larger turbine unit sizes, unique investment pro-651

files, and specific geophysical requirements all contribute to potentially different temporal and spatial652

diffusion patterns.653
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At the global scale, the growth of offshore wind achieved takeoff in 2011 and as of 2023, accounted654

for roughly 7% of total global installed wind capacity and less than 0.8% of global electricity gen-655

eration. Unlike onshore wind, its cross-country diffusion has remained rather limited. As of 2023, it656

participated in electricity generation in 19 countries, of which we have identified take-off in 11 coun-657

tries – Sweden (2008), Denmark (2010), the UK (2011), Germany (2015), the Netherlands (2016),658

Finland & South Korea (both 2018), Belgium (2019), China, Portugal and Vietnam (all 2020).659

Of these 11, 8 countries have seen deployment levels exceed 1% of annual electricity generation660

with Denmark (26.1%), the UK (17.5%), the Netherlands (10.1%), Belgium (9%), Germany (5.1%)661

and Vietnam (1.3%) showing particularly strong growth (Supplementary Figures 15, 16). Together,662

these 7 countries are responsible for about 54% of global offshore wind deployment. China leads663

deployment in absolute terms and contributes to 52% of the global total – this means that over 96%664

of global offshore wind deployment is concentrated in just 8 countries.665

Only Belgium, Denmark, Finland, Germany, South Korea, Sweden and the UK have ≥ 5 dat-666

apoints after take-off and are eligible for curve-fitting. As of 2023, only Denmark, Germany and667

Sweden had exhibited logistic curve maturities over 50%, indicating that growth is still accelerating668

in most countries. This leaves us with a sample far too small to use with our approach based on using669

evidence from countries at more mature phases of adoption to inform projections for global growth.670
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