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» Supplementary Figures

Supplementary Figure 1 National and global takeoff thresholds.
Faint blue dots show takeoff thresholds for individual countries, the boxplots highlight their median, IQR and ranges;
red dots indicate global takeoff thresholds. Note: the horizontal axis is on a logarithmic scale.
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Supplementary Figure 2 Spatial diffusion of technologies.

The cumulative number of countries in different phases of technology growth at different years and the diffusion
durations for different technologies. Bars show the number of countries with no deployment (gray), in the formative
phases (light blue), in the acceleration phase (dark blue), and in or beyond the stable growth phase (yellow); the gray

vertical line indicates the year of global takeoff.
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Supplementary Figure 3 Historical technology deployment curves.
Solid lines show global deployment measured in absolute units (green) and as percentage market share (blue); stars
indicate takeoff.
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Supplementary Figure 4 Historical annual technology additions.

Bars show global annual additions measured in absolute units (green) and as percentage market share (blue) with
Chinese shares highlighted in darker shades, solid lines show their three-year trailing average; stars indicate takeoff;
red vertical dashed lines mark inflection points for logistic functions fit to the full deployment time-series.
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Supplementary Figure 5 The ’moving’ L problem.

(a) Illustration of how logistic curves fit to incomplete deployment data struggle to correctly estimate the technology
deployment ceiling, L. (b) Estimates for the deployment ceiling ”L” (red squares) from logistic curves fit to empirical
deployment data (solid gray line) curtailed at different years.
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Supplementary Figure 6 The evolution of national and global logistic curve parameters.

Gray bars show historical values and gray dashed lines show their three-year trailing average. Red dots show parameters
for logistic curves fit to global data. Solid blue lines and shaded blue intervals show the median and IQR for a sample of
parameters for logistic curves fit to national data. Top row shows the global year-on-year growth rate, and the logistic
intrinsic growth rate (k). Middle row shows the global deployment, and the logistic growth asymptote (L). Bottom
row shows global annual additions, and the logistic maximum annual growth rate at the inflection point (G)
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Supplementary Figure 7 Accuracy indicators for different variants of the PROLONG model.

Indicators measuring the projection performance of the PROLONG model trained on simulations assuming individuals
countries follow only bilogistic functions (yellow), only logistic functions (olive), or are equally likely to follow either
function ("Mixed’, green). The symmetric Mean Absolute Percentage Error (a) and symmetric Mean Percentage Error
(b) for the median global projections from each model variant at different curtail years. The mean Continuous Ranked

Probability

a

SMAPE

sMPE

Mean CRPS

score (c) for each model variant for different forecast horizons.
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Supplementary Figure 8 Calibration of projection intervals for different variants of the PROLONG
model
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Supplementary Figure 9 Comparing the probabilistic projections for onshore wind and solar PV
growth between 2023-2050 to current policy scenarios and market forecasts

Black dots show historical data; solid lines show the median, dark shaded intervals the 25-75th percentile, and light
shaded intervals the 5-95th percentile projections from PROLONG; stars show deployment aligned with the COP28
Global Pledge on Renewables; crosses show forecasts from the IEA Renewables 2024 report; dot-dash lines show the
IEA Stated Policies scenario (green), the BloombergNEF Economic Transition scenario (red), and three Current Poli-
cies scenarios from the IPCC ARG report (magenta, blue, olive).
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Supplementary Figure 10 Comparing the probabilistic projections for onshore wind and solar PV
growth between 2023-2050 to scenarios from the literature.

Black dots show historical data; solid lines show the median, dark shaded intervals the 25-75th percentile, and light
shaded intervals the 5-95th percentile projections from PROLONG; stars show deployment aligned with the COP28
Global Pledge on Renewables; dot-dash lines show deployment in refs. [1-5].
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Supplementary Figure 11 Region-wise onshore wind deployment under the Baseline, Early and Late

acceleration scenarios.

Dots show historical data; solid lines show deployment in the

acceleration scenarios (blue).
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Supplementary Figure 12 Region-wise annual onshore wind additions under the Baseline, Early and
Late acceleration scenarios.

Gray bars show historical data; coloured bars show deployment in the Basline (red), Early acceleration (green) and
Late acceleration scenarios (blue).
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Supplementary Figure 13 Region-wise solar PV deployment under the Baseline, Early and Late accel-
eration scenarios.

Dots show historical data; solid lines show deployment in the Basline (red), Early acceleration (green) and Late accel-
eration scenarios (blue).
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Supplementary Figure 14 Region-wise annual solar PV additions under the Baseline, Early and Late
acceleration scenarios.

Gray bars show historical data; coloured bars show deployment in the Basline (red), Early acceleration (green) and
Late acceleration scenarios (blue).
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Supplementary Figure 15 Offshore wind deployment
Solid lines show historical deployment; stars indicate technology takeoff.
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Supplementary Figure 16 Offshore wind rates
Bars show annual additions, solid lines show their three-year trailing average.
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» Supplementary Tables

Supplementary Table 1 Takeoff years by country for onshore wind.

Country | TO.Year | Cherp et al. (2021) || Country | TO.Year | Cherp et al. (2021)
DK 1991 1989 FO 2014 -
DE 1998 2000 PE 2014 2015
NL 1999 2003 JO 2015 -
ES 2000 1999 Uy 2015 -
GR 2000 2001 ZA 2015 2015
JP 2001 - LT 2016 -
NZ 2003 2005 PK 2016 2016
AT 2004 2004 FK 2017 -
IN 2004 2006 IL 2017 -
PT 2004 2003 NO 2017 2011
AU 2005 2007 IR 2018 -
CA 2005 2009 LV 2018 -
IE 2005 2000 AR 2019 2019
IT 2005 2007 GP 2019 -
KR 2005 - KE 2019 -
FR 2006 2008 RU 2019 -
NC 2006 - CU 2020 -
Us 2006 2008 KwW 2020 -
GB 2007 2007 SK 2020 -
BE 2008 2009 TW 2020 -
CN 2008 2010 VN 2020 -
SE 2008 2008 MD 2021 -
PL 2009 2010 MQ 2021 -
TN 2009 - oM 2021 -
TR 2009 2010 SA 2022 -
MX 2010 2012

CH 2011 -

HR 2011 -

BR 2012 2013

(A% 2012 -

LK 2012 -

LU 2013 -

MA 2013 -

UA 2013 -

CL 2014 2014

CR 2014 -

EG 2014 2010

FI 2014 2014
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Supplementary Table 2 Takeoff years by country for solar PV.

Country | TO.Year | Cherp et al. 2021 Country | TO.Year | Cherp et al. 2021
DE 2008 2009 RU 2020 -
ES 2008 2009 SA 2020 -
PT 2009 2014 SD 2020 -
AT 2010 2014 SV 2020 -
AU 2010 2013 VN 2020 -
1T 2010 2011 AM 2021 -
CA 2011 - BA 2021 -
FR 2011 2014 BE 2021 2011
IN 2011 2016 BG 2021 2012
CH 2012 2014 BJ 2021 -
GB 2012 2014 BR 2021 2019
JP 2012 2013 BZ 2021 -
TH 2012 2015 CD 2021 -
DK 2013 2013 CL 2021 2015
KR 2013 2017 cO 2021 -
LU 2013 - GR 2021 2012
US 2013 2016 HK 2021 -
CN 2014 2016 HR 2021 -
ER 2014 - KE 2021 -
NL 2014 2016 LT 2021 -
ZA 2014 2016 MK 2021 -
FI 2017 - MZ 2021 -
AW 2018 - PK 2021 -
BF 2018 - PL 2021 -
IL 2018 2014 RO 2021 2014
PE 2018 2018 RS 2021 -
PR 2018 - SE 2021 -
AE 2019 - SG 2021 -
AR 2019 - SI 2021 -
CU 2019 - SL 2021 -
(2% 2019 - TN 2021 -
HU 2019 2018 Uz 2021 -
LK 2019 - AL 2022 -
MN 2019 - ZM 2022 -
MX 2019 2019

MY 2019 -

SR 2019 -

™ 2019 -

UA 2019 -

W 2019 -

AF 2020 -

AG 2020 -

AO 2020 -

BD 2020 -

CI 2020 -

CY 2020 -

DO 2020 -

EE 2020 -

EG 2020 -

D 2020 -

KH 2020 -

LC 2020 -

ML 2020 -

NG 2020 -

NZ 2020 -

QA 2020 -
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Supplementary Table 3 Parameter configurations for onshore wind Monte Carlo simulations.

Config Growth rate (k) Ceiling (L) Takeoff year Design type
Base distribution parameters
Base T'(4,8.163) I'(3,39.474) N (5.5,3.0)
Grid exploration configurations
1 0.144 0.157 105 Grid (low k, low L)
2 0.331 0.157 10.5 Grid (mid k, low L)
3 0.519 0.157 10.5 Grid (high k, low L)
4 0.144 0.319 10.5 Grid (low k, mid L)
5 0.331 0.319 10.5 Grid (mid k, mid L)
6 0.519 0.319 10.5 Grid (high k, mid L)
7 0.144 0.481 10.5 Grid (low k, high L)
8 0.331 0.481 10.5 Grid (mid k, high L)
9 0.519 0.481 10.5 Grid (high k, high L)
Face-centered configurations
10 0.238 0.238 10.5 Face-centered (lower diagonal)
11 0.238 0.400 10.5 Face-centered (upper row)
12 0.425 0.238 10.5 Face-centered (right column)
13 0.425 0.400 10.5 Face-centered (upper diagonal)

Note: Base distributions are bounded (0.01 < L < 0.75, 0.1 < k < 1.2). Parameter distributions are shifted
to the means shown while maintaining the shape of the base distribution.

Supplementary Table 4 Parameter configurations for solar PV Monte Carlo simulations

Config Growth rate (k) Ceiling (L) Takeoff year Design type
Base distribution parameters
Base I'(4,5.181) I'(3,74.074) N (5.4,1.98)
Grid exploration configurations
1 0.225 0.160 10.4 Grid (low k, low L)
2 0.521 0.160 10.4 Grid (mid k, low L)
3 0.817 0.160 10.4 Grid (high k, low L)
4 0.225 0.381 10.4 Grid (low k, mid L)
5 0.521 0.381 10.4 Grid (mid k, mid L)
6 0.817 0.381 10.4 Grid (high k, mid L)
7 0.225 0.602 10.4 Grid (low k, high L)
8 0.521 0.602 10.4 Grid (mid k, high L)
9 0.817 0.602 10.4 Grid (high k, high L)
Face-centered configurations
10 0.373 0.271 10.4 Face-centered (lower diagonal)
11 0.373 0.492 104 Face-centered (upper row)
12 0.669 0.271 10.4 Face-centered (right column)
13 0.669 0.492 10.4 Face-centered (upper diagonal)

Note: Base distributions are bounded (0.01 < L < 0.95, 0.1 < k < 1.2). Parameter distributions are shifted
to the means shown while maintaining the shape of the base distribution.
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Supplementary Table 5 Parameter configurations for mobile phones Monte Carlo simulations

Config Growth rate (k) Ceiling (L) Takeoff year Design type

Base distribution parameters

Base I'(4, 5.096) I'(3,6.508)  N(5.92,2.68) -
Grid exploration configurations
1 0.229 0.634 10.92 Grid (low k, low L)
2 0.530 0.634 10.92 Grid (mid k, low L)
3 0.831 0.634 10.92 Grid (high k, low L)
4 0.229 0.981 10.92 Grid (low k, mid L)
5 0.530 0.981 10.92 Grid (mid k, mid L)
6 0.831 0.981 10.92 Grid (high k, mid L)
7 0.229 1.327 10.92 Grid (low k, high L)
8 0.530 1.327 10.92 Grid (mid k, high L)
9 0.831 1.327 10.92 Grid (high k, high L)
Face-centered configurations
10 0.379 0.807 10.92 Face-centered (lower diagonal)
11 0.379 1.154 10.92 Face-centered (upper row)
12 0.680 0.807 10.92 Face-centered (right column)
13 0.680 1.154 10.92 Face-centered (upper diagonal)

Note: Base distributions are bounded (0.10 < L < 2.0, 0.1 < k < 1.2). Parameter distributions are shifted
to the means shown while maintaining the shape of the base distribution.

Supplementary Table 6 Parameter configurations for CCGT Monte Carlo simulations

Config Growth rate (k) Ceiling (L) Takeoff year Design type

Base distribution parameters

Base I'(4,9.091) (3,7.752) N(6.0,5.0) -
Grid exploration configurations
1 0.133 0.448 11.0 Grid (low k, low L)
2 0.300 0.448 11.0 Grid (mid k, low L)
3 0.467 0.448 11.0 Grid (high k, low L)
4 0.133 0.569 11.0 Grid (low k, mid L)
5 0.300 0.569 11.0 Grid (mid k, mid L)
6 0.467 0.569 11.0 Grid (high k, mid L)
7 0.133 0.690 11.0 Grid (low k, high L)
8 0.300 0.690 11.0 Grid (mid k, high L)
9 0.467 0.690 11.0 Grid (high k, high L)
Face-centered configurations
10 0.217 0.508 11.0 Face-centered (lower diagonal)
11 0.217 0.629 11.0 Face-centered (upper row)
12 0.383 0.508 11.0 Face-centered (right column)
13 0.383 0.629 11.0 Face-centered (upper diagonal)

Note: All configurations use a mixture of logistic (50%) and bilogistic (50%) models. Base distributions
are bounded (0.01 < L < 1.0,0.1 <k <1.2).

Supplementary Table 7 Regional deployment ceilings for onshore wind and solar PV in the
acceleration scenarios.

Region Onshore wind ceiling Solar PV ceiling
(%) (%)
East Asia 40 50
North America 40 45
South Asia 35 55
Europe 40 45
Asia-Pacific Developed 30 30
South-East Asia and developing Pacific 35 55
Africa 40 55
Eurasia 50 40
Latin America and Caribbean 35 45
Middle East 40 55

Note: Ceiling values represent maximum deployment potential as percentage of electricity
generation.
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Supplementary Table 8 Onshore wind deployment by acceleration scenario and region.

Scenario Region Final Peak Total Growth
Deployment Rate Growth Share
(%) (p-p./yr)  (p-p.) (%)
Global 23.6 - 16.6 -
Eastern Asia 26.8 1.28 - 41
Europe 33.3 1.29 - 15
Baseline Latin America and Caribbean 29.0 1.33 - 7
North America 25.2 1.04 — 16
South Asia 15.7 0.72 - 5
Others 13.3 0.72 - 15
Global 36.0 - 29.0 -
Eastern Asia 40.0 1.74 — 40
Europe 40.0 1.76 - 11
Early acceleration Latin America and Caribbean 35.0 1.79 - 5
North America 39.1 1.51 - 17
South Asia 30.4 1.90 - 7
Others 27.2 1.61 - 19
Global 36.8 - 29.7 -
Eastern Asia 40.0 2.07 - 39
Europe 40.0 2.09 — 11
Late acceleration Latin America and Caribbean 35.0 2.12 - 5
North America 39.7 1.84 - 17
South Asia 32.8 1.90 - 7
Others 29.4 1.62 - 20

Note: Final Deployment and Total Growth shown as percentage of electricity generation; Peak Rate
shown as annual percentage point increase (p.p./yr); Growth Share represents regional contribution
to total global growth between 2023-2050.

Supplementary Table 9 Solar PV deployment by acceleration scenario and region.

Scenario Region Final Peak Total Growth
Deployment Rate Growth Share
(%) (p-p./yr)  (p-p.) (%)
Global 18.3 - 12.7 -
East Asia 19.6 1.20 - 38
Europe 23.6 1.37 - 15
Baseline Latin America and Caribbean 23.0 1.47 - 8
North America 16.9 1.05 — 15
South Asia 17.3 1.05 - 7
Others 13.6 0.88 - 17
Global 44.6 - 39.0 -
East Asia 48.7 2.83 - 39
Europe 45.0 2.87 - 12
Early acceleration Latin America and Caribbean 45.0 2.88 - 6
North America 45.0 2.79 - 17
South Asia 46.7 2.79 - 8
Others 36.4 2.57 - 18
Global 44.7 — 39.1 —
East Asia 48.3 3.00 - 38
Europe 45.0 3.00 — 12
Late acceleration Latin America and Caribbean 45.0 3.00 - 6
North America 45.0 3.00 - 17
South Asia 46.4 3.00 - 8
Others 38.0 3.00 — 19

Note: Final Deployment and Total Growth shown as percentage of electricity generation; Peak Rate
shown as annual percentage point increase (p.p./yr); Growth Share represents regional contribution
to total global growth between 2023-2050.
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Supplementary Notes

Supplementary Note 1: Technology growth and diffusion mechanisms and

phases

The growth of new technologies is often represented as following an S-curve, where growth first
accelerates, reaches a peak rate, and subsequently slows down and ends [6-8]. This mirrors the use
of S-curves in disciplines like ecology and epidemiology and reflects the intuitive idea of early growth
being driven by positive feedbacks before encountering increasing barriers and limits which ultimately
prove unsurmountable.

The formative phase and technology take-off

Every new technology begins in the formative phase where its use is characterised by low deploy-
ment levels and erratic, unpredictable growth within a small set of niches [9-13]. Here, the growth
and evolution of the technology is shaped by innovation, experimentation, and failures and as it “is
tested, refined and adapted to market conditions” [14] with little interaction with the wider system.
Together with the emergence of actor networks, business models and regulatory and policy envi-
ronments, these developments allow the socio-technical regimes around the technology to facilitate
consistent growth [10, 11, 15, 16].

This growth ‘take-off’ [11, 13, 17, 18] or “beginning of the movement” [6] signals the end of the
formative phase and marks the first turning point in the technology’s adoption. The existence of
the formative phase has been documented at both the global [13] and country levels [11, 18]. At the
global level it involves technology learning to reduce costs, standardisation of designs and establishing
global supply chains, while at the country level it involves establishing necessary regulatory and
market conditions suited to a specific national context.

The differences in when and which countries experience take-off illustrate the characteristics of the
spatial diffusion of the technology [11]. However, while the literature proposes indicative thresholds
for take-off — 2.5% [13] or between 0.3-1.8% [9] of the market, 100 MW installed capacity [19], 1% of
total electricity supply [11, 20] — no take-off thresholds have been empirically established as yet. This
presents a important challenge with regards to assessments of the role that emerging technologies
might play in the future energy system. A technology that is beyond the formative phase in multiple
markets may be judged to hold greater, more evidence-backed promise compared to one which isn’t,
but how do we make these assessments in the absence of a way to reliably measure when the formative

phase ends? This also has implications for which policies are designed and implemented to accelerate
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technological change. Supportive policies can play an important role in shortening the duration of the
formative phase and enable earlier take-off within countries as well as faster cross-country diffusion.

Our contribution to this puzzle is two-fold: we first develop a method to empirically identify when
different technologies take-off in different countries (Methods), and then use these estimates (Sup-
plementary Figure 1) to measure how quickly technologies diffuse across countries (Supplementary
Figure 2).

To measure this 'diffusion duration’ we fit a logistic curve to the cumulative count for the number
of countries where a technology has taken off and calculate ATy, ¢ fysion = In(81)/k, where k is the
estimated growth constant. This metric indicates the years elapsed between the technology reaching
take-off in 10% and 90% of countries. We show that while this cross-national diffusion took over half
a century for older energy technologies like coal and hydropower, more recent (but still complex [21])
technologies like combined cycle gas turbines (CCGTs) and nuclear power have had shorter diffusion
of durations of 36 and 30 years respectively. On the other end of the spectrum, mobile telephones,
a granular [22], consumer-driven technology has had a diffusion duration of only 12 years. Solar PV
and onshore wind fall in-between these cases with diffusion durations of 15 and 23 years respectively
(Supplementary Figure 2).

The acceleration phase

After take-off, the technology enters the acceleration phase where it’s growth begins to follow
an S-curve. The acceleration phase is characterised by a consistent increase in annual deployment
additions driven by positive feedbacks from technology and policy learning, and increasing investment
profitability. These ‘increasing returns’ [23] or ‘cumulative causation’ [24] may manifest as an increase
in the profitability of installing and operating new technologies or political gains from extending
support to them at the national level. At the global level they may result from increasing economies
of scale for manufacturing and servicing artifacts for the new technology and an expansion in the
number of countries adopting the technology.

Consistent with S-curve behaviour, technologies in the acceleration phase experience a consistent
decline in the year-on-year relative growth rates even as the annual additions are expanding in
absolute terms. The annual additions keep increasing until they reach their maximum rate — this
marks the second turning point in the technology’s adoption where the positive feedbacks driving
accelerating growth are balanced out by countervailing barriers [11].

These barriers can take various shapes and forms and appear at different stages of the adoption

process, with their cumulative impact intensifying with increasing deployment. They can include
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resistance from incumbents, declining social acceptance and increasing public opposition, system
integration challenges, land and other resource-use constraints, limits to supporting infrastructure,
supply chain congestion, or limits to institutional capacity [25-38].

Growth pulses and the stable growth phase

It is typically assumed that a technology’s growth immediately slows and approaches the satura-
tion phase after it achieves its peak growth rate as the increasing barriers to adoption overpower the
mechanisms driving it. At the end of the saturation the technology’s growth grinds to a complete
halt and stagnates at its peak market share or final deployment ceiling [39]. Following this point, the
technology may maintain its market share until it begins to lose ground to an emerging alternative.

Contrary to this idea, we find that in some cases, the technology may experience a fresh 'pulse’ of
growth due to the availability of new markets, or the (re-)introduction of supportive measures. These
growth pulses can be observed for several technologies at both the national and global scales. At the
national scale, these pulses may be linked to the introduction of new policies, changing regulations,
market reforms, financial support schemes, or due to other changes in the socio-technical landscape.
At the global scale, they may result from market expansion as a technology diffuses to a new set of
countries, or renewed growth in countries where growth had previously begun to slow or stagnate.
For some technologies including nuclear power, coal and hydropower we see a renewed pulse of global
additions due to delayed but large-scale adoption in Asia with China driving a substantial share of
new growth (Supplementary Figure 4).

Together, the interplay of these mechanisms often culminates in a prolonged stable growth phase,
with a balance between drivers and barriers yielding a period of nearly-linear growth. The presence of
this stable phase hints at the role that targeted policy effort can play in sustaining growth over longer
periods of time and delaying saturation. Policy effort can induce diffusion through cross-country
technology transfers and knowledge spillovers, accelerate takeoff by helping curtail the duration of
the formative phase, prolong the stable growth phase by introducing measures that address emerg-
ing barriers and delay saturation, and catalyse renewed growth pulses by creating new incentive
structures.

In sum, we argue that the growth of a new technology proceeds through a sequence of four
distinct phases — formative, acceleration, stable growth, and saturation. These phases are repeated in
every country at different points in time, and global deployment patterns emerge from the aggregate
effects of national adoption. Initially global growth is largely influenced by technology take-off and

acceleration in a small number of early adopters. Subsequently, it is shaped by asynchronicities
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in cross-national diffusion, takeoff, acceleration, peaking and saturation which generate a myriad
co-evolving feedbacks, synergies and dissonance.

The measurement of technology growth

Our analysis also shows that there are different metrics which can be used to measure technology
adoption, and that the choice of metric influences the inferences one draws about the nature of a
technology’s growth. We measure technology growth in relation to the larger market — shares in
electricity generation for solar and wind for which we have better generation data, shares in installed
electricity generation capacity for other energy technologies, and share in population for mobiles.

Technology adoption is also often measured in absolute units (e.g. GW of solar capacity or MWh
of solar electricity generation), but this ignores the crucial relationship between a technology and the
market it operates in — when we measure adoption, a technology’s market share is not only influenced
by its own deployment growth dynamics but also those of the larger market within which it operates.

We show that the earliest electricity generating technologies based on coal, o0il and hydropower
were often responsible for creating a new market for electricity when they first began to be deployed.
This led to their market shares starting at close to 100% and then declining when other technologies
entered the market (Supplementary Figure 3). Their deployment patterns are markedly different
from later technologies like nuclear power that entered a pre-existing market for electricity and saw
their shares gradually increase from zero. The example of nuclear power also illustrates how the size
of the overall market impacts the characteristics of the technology’s adoption curve — because of the
relatively smaller size of the overall electricity system at the time of its adoption, even small increases
in absolute deployment could translate to relatively big jumps in the technology’s market share.

Thus, for many historical technologies, focusing on absolute versus relative adoption metrics would
lead to significantly different inferences about the nature of growth. For more recent technologies like
CCGTs, mobiles, solar PV and onshore wind, we see a near-perfect alignment between the patterns
for the two, as absolute deployment went hand-in-hand with increasing market penetration amid

relatively modest changes in the size of the overall market.

Supplementary Note 2: Mathematical models for technology growth

Technology S-curves are frequently represented using the logistic model [40], a three parameter

function of the form

ft) = (H_e_Lk(t_to)) (1)
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, with parameters k (the growth constant), L (the final deployment asymptote or ’ceiling’), and tg
(the inflection point). Deployment achieves its maximum annual growth rate at the inflection point,
which can be expressed as G = £¥ [11].

Logistic curves fit to empirical deployment data have been widely used for ex-post description and
comparison of growth for historical technologies which have already reached their final ceilings[6—
8, 41]. Such analyses are less suited to emerging technologies with expanding deployment due to the
limited reliability of parameters estimated by fitting logistic functions to time-series with continuing
growth [11, 42, 43]

We posit that different parameters of the logistic curve reflect information about mechanisms
shaping growth at different phases of the S-curve: the growth constant k captures the rate of
deployment expansion during the acceleration phase, the inflection point ¢ty marks the start of the
quasi-linear stable growth phase, and the deployment ceiling L indicates where growth finishes.
Parameters reflecting later phases cannot be reliably estimated from early observations because these
data are unable to represent all phases of technology growth — as they are only able to capture
dynamics from a limited set of early phases, they do not have any information about the evolving
mechanisms that shape later phases of growth. Thus, fitting a logistic function to data from the
acceleration phase with consistently increasing annual additions might give us a reasonable estimate
for k, but will only be able to guess at the values of ¢y, or L as the underlying data does not have
any information on the phases to come. The more data we have and the better its coverage of the
whole deployment curve, the more reliable our parameter estimates.

We illustrate this phenomenon by fitting a logistic function to systematically truncated deploy-
ment timeseries for different technologies. For each technology, we track the evolution of the
parameters estimated by fitting the curve to curtailed data ending in a specific year. Our analysis
shows that while the estimate for k stabilises fairly early (essentially as soon as the technology is
nearing the end of the acceleration phase), the estimate for L is extremely unstable until very close
to true saturation (Supplementary Figure 6). This ‘moving L’ phenomenon (Supplementary Figure
5), where the estimate for the ceiling regularly changes with increasing deployment makes it partic-
ularly difficult to use logistic fits to project future technology growth and often leads to overfitting
(when the curve describes the data it is fit to reasonably well but is unable to accurately predict
future growth).

Several different approaches have attempted to address this parameter estimation challenge. We

see these as falling into two broad categories — one focusing on modifying the standard logistic curve
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fitting approach, and another looking beyond the logistic function and introducing alternative growth
models.

In the first category, ref. [44] suggest using an exogenously assumed fixed value for L (aligning
with a normative target or goal such as the 1.5°C target) with a set take-off year and empirically
derived estimates for the ‘emergence rate’ (which is analogous to the growth constant k) to generate
a logistic curve. While the trajectories generated using this approach can be used to assess if growth
is on track to reach the desired level by a certain time given a certain emergence rate, the projected
is purely conditional on the choice of L and the emergence rate.

Another modelling framework from ref. [43] improves on this ‘fixed L’ approach by having L
linearly increase with time at an exogenously define rate. This formulation more accurately captures
the ‘moving L’ phenomenon we highlight, but is again sensitive to assumptions about how fast L
changes and at what level it peaks. Thus, while it is useful for constructing feasibility spaces for
future growth under different assumptions about the emergence rate and the ‘demand pull’ raising
L, it does not resolve the fundamental problem of empirically deducing L from early data.

The second category focuses on exploring alternatives to the logistic model, and has had a
significantly longer history than the first.

Ref. [45] introduced the Gompertz model [46] to analyses of technology diffusion already in 1980.
The Gompertz model, an asymmetric S-curve of the form

e—k(t=t0)

f(t) = Le @)
with parameters k (the growth constant), L (the final deployment ceiling), and to (the inflection
point), has a longer growth phase with delayed saturation which mitigates some of the logistic model’s
pessimism about the ceiling when used with earlier observations. However, it is also vulnerable to
the same problem of being unable to reliably estimate parameters describing later phases from early
data [11, 42].

Given the accelerating nature of growth early in the S-curve it is sometimes (implicitly [47-49]
and explicitly [2, 43]) argued that the acceleration phase can be described by an exponential function.

The exponential function is of the form

f(t) =yt (3)
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where e is the exponential growth constant, and y; is the value at initial time ¢;. While it’s unsuitabil-
ity for describing or projecting technology growth over the long-term due to its inherent inability to
account for any barriers and slow-down is quite obvious, we show that it is also ill-suited to describing
the acceleration phase because it does not capture the declining year-on-year growth rates charac-
terising it — by definition, the exponential model assumes a fixed growth rate equal to the growth
constant.

Recent studies [50, 51] have demonstrated yet another approach which attempts to mitigate the
deficiencies of individual models by using several different models and averaging projections from
across the ensemble. They fit different growth models to empirical data, generate projections, use
hindcasting to evaluate the performance of each model, and then generate weighted projections where
better performing models are assigned higher weights. While the use of a more diverse ensemble of
models coupled with iterative hindcasting makes this approach less vulnerable to overfitting compared
to projections based on a single model fit to a single timeseries, it still faces the same underlying
problem of estimating parameters corresponding to later phases using early data.

We argue that this parameter estimation problem is not limited to a particular growth model but

extends to the broader enterprise of using models fit to empirical data to make projections.

Supplementary Note 3: PROLONG (PRobabilistic mOdeL Of techNology
Growth)

Models fit to a single set of historical observations are implicitly constrained in their ability to
anticipate future technology growth dynamics. A logistic function fit to solar PV data until 2015
does not reliably project global deployment in 2023 because it only captures dynamics from the
acceleration phase. We face the same problem when we try and project deployment until 2030 or 2040
using the latest data for wind or solar PV because these technologies are still in the acceleration phase
at the global scale. But this does not preclude the possibility of us making meaningful projections
altogether as there are individual countries where these technologies are already at more advanced
phases of adoption [11]. We argue that even though deployment data from these countries do not
yet capture slow-down and saturation, they offer us an empirical window into studying the evolving
balance of drivers and barriers across the acceleration and stable growth phases. Here, we develop
an approach to use these ‘incomplete’ national deployment time-series to probabilistically project

global growth over the near to medium-term.
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We find that statistical ranges for the growth constant (k) and peak growth rate (G) from logistic
curves fit to national data are relatively stable over time and can help anchor our expectations for the
eventual values of these parameters for the world as a whole (Supplementary Figure 6). At the same
time, our analysis also shows that similar statistics for L at the national scale are not informative
for estimating L at the global scale. We posit that early national k and G from countries at more
advanced phases of adoption could be used to inform projections of global growth. However, doing
so requires addressing some important challenges.

First, we would need to be able to identify the mathematical relationship between national
parameter statistics measured at earlier points in time and the parameters of a curve describing the
completed global deployment trajectory. This presents the same problem contemporary approaches
struggle with — in the absence of a crystal ball that shows us data from the future, we have no way
of knowing what the parameters of the eventual global trajectory will be.

One way to overcome this challenge would be to study historical technologies for which we have
data spanning the whole S-curve and use them as reference cases. We could quantify the relationships
between early national curve parameters and final global curve parameters, and then use them with
other technologies. But how do we know if the relationships measured for one reference technology
also hold for another? Given the specificity of technological characteristics and the socio-political,
economic context in which each technology is deployed, it is difficult to guarantee that patterns for
one technology can be used to predict those for another. If we want to project the future deployment
of solar power, is it likelier to follow patterns observed for other energy technologies like nuclear
power or CCGT's during the 20th century, or for granular consumer technologies like mobiles in more
recent years?

Another challenge relates to the actual process of quantifying these relationships between national
and global parameters — what methods can we use to capture these complex, non-linear relationships
that might vary in shape and form across different technologies?

We resolve these challenges by using computational simulations to explore different possibilities
for the growth and diffusion of a given technology in an ensemble of virtual worlds, and using a
machine learning model to capture the quantitative relationships between parameters describing
incomplete national growth and completed global trajectories.

We argue that a diverse enough possibility space composed of thousands of simulated global tra-
jectories, each of which is the aggregate outcome of a unique set of national growth dynamics, captures

adoption patterns similar to those unfolding in the real world, as well as those where the technology
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is more/less successful. In generating these simulations, we make explicit assumptions about what we
see as a plausible range for the takeoff timing, for the shape and form of national growth trajectories,
and for permissible deployment speeds and ceilings. Our approach uses computational simulations to
train a machine learning model to recognise the relationships between early national growth param-
eter statistics and the parameters of a technology’s final global trajectory, and then use the trained
model to make probabilistic projections for global growth using empirical national data.

The implementation of our modelling framework consists of the following steps:

® Step 0: Defining rules for the virtual worlds

® Step 1: Exploring diverse technology futures using Monte Carlo simulations

® Step 2: Generating training data from the ensemble of simulated trajectories

® Step 3: Using machine learning to identify the relationships between curtailed national and final
global parameters

® Step 4: Generating probabilistic projections from empirical data

® Step 5: Model validation and hindcasting

Step 0: Defining rules for the virtual worlds

Before we start generating simulations we define a set of core assumptions that form the basic
structure for the model.

Our simulation module represents a virtual world composed of 150 countries, with the distribution
of their relative, technology-specific market sizes carefully calibrated to reflect real-world market
sizes. We quantify the market shares as normalised shares (summing to 1). For solar PV and onshore
wind, market shares are derived from national total electricity generation, reflecting each country’s
relative electricity system size. For mobile phones, market shares are proportional to population
counts, representing the potential user base. For CCGTs, market shares are calculated based on each
country’s existing natural gas electricity generation capacity. These market shares directly weight
each country’s contribution to global aggregate deployment. For example, a country with 5% of global
electricity generation would contribute five times more to global solar deployment than a country
with 1% generation share, assuming identical percentage-based deployment within each country.
This market-weighted approach ensures our simulations properly account for the outsized influence
of large markets on global technology diffusion patterns, while still capturing the diversity of growth

dynamics across different national contexts.
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We simulate technology growth in each country separately, and global deployment at each time
step is the weighted sum of all national deployment at that instant.

We assume that each country can follow trajectories modelled by one of two shapes — a standard
S-curve (using a logistic function) or a curve with two pulses (using a bi-logistic function). For the
logistic trajectories, we need to assign each country a takeoff year (the year when deployment first
exceeds 1%), intrinsic growth rate (k) and deployment ceiling (L), after which we can calculate the
inflection point using the equation ty = takeof fycar + (1/k)log(L/0.01 — 1), where t; is the inflection
point year. For the bi-logistic trajectories, we need to assign each country a takeoff year, intrinsic
growth rate for the first pulse (k1) and the final deployment ceiling (L). The final ceiling is split
between the two pulses with respective ceilings L; and Lo using a random fraction between 20-80%.
We calculate the inflection point for the first pulse (¢g,) and its peak annual growth rate (G1). The
second pulse starts after a random delay between 1-10 years after to,, and is assigned a peak annual
growth rate (G2) calculated by multiplying G; by a random multiplier that is centred around 1 —
this allows for the equal possibility of the second pulse exhibiting faster /slower growth than the first.
The intrinsic growth rate (k3) for the second pulse is calculated as k = 4G2/L2, and its inflection
point (to,) as to, = takeof fycar, + (1/k2)log(L2/0.01 — 1). The choice of a 1-10 year delay for the
second pulse allows for both quick transitions between pulses (1 year) and longer pauses between
growth phases (up to 10 years).

Real-world technology deployment rarely follows perfect (bi-)logistic curves due to policy changes,
economic fluctuations, supply chain disruptions, and other temporal factors. To replicate this variabil-
ity, we implement a correlated noise model with three parameters. First, we apply multiplicative noise
with an initial amplitude of 5% of the current deployment value. This ensures deviations scale pro-
portionally with deployment levels — smaller variations in early adoption phases and larger absolute
fluctuations during rapid growth periods. Second, we implement year-to-year correlation (p = 0.7)
to create persistent effects that mimic how real-world drivers and barriers typically influence deploy-
ment over multiple consecutive years. For instance, the implementation of a new policy might affect
deployment over several years rather than causing independent annual fluctuations. Third, we incor-
porate amplitude decay (2% annual reduction from the initial 5%) to reflect how mature markets
tend to demonstrate more stable, predictable growth with reduced volatility. This three-component
noise structure creates trajectories with realistic short-term variability while preserving the under-
lying diffusion pattern, avoiding both the artificial smoothness of perfect curves and the unrealistic

randomness of uncorrelated noise.
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Here is an example to illustrate how the noise works. Let’s consider a country with 10%
deployment in year ¢. With a 5% noise amplitude, the deployment value might be adjusted to
10%(140.05) = 10.5% or 10%(1 —0.05) = 9.5%, depending on the random noise value. In year t + 1,
if deployment grows to 15% and the previous year’s noise was +5%, the correlated noise would be
calculated as 0.7(+5%) + 0.3 (the new random noise). If the new random component is -3%, then
the noise in year t + 1 would be 0.7(+5%) + 0.3(=3%) = +2.6%. The deployment would then be
adjusted to15%(1 + 0.026) = 15.39%. By year t + 5, the noise amplitude would have decayed to
5%(0.98)° ~ 4.5%, reducing the magnitude of potential fluctuations as the market matures.

We introduce spatial heterogeneity in when growth starts, how fast it happens, and where it ends
by assigning countries different parameters from different statistical distributions such as normal or
gamma distributions which vary between technologies. We use a Monte Carlo simulation engine to
simulate technology growth in thousands of virtual worlds, where each country follows a new, unique
trajectory every single time, leading to the emergence of a diverse set of global growth patterns.
The Monte Carlo simulation is implemented using R’s parallel processing capabilities through the
‘parallel’, ‘foreach’, and ‘doParallel‘ packages, allowing for efficient computation across multiple CPU
cores simultaneously.

We simulate technology growth and diffusion over a time period of 50 years; long enough for

countries to move from the formative to slow-down phases.

Step 1: Exploring diverse technology futures using Monte Carlo simulations

Establishing parameter distributions

To start generating simulations, we first define the distributions which control the national growth
dynamics.

We first look at early empirical data for the technology — up to 2015 for solar PV, 2010 for onshore
wind, 1998 for mobiles, 1985 for CCGTs — and fit normal distributions to the available national
takeoff years, and gamma distributions to logistic k& and logistic L for mature countries (with logistic
curve maturity > 50%). These distributions inform our priors about national curve parameters for the
specific technology at an early stage of adoption and define our ‘base configuration’. Given what we
know from empirical analyses of technology growth, these distributions most certainly do not capture
the ‘true’ parameter space for the eventual growth of the technology and very likely underestimate
its full potential. The gamma distribution is chosen for modeling k and L parameters because it

naturally constrains values to be positive while allowing for right-skewed patterns.
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We address this limitation by first defining a broader range of plausible values for the takeoff year,
k and L for each technology (with the specific aim of accounting for a diverse set of diffusion patterns)
and then systematically shifting the distributions for each parameter to explore different regions of
the technology’s possibility space. We use a structured approach that ensures thorough coverage
of parameter combinations—creating worlds where technologies grow quickly but saturate at low
levels, others where growth is slower but reaches higher penetration levels, and various combinations
in between. For example, one configuration might combine higher k values with moderate L, while
another might pair slower k& with higher L (Supplementary Tables 3-6).

We implement this parameterization using a hybrid coverage approach that combines a full fac-
torial design with face-centered points to efficiently explore the parameter space. Our code creates
a grid of parameter values by dividing each parameter range (k, L, and takeoff year) into multi-
ple divisions and selecting points at these positions. For example, with kgiyisions = 3, we sample 3
different mean values for the gamma distribution of k, from lower to higher growth rates. Consider
two adjacent grid points in our parameter space: one with kpeqn = 0.2, Liean = 0.4 and another
with kpean = 0.3, Lyean = 0.6. The face-centered approach adds an additional point between them
at kmean = 0.25, Linean = 0.5. This ensures we capture not just corner cases but also intermediate
parameter combinations, providing more comprehensive coverage of the parameter space. For each
configuration, we adjust the underlying distribution parameters (shape and rate for gamma distri-
butions, mean and standard deviation for normal distributions) to achieve the target mean values
while maintaining appropriate dispersion. This approach generates 13 distinct configurations that
systematically explore different combinations of early/late takeoff, fast/slow growth, and low/high
saturation levels.

Running Monte Carlo simulations

We generate 13 different configurations and then use each one to simulate 1000 different technology
diffusion pathways. For each configuration, we run a Monte Carlo simulation engine which randomly
assigns parameter values to individual countries by drawing from the distributions defined in this
configuration. Each country is assigned its own takeoff year, intrinsic growth rate (k) and deployment
ceiling (L), which are then used to generate its deployment trajectory. We account for different
market sizes by weighting each country’s contribution proportionally to its share of the global market,
simulating how technologies might spread differently in large versus small countries.

These country-level trajectories are then aggregated into a global adoption curve for each sim-

ulation run. By repeating this process 1000 times for each configuration, we generate a dataset of
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13,000 plausible global diffusion trajectories—some showing rapid global adoption, others displaying
more gradual growth patterns, and many exhibiting complex multi-phase growth.

In addition to exploring the possibility space by varying the parameter configurations, we also run
these simulations under differing assumptions about the shape of national growth trajectories. We
run three different batches of simulations — one where all countries have logistic growth, one where
all countries have bi-logistic growth, and one where each country has an equal chance of following
logistic or bi-logistic growth and there’s an even split in the number of countries following either
pattern in each run. Subsequent steps involving the generation of training data and producing a
trained machine learning model are followed separately for each batch — see Step 4 for more details.

We can make our coverage of the possibility space more comprehensive by running a larger number
of simulations and using more granularly differentiated configurations, but each addition comes at
the cost of significantly higher computational requirements.

To make subsequent analysis more computationally tractable, we apply a strategic filtering process
to select a smaller, more diverse subset for our final training dataset. Rather than randomly sampling
or using all runs (which would be computationally expensive and potentially include redundant
runs), we employ a clustering-based approach that identifies distinct pattern families within each
configuration’s simulation runs. The algorithm analyses the characteristics of each trajectory — such
as k, inflection points, and final saturation levels — and groups similar trajectories together. From
each cluster, we select representative runs that best capture that pattern family’s essential features.
This approach ensures our training dataset maintains the full diversity of possible diffusion patterns
while substantially reducing its size — from 1000 total runs down to 200 representative runs per

configuration. The selection process works as follows:

® For each run, we extract feature vectors that characterize the growth patterns, including
growth parameters of large countries, correlations between market size and growth parameters,
heterogeneity in growth rates, and leader-follower dynamics

® We normalize these features and apply principal component analysis (PCA) to reduce dimension-
ality while preserving approximately 85% of the variance

e We then apply k-means clustering (implemented in R’s base ‘kmeans‘ function) to group similar
trajectories

e From each cluster, we select the medoid run (the run closest to the cluster center) as the

representative for that pattern family.

36



435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

The selection of 200 runs per configuration was determined through experiments balancing com-
putational efficiency with maintaining diversity — we found this range provided sufficient pattern

coverage while substantially reducing computation time for subsequent model training.

Step 2: Generating training data from the ensemble of simulated trajectories

For the final step in our data preparation, we transform our simulation data into a format that teaches
the model how to make predictions with limited information. Here, we systematically truncate the
national deployment data from each simulation run at various early years (years 12, 15, 18, 21, 24,
and 30) to create snapshots of what the diffusion pattern would look like if observed at those points
in time. This exercise mimics the real-world challenge of forecasting from partial historical data. For
each curtailed snapshot, we fit logistic growth curves to the curtailed national-level data, extracting
parameters that characterise the diffusion process in each country up to that point. These include
median, Q1 and Q3 for k and G, as well as the number of "mature” countries in the stable growth
phase and their combined market share. We only use observations from those countries where the
logistic curve maturity is identified as being over 50

The parameter extraction process employs a curve-fitting procedure implemented adapted from
ref. [11]. For each country with sufficient data points (at least 5) and meaningful deployment (> 1%),
we fit a logistic curve and extract the key parameters. We then calculate distributional statistics
(median, first quartile, third quartile) across all mature countries to characterise the overall pattern of
national growth. This approach captures both the central tendency and variation in growth patterns
among early adopters.

We then pair these early-stage national parameters for each simulation run with the known
parameters of a logistic curve fit to its full global trajectory, creating training data that connect ”what
we know so far” at the national level with ”what eventually happens” at the global scale. We feed
this data into a quantile random forest model — an ensemble learning method that builds hundreds of
decision trees, each of which learns decision rules that connect early-stage national diffusion patterns

to their ultimate global outcomes.

Step 3: Using machine learning to identify the relationships between curtailed

national and final global parameters

We implement the quantile random forest using the ‘ranger‘ package in R, a high-performance imple-

mentation of random forests particularly well-suited for large datasets. Our model uses 1000 trees,
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which we found sufficient to achieve stable predictions while balancing computational efficiency. We
enable the ”quantreg” option in ranger to estimate conditional quantiles rather than just the condi-
tional mean. The importance of features is calculated using the impurity-based method, allowing us
to identify which national parameters most strongly influence global outcomes.

The forest’s structure captures the complex, non-linear relationships between early diffusion sig-
nals and long-term outcomes, while being robust against outliers and noise. Unlike standard regression
models that predict only mean outcomes, our quantile forest approach estimates the entire conditional
distribution of possible futures.

We train two separate models — one that uses early national data to predict the global k, and
another which uses the same data to predict the global G. By training on a diverse set of simulated
histories with known outcomes, the models develop an understanding of how partial patterns tend to
evolve, enabling them to look at real-world data up to the present day and make informed projections
about the full spectrum of likely future evolutions—from conservative lower bounds to ambitious

upper estimates.

Step 4: Generating probabilistic projections from empirical data

To use the model to make projections, we prepare input data capture the median, Q1 and Q3 %k and
G for mature logistic fits to empirical national data, the number of mature countries in the sample,
their combined global market share, and the current global deployment level.

The model takes these inputs and predicts the quantiles for £ and G, which are then used to
derive a value for the saturation level (L). We consider all possible combinations of k and G quantiles
(5x5=25 combinations), and filter out those combinations where L < the current deployment. Each
combination is then used to generate a complete logistic curve, with the inflection point calculated
using the current global deployment (y;) and current year (¢;) using the equationts = ((1/k) =
log((L/y;) — 1)) + t;, where t; is the inflection point year, k is the growth rate, L is the saturation
level, y; is the current deployment, and ¢; is the current year.

For each valid k-G combination, we generate a full trajectory up to the desired projection horizon.
The global growth constant (k) directly influences how quickly deployment accelerates and then
decelerates, while the peak annual growth rate (G) helps determine the saturation level (L) through
the relationship L = 4G/k. This approach captures the mathematical relationship between these

parameters while ensuring consistency with current observed deployment levels.
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To identify the most representative trajectory for each quantile level (5th, 25th, median, 75th,
and 95th), we calculate the area difference between each generated trajectory and the year-by-year
quantile values derived from all valid trajectories. The trajectory with the minimum area differ-
ence becomes the representative curve for that quantile, providing a coherent set of parameters that
best represents that particular future pathway. This area-based matching ensures that the represen-
tative trajectories maintain consistent parameter relationships while closely tracking the statistical
properties of the full ensemble.

For each year in the projection horizon, we collect the predicted deployment values from all
valid trajectories and calculate summary statistics across the full set which gives us a year-by-year
probability distribution for future global deployment.

Our probabilistic framework explicitly acknowledges multiple dimensions of uncertainty. First,
the use of quantile random forests captures the uncertainty inherent in technology diffusion
processes—the natural variability observed even when initial conditions are similar. Second, by gen-
erating projections from diverse parameter combinations rather than single parameter values, we
address parametric uncertainty about the true values of growth parameters. Finally, by training sep-
arate models on different trajectory shapes (logistic, bilogistic, and mixed), we incorporate structural
uncertainty about the underlying model form. This comprehensive treatment of uncertainty provides
a more realistic view of possible futures than deterministic approaches or those that address only a

single dimension of uncertainty.

Step 5: Model validation and hindcasting

To validate the predictive capabilities of our approach, we implement a comprehensive hindcast-
ing framework that systematically evaluates how well our models can project known historical
deployment patterns from earlier, incomplete data.

We perform a series of hindcasting tests to evaluate the performance of our projection model. We
do so by using the model with empirical national data truncated at different years in the past, and
then comparing the resulting projections to ‘out-of-sample’ global data.

Our hindcasting approach follows these steps:

1. For each technology, we select multiple historical cutoff years (e.g., 2005, 2010, and 2015 for solar
PV)
2. For each cutoff year, we extract national deployment data up to that year only

3. We apply our model to this truncated data to generate projections
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4. We compare these projections against the actual observed deployment in subsequent years

5. We repeat this process for models trained on logistic, bilogistic, and mixed trajectory data

This process mimics real-world forecasting scenarios and provides an objective assessment of each
model variant’s predictive performance.

To estimate the absolute error, we use the symmetric mean absolute percentage error (sMAPE)
[52] which quantifies the absolute magnitude of point errors (thereby avoiding the cancellation of
negative and positive errors) and also accounts for the relative scale of the quantity being mea-
sured (thereby avoiding asymmetricity). We use it to assess the overall out-of-sample forecasting
performance for each model when informed by in-sample observations until year z:

tend

Fend — 2 2= (el T 1)) /2

=z

% 100 (4)

To estimate the directional error, we calculate the symmetric mean percentage error (sSMPE) [52]
which quantifies both the magnitude and direction of the point errors and avoids asymmetricity and
large errors (when the out-of-sample values are close to zero). We use it to assess the tendency of

a model informed by in-sample observations until year z, to over- or under-predict out-of-sample

deployment:
tend
1 . —
sMPE = Yy ! 13 100 (5)
tend — 2 i—z Y-

To measure the skill of our probabilistic projections we use the Continuous Ranked Probability
Score (CRPS) [53] measures "how well the marginal distributions of the forecast represent the ground
truth” [54].

For each technology, we compare the performance of the models trained on logistic, bilogistic and
mixed data to identify which model most accurately captures empirically observed growth dynamics.
We identify the best performing models for onshore wind (bilogistic data), solar PV (mixed data),
mobiles (logistic data), and CCGTs (ambiguous), and use these models for subsequent tests and
comparisons.

The selection of the best model variant for each technology is based on an evaluation of sSMAPE,
sMPE and CRPS scores and prediction interval coverage (Supplementary Figures 7, 8). We found
that technologies with more complex adoption patterns (like onshore wind, which often shows multi-
phase growth) are better captured by the bilogistic model, while technologies with smoother adoption

curves (like mobile phones) are better represented by the simpler logistic model. For solar PV, the
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mixed model performed best, suggesting its deployment patterns so far show characteristics of both
single-phase and multi-phase growth across different countries.

Here, we compare the projections from our main model for each technology to projections made
by fitting logistic and exponential curves to global data. These hindcasting tests show that our
model using national data out-performs these other models in accurately projecting out-of-sample

deployment at the global scale.

Supplementary Note 4: Acceleration scenarios for onshore wind and solar

PV

To illustrate the scale of policy effort required to achieve global deployment trajectories in-line with
keeping warming below 1.5°C, we develop two sets of stylised counterfactual trajectories. The first,
Early Acceleration trajectories assume that the growth of solar PV and onshore wind continues along
a logistic curve with additional policy effort accelerating additions by expanding the deployment
ceiling. This is achieved by adjusting the logistic curve ceiling (L) to achieve the desired deployment
level in 2040 while keeping the intrinsic growth rate (k) fixed. The second, Late Acceleration trajec-
tories assume that the technologies follow our median projection until 2030 and then experience a
fresh pulse of accelerating growth modelled using a second logistic curve with another ceiling and a
high intrinsic growth rate, essentially producing a bilogistic trajectory. Here, additional policy effort
introduces a new growth pulse which alters both, the effective deployment ceiling as well as the rate
of growth acceleration.

These counterfactual scenarios represent distinct policy approaches: Early Acceleration reflects
immediate, sustained policy intervention that shifts the technology’s long-term trajectory by raising
it’s deployment ceiling and addressing emergent barriers, while Late Acceleration represents a delayed
but more intensive intervention that creates a distinct second wave of adoption. By modeling both
approaches, we can examine trade-offs between timing and intensity of policy intervention, as well
as the feasibility of meeting climate targets through different policy pathways.

These trajectories are compared against Baseline trajectories based on the median probabilistic
projections from PROLONG. For onshore wind, this baseline is modelled using a logistic function
with k = 0.16 and L = 25%. For solar PV, it is modelled using a logistic function with & = 0.25 and
L =18%.

For onshore wind, we model the Early Acceleration trajectory using a logistic function with

k = 0.16 (matching the Baseline) and an increased ceiling L = 38% (more than 2x higher than the
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Baseline). We model the Late Acceleration trajectory using a bilogistic function with an initial pulse
with k1 = 0.16 and L; = 25% (same as the Baseline), and a second pulse from 2030 with ky = 0.2
and Lo = 13%, which gives an effective L (L; + Ls) of 38%.

For solar PV, we model the Early Acceleration trajectory using a logistic function with k& = 0.25
(matching the Baseline) and an increased ceiling L = 45% (more than 2x higher than the Baseline).
We model the Late Acceleration trajectory using a bilogistic function with an initial pulse with
k1 = 0.25 and Ly = 18% (same as the Baseline), and a second pulse from 2030 with ks = 0.3 and
Lo = 27%, which gives an effective L (L1 4+ Lo) of 45%.

For the Early Acceleration trajectories, we:

1. Start with the baseline projection’s parameters (k, G, and L)
2. Maintain the growth rate parameter (k) while increasing the ceiling parameter (L)

3. Recalculate the inflection point (tg) to ensure the curve passes through the current deployment

to(ixlog<i1>)+ti (6)

where y; is the current deployment level and ¢; is the current year

level using the equation:

4. Generate the full trajectory using the logistic function:

B L
= T+ exp(—k x (t—to))

y(t)

For Late Acceleration trajectories, we:

1. Take the baseline trajectory up to the second phase start year (2030)
2. Create a second logistic curve with new parameters (kq, L)
3. Combine the two trajectories using a transition function that shifts from the first to the second

curve.

This approach allows us to model the effect of delayed but intensive policy intervention that
produces a distinct second wave of technology adoption starting in 2030.

This exercise gives us a set of six global trajectories. For each of these trajectories, we use a linear
optimisation approach to distribute the required growth in each year from 2023 to 2050 between 10
regions — East Asia, North America, Europe, South Asia, Asia-Pacific Developed, South-East Asia

and Developing Pacific, Africa, Eurasia, Latin America and the Caribbean, and the Middle East. We
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introduce constraints on the maximum deployment ceiling for each region for each technology, and

on the maximum annual growth rate, and the maximum annual growth acceleration.

The maximum deployment ceilings for each technology in each region are adapted from peak

deployment in TPCC ARG scenarios [55], and have been deliberately set higher than what these

scenarios consider achievable in some regions to avoid artificially constraining the optimization

(Supplementary Table 7).

The algorithm takes as inputs the current deployment levels (d; ;) and growth rates (r; ;) for each

region ¢ at time ¢, regional weights (w;) that sum to unity, and a target global deployment trajec-

tory (Dj). It incorporates three key constraints that reflect physical and institutional limitations:

maximum allowable deployment in each region (d; max), maximum annual growth rate (rmax), and

maximum year-on-year acceleration in growth rates (amax)-

For each timestep, the algorithm optimizes regional growth rates through an iterative process

that converges when the weighted sum of regional deployments matches the global target within a

specified tolerance e:

%

The regional deployment in each year is given by:

> (wi x diy) - D;

<e€

dip =dis—1+7it

subject to the constraints:

0 < di,t < di,max
0 S Tt S Tmax

—0Amax < Tit — Tit—1 S Gmax

(deployment bounds)
(growth rate bounds)

(acceleration bounds)

(10)
(11)

(12)

Based on empirical observations of historical technology diffusion rates, we set rpax = 0.03 (3

percentage points increase in market share per year) and amayx = 0.01 (maximum 1 percentage point

change in annual growth rate). These constraints reflect the practical limitations observed in how

quickly technologies can be deployed at regional scales.
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For each year, the algorithm first calculates the required global increase in deployment (AD} =
Df—Djf_,). It then distributes this increase among regions proportionally to their available headroom

(hi,t = dimax — di,t). The distribution factor (f;.) for each region is calculated as:

hi
Z] h.j)t

where the sum is over all regions j that have not reached their constraints.

fit = (13)

To prevent overshooting the global target, the algorithm implements a conservative adjustment
mechanism. When |ADj| < 0.01, the algorithm applies a damping factor of 0.5 to the growth rate
adjustments. If overshooting occurs (>, (w; xd; ) > D;), the algorithm allows growth rates to decline
while maintaining r; ;, > 0 and respecting the acceleration constraint |r; s — r;1—1| < @max-

The algorithm verifies whether the specified global deployment trajectory is achievable under the
given constraints by checking that the weighted sum of maximum regional deployments exceeds the

global target:

Z(wi X di,max) Z ch vt (14)

If this condition is not met, the algorithm terminates, as the regional constraints preclude
achievement of the global target.

This approach allows us to generate regional trajectories (Supplementary Figures 11, 14) that help
quantify the regional policy effort required to achieve different global growth trajectories while main-
taining consistency with empirically-observed limits on how quickly regions can accelerate technology

deployment (Supplementary Figures 12, 14).

Supplementary Note 5: The case of offshore wind power

Our analysis in this paper focuses on the growth of onshore wind power and excludes offshore wind pri-
marily because the sample of countries for this technology is not sufficiently large. Although offshore
wind power shares many fundamental characteristics with its onshore counterpart, it possesses sev-
eral distinguishing features that warrant separate consideration. Its comparatively lower technological
maturity, heightened technical complexity, generally larger turbine unit sizes, unique investment pro-
files, and specific geophysical requirements all contribute to potentially different temporal and spatial

diffusion patterns.
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At the global scale, the growth of offshore wind achieved takeoff in 2011 and as of 2023, accounted
for roughly 7% of total global installed wind capacity and less than 0.8% of global electricity gen-
eration. Unlike onshore wind, its cross-country diffusion has remained rather limited. As of 2023, it
participated in electricity generation in 19 countries, of which we have identified take-off in 11 coun-
tries — Sweden (2008), Denmark (2010), the UK (2011), Germany (2015), the Netherlands (2016),
Finland & South Korea (both 2018), Belgium (2019), China, Portugal and Vietnam (all 2020).

Of these 11, 8 countries have seen deployment levels exceed 1% of annual electricity generation
with Denmark (26.1%), the UK (17.5%), the Netherlands (10.1%), Belgium (9%), Germany (5.1%)
and Vietnam (1.3%) showing particularly strong growth (Supplementary Figures 15, 16). Together,
these 7 countries are responsible for about 54% of global offshore wind deployment. China leads
deployment in absolute terms and contributes to 52% of the global total — this means that over 96%
of global offshore wind deployment is concentrated in just 8 countries.

Only Belgium, Denmark, Finland, Germany, South Korea, Sweden and the UK have > 5 dat-
apoints after take-off and are eligible for curve-fitting. As of 2023, only Denmark, Germany and
Sweden had exhibited logistic curve maturities over 50%, indicating that growth is still accelerating
in most countries. This leaves us with a sample far too small to use with our approach based on using

evidence from countries at more mature phases of adoption to inform projections for global growth.
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