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I. THE ESTIMATION OF EFFECTIVENESS FACTORS

In the main text, we compute the mitigated expectation value at the [-th layer by utilizing the estimated effectiveness factors
{p; é-:l. These factors are incorporated within the maximum noise as detailed in the "Methods’ section of the main text, serving
as thresholds to preserve the Completely Positive and Trace-Preserving (CPTP) characteristics of the effective noise channels
Ay;. In this section, we derive the formula for estimating these effectiveness factors.

Consider an n-qubit noisy layer %, which is composed of D noisy gates arranged as 4 = Gpo...0Gs0G. Under the
non-correlation assumption, we consider that quantum gates acting on different qubits are free from crosstalk, ensuring the
independence of their respective noise channels. Each noisy gate G4 can be decomposed into G4 = O4 o G4 where O is a
CPTP noise channel. Through maximum noise decomposition, we can derive the expression of ©4 as ©4 = (1 — p?)Z + p?A<.
To calculate the effectiveness factor p, we shift the gate noise ©, backward:
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where the factor p? of the noise channel @de twirled by G441 remains invariant upon backward relocation. The effectiveness
factor p is then computed using

p=1-T[0-p). )

Since the layer can be decomposed into single or two-qubit gates through circuit compilation, the estimation of p? for each gate
within the layer is feasible via quantum process tomography [ 1] techniques. Specifically, for the Pauli gate noise model, p? can
be efficiently estimated through randomized benchmarking [2], as we utilize in our simulations involving the Pauli noise model.
Experimental results in Fig. S1 for Quantum Approximate Optimization Algorithm (QAOA)-type circuits under stochastic Pauli
noise model indicate that our model shows resilience in estimating prior value p, displaying a moderate level of tolerance.

II. QUANTUM ERROR MITIGATION METHODS IN BASELINES

In this section, we will provide the details for typical quantum error mitigation (QEM) strategies that serve as baselines in the
’Results’ section of main text, along with the precise parameter settings employed in their implementation.

A. Standard quantum error mitigation methods

The standard QEM methods we employ include the zero-noise extrapolation (ZNE), probabilistic error cancellation (PEC)
and Clifford Data Regression (CDR). To ensure fair benchmarking across different QEM methods, we rigorously control the
total measurement shots allocated to each technique. For ZNE, CDR, and the noisy case (Noisy), we fix the number of shots per
circuit instance to Ng = 8192. For PEC, due to its circuit-sampling nature, it deviates from the fixed-per-circuit-instance shot
model used by the aforementioned methods. However, we adjust for this by ensuring PEC’s total measurement shots amount
to Ny = 8192 x 2, matching ZNE’s total and being twice that of the noisy case. It is worth noting that while exponentially
increasing measurement shots can enhance the precision of standard QEM methods, the primary objective with machine learning
for quantum error mitigation (ML-QEM) is to mitigate the sampling overhead. The shot configuration in our experiments aligns
with typical algorithmic scenarios, ensuring a balance between precision and resource efficiency.
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FIG. S1. The performance of our model and the ablated models using estiamted value p with varying degrees of deviation from the
exact value of p, across varying noise levels. Longer T1 time denotes lower noise level. We focus on T1 = 23.235 us which represents the
state-of-the-art quantum coherence times. Results indicates that the impact of the deviation pf p from the exact value on the precision of our
model’s performance is negligible, indicating a robustness of the estimation errors. All the data in the figure presents average results with 95%
confidence interval error bars.

1. Zero-Noise Extrapolation

ZNE is a canonical QEM technique that leverages the principle of extrapolating noisy expectation values to estimate the
noiseless value. This method is particularly adept at handling errors that arise from the quantum hardware itself. ZNE operates
by scaling the noise levels in a controlled manner and then extrapolating the noisy results to the zero-noise limit. We hypothesize
the ability to scale the noise level to integer multiples of the base noise level €, with the multiples 1 = ¢ < 71 < ... < 7. We
execute the circuits under these amplified noise levels {x;e}7_, and collect the corresponding noisy expectation values {(O); };.
Next, we model the expectation values as a function of €, and then extrapolate this function to estimate the noise-free limit. The
mitigated expectation value is calculated using Richardson extrapolation, which employs a linear equation to extrapolate the
noise-free limit. The calculation is

(O)ne =Y %(0)s, 3)
i=0
where the fitting coefficients {v;}; meet 3>7_ ~; = Land 3_/_, yiz] = 0 for j = 1, ..., and the solutions gives
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We implement two-point noise amplification and apply Gate Unfolding [3] as our method for noise scaling. Specifically, within
the noise-amplified setup, each multi-qubit gate in the circuit is applied 2m + 1 times, with 2m + 1 representing the amplification
factor. We have chosen m = 1, corresponding to a threefold amplification of the noise level. In our setting, the implementation
of ZNE involves two circuit instances: one for the circuit under the original noise level and another for the circuit with noise
amplified threefold.

2. Probabilistic Error Cancellation

PEC is one of the earliest QEM algorithms proposed. Its fundamental concept involves calibrating the noisy process channel
expression to implement the inverse of the noise channel, which is then appended to the noisy circuit. We utilize the PEC method
with sparse Pauli-Lindblad models (SPL) [4, 5]. Given that single-qubit Pauli gates, which are intended for noise cancellation,
are themselves susceptible to noise contamination, their effectiveness in mitigating noise for single-qubit gates is limited. In
contrast, the noise impact of two-qubit gates is significantly greater than that of single-qubit gates. Consequently, the additional
noise introduced by single-qubit gates is negligible compared to the noise reduction achieved by error mitigation for two-qubit
gates. Based on this analysis, our focus is primarily on mitigating the impact of noisy two-qubit gates. For a two-qubit noisy
gate, the SPL model is expressed as:

EC) =[] @Z+ (1 —wi)P), (5)
k
where w;, = % and {)\}x are the noise coefficients of the SPL model, k ranges from O to 42 — 1. Then we need to

derive the inverse expression of £ to implement PEC. This derivation is notably efficient, as it simply involves negating the noise



coefficients {\;}5. This straightforward approach offers a significant advantage in that it circumvents the need for complex
inversion of the full noise channel £, which often leads to unphysical channels. These noise coefficients are related to the
diagonal entries of the Pauli Transfer Matrix (PTM) of the SPL noise channel £, which can be linked to the channel’s impact on
the Pauli operator P, with fidelity f,:
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where {a, k} = 0 denotes that the Pauli operators P, and Pj, anti-commute. We calculate the noise coefficients {\; } 5, via

—log(f)/2 = MM, (N

where M is a matrix characterizing the commutativity for Pauli operators, with the entry M, ; = 0 representing that Paulis
P, and P, commute and M, ; = 1 otherwise. The Pauli fidelity, denoted as f,, can be determined by fitting the decay function
ao f;". This approach effectively mitigates the impact of state preparation and measurement (SPAM) errors. Here, m denotes the
number of repetitions of the noisy multi-qubit gates. In our experiment setting, the multi-qubit gate consists solely of the CNOT
gate, which is self-conjugate. We select an even set of m values, specifically m = {2,4, 6,8, 10}, to fit the decay function.
After determining the noise coefficients {\x } ., we calculate the set {wy, } and derive the full inverse channel using:

E() =] J(whT = (1 = wi)P), (8)
k

where ~y is the sampling overhead:

7= T2 — 1) = 02, ©)
k

We then append the inverse channel £ to the noisy gate, employing the quasi-probability decomposition [4]. For each k, we
sample the identity Z with probability wy and the Pauli channel P}, with probability 1 — wy, and subsequently append it to the
noisy gate. We keep track of the sign (—1) each time a Pauli channel is sampled. This procedure is repeated for each two-qubit
gate in the circuit, and all the signs accumulate. Finally, we adjust the outcomes by multiplying (—1)"y = (—=1)™ Hle i
across G two-qubit gates, where m is the number of chosen Pauli channels and ~; is the sampling overhead for each gate,
calculated using Eq. 9. In our setting, we sample 200 random circuit instances for a complete mitigation process, following the
protocol established in Ref. [4]. The measurement shots used for calibration of noise parameters wy, are 10° per circuit instance
and are separate from those allocated for PEC mitigation.

3. Clifford Data Regression

CDR is a typical learning-based QEM method, which can be regarded as the simplest form of linear model-based machine
learning quantum error mitigation (ML-QEM) method. CDR differs from methods like PEC, which depend on exact knowledge
of the noise channel, and ZNE, which requires precise control over the noise level. Instead, CDR estimates the expectation
values of target circuits by establishing a linear relationship between noisy and noiseless expectation values. This relationship
is learned using training datasets derived from near-Clifford circuits that are relevant to the target circuit. These near-Clifford
circuits, which are classically simulatable, are constructed by substituting some non-Clifford gates in the target circuit with
Clifford gates.

Our training dataset comprises near-Clifford circuits with a replacement rate of r,, = 0.5. The non-Clifford gates we utilized
include the X-rotation gate R (6), the Y-rotation gate R,,, and the Z-rotation gate R,. We replace a proportion of r,, of these
gates with single-qubit Clifford gates according to the following replacement rule,

Ru(6) = R.("T
R,(6) = R, (" (10)

R.(0) = R.(—),



TABLE 1. The setting of grid search.

number of estimators ‘ maximum depth minimum samples split ‘ minimum samples leaf ‘ maximum features
min max ‘ option  min max ‘ min max ‘ min max ‘ number option
100 200 | None 10 20 | 2 5 ‘ 1 2 ‘ 1 sqrt

where k£ is randomly sampled with the weight computed by

A2 k’ﬂ'
w(k) = e, d = ||Ryy,.(6) — Rayo (5l (11

For each target circuit, we generate and measure 10 corresponding near-Clifford circuits for training, each containing a
maximum of 20 non-Clifford gates. These measurements are conducted using the identical observable as that of the target
circuit.

B. Data-driven machine learning quantum error mitigation methods

We choose the typical data-driven machine learning model random forest to mitigate noisy circuits, and we refer to this
approach as RF. RF is an ensemble machine learning method that integrates the prediction of multiple decision trees. Com-
paring with a single decision tree, the RF method exhibits a preferable capacity against over-fitting, but it also entails greater
consumption of computing resources. We utilize the random forest regression algorithm following [6] for QEM, with the Ran-
domPForestRegressor as a RF implement and the GridSearchCV as an exhaustive parameter search. The setting of parameter
searching grid are as table I.

C. Our models including ablation models

In the main text, we use two ablation models: the neural extractor ablated (NEA) and the quantum-inspired neural network
ablated (NNA). The two models, NEA and NNA, are both founded on the principle of isolating the noise envelope 7, aiming
to the estimated noise impact factor 7;.

1. Attention-core ablated model

The architecture of the NEA model is rooted in the neural noise accumulator, which is realized by a Recurrent Neural Network
(RNN). In our model, we integrate circuit features and concatenate them to form the input data matrix X € RLXM | wwhere L
denotes the sequence length, and M represents the number of variables. The RNN within our model consists of a hidden state
H that captures information from prior inputs, and an output Y, which is a sequence of the predicted results. At each time step
l, the hidden state H; updates recursively according to the following equation:

H;, = f(Hl,th) = tanh(WlHl,l + by + WX, + b2)7 (12)

where W1, by, W, by are learnable parameters. Subsequently, a readout layer, consisting of a linear transformation, is employed
to extract the noise component Y;:

Y, = g(H;) = W3H,; + b3, (13)
with W3, b3 being additional learnable parameters. Ultimately, the desired output Y;* is computed as:

Y= — <O>1A . (14)
Hj:l(l —pj)+ Y,

Here, Y;" represents the predicted results.



2. Quantum-inspired neural network ablated

We then explore the ablation of the entire physics-inspired neural architecture by employing a standard artificial intelligence
approach: the Multilayer Perceptron (MLP). The MLP utilized in the NNA consists of multiple hidden layers, each defined by
the following linear transformation,

X@ — @ x6-1) b(i)7 (15)

where X () € REXM represents the output of the i-th layer, W () is the learnable weight matrix for the i-th layer, and i ranges
from 1 to 5. In our experiments, the MLP comprises 5 layers, with each hidden layer having a size of 32 units. The input to
the first layer, X 0, consists of embedded features X € RL*D derived from the original input data, which includes device and
circuit specifications along with noisy results. The final output of the network, Y € RZ*!  is produced by the last layer. Here,
L denotes the length of the sequence, and D represents the dimensionality of the input features.

III. DATASET GENERATION

The dataset utilized in the main text originates from noisy simulations conducted using Qiskit [7]. We will provide a detailed
exposition of the dataset’s generation process and its key characteristics.

A. Gate noise model used for simulation

In our numerical simulations to generate datasets, we adopt a noise model derived from the principles of decoherence in
superconducting systems, a prevalent architecture in quantum computing. Specifically, we identify amplitude damping (AD)
and phase damping (PD) as the primary sources of decoherence, which are commonly characterized by the system’s relaxation
time 77 and dephasing time 75 [8, 9]. For a single qubit, the AD channel has the form

Enn(p) = EfPpENY + ESPpELY, (16)
where E2P and E4P are defined as
ap _ (1 0 ap _ (0 \/Pap
E _(Om and B3° = () VE (17)

which are the Kraus operators of the AD noise channel Eap with error rate pap. As for PD noise channel, the Kraus operators
E*'P and ELP are

pp _ (1 0 ep _ (0 /prD
E7 = (0 VT=pm and By~ = 00 (18)
To effectively simulate these sources of noise, one can employ the randomized compiling (RC) [10-12] technique. The RC

technique is utilized to map the complex effects of AD and RD directly onto a more computationally tractable Pauli noise
channel. In our case, we adopt the Pauli noise model as a direct outcome of applying the RC technique to the AD and PD noise
channels, which can be

E%(p) = (1 =px —py —p2)p+pxXpX +pyYpY +pzZpZ,
where the parameters of the Pauli noise model are determined by the decoherence rates 77 and 75:
1—et/M 1—e W/ 1t/
g wdpz =

We employ the average T7 = 23.2357us and T = 15.6us from Ref [ 13] as a baseline for scaling the noise proportionally, while
maintaining the ratio between them. Under the assumption of uncorrelated errors, the Pauli error probabilities for two-qubit
Pauli noise channel can be quantified as follows [8]:

bPx =DPy =

Prx =px1 =pry = pyr = px(1 —px — py —pz),
Pxx =PXy =Pvyy = DPvyXx = PxDy,

Pxz =Pzx =Pvz =Pzy = PXPz,

prz =pzr =pz(1 —px —py —pz),

bzz =Ppzpz.



For the gate execution time ¢, we set the single-qubit gate time to 18 ns and the two-qubit gate time to 48 ns, corresponding to
their respective Pauli error rates. Moreover, we have incorporated a fluctuation of 2 x 10~° to emulate the intrinsic numerical
variations observed in actual quantum computing environments. The Pauli error rate, which is the aggregate of all individual
Pauli error probabilities, across varying noise levels is detailed in Table IIT A.

TABLE II. Pauli error rates across different noise levels.

noise level

single-qubit Pauli error rate”

two-qubit Pauli error rate”

T1 time T2 time
20.00 13.43 0.2384% 0.4761%
23.24 15.60 0.2052% 0.4100%
30.00 20.14 0.1590% 0.3177%
40.00 26.86 0.1193% 0.2384%

2 is calculated by 1-px — py — pz.
b is calculated by 1-(1 — px — py — pz)? under the uncorrelated noise assumption.

B. Metric for dataset acquisition difficulty

In the main text, we denote the hard regime for training dataset which represents the data points obtained from deeper circuits.
In the quantum sequential task, the hard regime can be characterized by the maximum sequence length L for each circuit
parameter. The maximum length L is determined by the selection rates listed in Table IV for QAOA-like circuit tasks and
Table V for quantum metrology, which are influenced by the partial training rate p,.. Consequently, the number of data points
incorporated into the training set can be calculated with L and the training data size M which is the number of chosen set of
circuit parameters. For instance, the number of data points for QAOA-type circuit tasks within a 100 training size training set
and p, = 0.25is100-10-0.75+100-13-0.25-0.5+4100-17-0.25-0.3 4100 - 20 - 0.25 - 0.2 = 1140.

C. Experimental settings for quantum algorithms based on the Quantum Approximate Optimization Algorithm-type circuits

The QAOA-type circuits are commonly utilized in near-term quantum algorithms such as quantum Trotterized simulation and
variational quantum algorithms (VQAs). In the main text, we employ the Hamiltonian which determines the temporal evolution
of the 1D transverse-field Ising spin chain. The Hamiltonian is,

n—2 n—1
Hying = =7 D Z;Zjs1+h ) X; = Hiyy + Hiky,, (19)
§=0 j=0
here we define Hfing =-J> ;ZjZj+1 and Héng =5 ;Xj. J and h are the parameters which denote the coupling strength

between neighboring spins and the transverse magnetic field, respectively. For a certain pair of circuit parameters (J, h), we
measure the Trotter circuit U, lJ’h ateachstep ! (I = 1,2, ..., L) with single Z observable Z,, on the last n-th qubit. To implement
the Trotter circuit U l‘]’h, we employ the first-order Trotterized decomposition to approximate the time-evolution operator,

. 11 Z X 7 X
e_lHN"gt — e*Z(HIxingﬂLHmng)t ~ e*ZHIxingte*ZHMngt. (20)

TABLE IV. The selection rate for maximum Trotter step L.
10 11-13 14-17 18-20
1-p* pr-0.5 pr-0.3 pr-0.2

2 denotes the partial training rate.



TABLE V. The selection rate for maximum number of qubits 7max.
5 6-8 9-10
1-pr pr 0.7 pr-0.3
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FIG. S2. The quantum circuit for structured circuits used in numerical simulations. a The Trotterized circuit layer with parameters (J, h),
which comprises a column of X-rotation gates at 2hdt and a chain of Rz, gates. The right subfigure shows the Rz~ gate’s decomposition
into two CNOT gates and a Z-rotation gate at —2Jd¢. b The circuit used for quantum metrology, which includes the GHZ probe state
preparation circuit and the evolution circuit. The evolution circuit U () parameterized by 6 consists of a column of Z-rotation gates at 6. ¢ The
hardware-efficient (HE) circuit used for training scalability experiments utilizing near-Clifford replacement. A single ansatz layer is composed
of alternating trainable single-qubit layers with rotation-y gates and a fixed entangling layer, which is a fully-connected CX gate layer. For a
HE circuit with L layers, the ansatz layer is repeated L times, with each layer having independent rotation angles.

For one time step ¢, we have

—ZHIsmg He—z( Jét)od gd Tt

zHI““g H e~ i(hdt)o

where the circuit structure of a single layer is shown in Fig. S2 a. The circuits span Trotter steps from 1 to 20. We maintain a
fixed ratio of J to h at 0.6 and sample hdt across the interval [0.5, 2].

21

D. Experimental settings for quantum metrology based on GHZ probe state

Quantum metrology (QM) is one of the most appealing applications of quantum techniques, which untilizes quantum resources
to estimate an unknown parameter in higher precision than the classical approaches. We focus on the QM with GHZ probe state,
which enables the Heisenberg scaling O(n~2) of precision with regard to the system size n, while the presicion scales as O(n 1)
for seperate states which called shot-noise scaling. We expose the n-qubit GHZ probe state |GHZ,,) = % (10)®™ + 1)) to
the interaction dynamics which is encoded by an unknown parameter 8. We consider the interaction dynamics represented by the
time evolution U () = e~*7% with the Zeeman Hamiltonian H = % >, Z;. Then given the global X observable O,, = X®"
and the measurement shot number N, the parameter ¢ can be estimated via

65 (n, N) — arccos (On>97 22)

n
where (O,,)p refers to the expectation value of O,,. The circuit we utilized includes the GHZ state preparation circuit and the
free evolution circuit parameterized by 6, as depicted in Fig. S2 b. We train the models with circuit parameterized by randomly
sampled angles within a continuous interval from 0.1 to 5.0 with increments of 0.1, performing 10 independent experimental

TABLE VI. Dataset characteristics

Task Training Set : Test Set Quantum System Size
sequences hard regime sequences steps
QAOA-type circuits 50-500 11-20 200 1-20

Qubit-wise circuits for quantum metrology 100-500 5-10 500 1-10 1-10
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FIG. S3. Extended data on accuracy analysis for Qquantum Approximate Optimization Algorithm-like circuits. a The Trotter evolution
for typical values of circuit parameter hdt within [0.5,2]. The inset figure shows the total MAE comparison for Trotter steps 1-20 among
Noisy, Best-QEM (the best-performing QEM method among standard QEM methods and RF), and our model. b-¢ The comparative results of
MAE and the relative MAE drop (RD) for baselines and our model with varying Trotter steps, where MAE and RD are both calculated using
single points. These results are derived under diverse noise levels, characterized by the T1 relaxation time. A higher T1 time signifies a lower
noise level. d-e The comparative analysis of RD for baselines calculated using single points and sequence norms. All the data in the figure

presents average results with 95% confidence interval error bars.

trials to estimate metrics for each parameter in simulations. Evaluations are based on angles taken from 0.05 to 5.05 at 0.1

increments.
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FIG. S4. Extended data on efficiency analysis of ML-QEM models for Quantum Approximate Optimization Algorithm-like circuits.
The average performance for MAE and RD is assessed with varying training set size and partial training rate across specific Trotter step ranges:
1-5, 6-10, 11-15, and 16-20 (The model’s performance with a training set size 100 and a partial training rate 0.25 is discussed in the main text.)
All the data in the figure presents average results with 95% confidence interval error bars.

E. Summary of Dataset characteristics

In conclusion, we summarize the dataset utilized in our experiments for two type of circuits. The overall characteristics of the
dataset are given in Table VI. For the first two sequential tasks in our simulation experiments, the dataset comprises sequences
with varying lengths in the training set, which are randomly truncated, and sequences with fixed lengths in the test set.
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FIG. S5. Extended data on accuracy analysis for quantum metrology based on GHZ state. a-b The average performance of the baselines
is assessed using two metrics including RMSE for estimated angles and MAE for mitigated expectation values, at each qubit number across
an increasing range of measurement shots. Here, the noiseless case refers to the condition that the results only suffer measurement statistical
error due to finite measurement shots number. All the data in the figure presents average results with 95% confidence interval error bars.

IV. EXPERIMENTAL DETAILS AND EXTENDED RESULTS

In this section, we detail the implementation of our experiments and present extended results.

A. Experiments for QAOA-type circuits

For layer-wise QAOA-type circuits, we initially select representative results from the interval [0.5, 2] of the circuit parameter
hét to demonstrate the noiseless expectation values of the Trotter evolution. As observed in Fig. S3 a, the absolute value of these
noiseless expectation values increases with the hdét value, particularly at higher layer depths, where our model’s superiority
becomes increasingly evident.

In the main text, we assessed our model’s performance using Mean Absolute Error (MAE), a key metric for quantifying the
precision of QEM methods. Results as given in Fig. S3 b substantiate the superiority of our model in two pivotal aspects. The
first is that, as analyzed in the main text, our model demonstrates superior performance with larger Trotter steps. The second
is that our model exhibits enhanced stability relative to our ablation models, notably at lower Trotter steps where the ablation
models exhibit instability. This stability underscores the robustness of our model’s design, which sustains effective mitigation
ability as validated by ablation studies.

We then extend our analysis with an additional metric to further investigate the model’s performance. We define the relative
MAE reduction (RD) as a metric to quantify the relative performance improvement of mitigation methods over the noisy baseline,
assessing this for each layer individually. The RD is calculated using the logarithmic ratio of the MAE for the noisy and mitigated
expectation values:

9t — ui
RD = log <|y§m _—- , (23)

where g; denotes the noisy expectation value at [-th layer, y; represents the noiseless expectation value, and y;™ is the mitigated
result obtained from QEM methods. Notably, a larger RD signifies better performance, indicating a more effective mitigation of
noise. Fig. S3 ¢ depicts the RD of baselines as a function of Trotter Step, where our model shows an overall stable advantage
over the baselines. The comparative analysis of RD for baselines under different noise levels is given in Fig. S3 d and e, using
two calculations for single points and sequences.
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FIG. S6. Extended data on efficiency analysis for quantum metrology based on GHZ state. The average performance of RMSE for
estimated angles and MAE for mitigated expectation values is assessed with varying training set size and partial training rate across specific
qubit number ranges: 1-3, 4-6, and 7-10 (The model’s performance with a training set size 200 and a partial training rate 0.25 is discussed in
the main text.) All the data in the figure presents average results with 95% confidence interval error bars.

We also evaluate the efficiency of our model in comparison with baselines using ML models, including RF, and our ablated
models. As depicted in Fig. S4, the average performance for MAE and RD is assessed across specific Trotter step ranges: 1-5,
6-10, 11-15, and 16-20. This assessment is conducted for two different conditions: training set sizes ranging from 50 to 500 as
shown in panels a and b, and partial training rates varying from 0.5 to 1 as illustrated in panels ¢ and d (The model’s performance
with a training set size 100 and a partial training rate 0.25 is discussed in the main text.). Our model outperforms RF and ablation
models, particularly with lower training set sizes and partial training rates, demonstrating its strength in small data scenarios.
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B. Discussion on Accumulation Surrogating

We further explore how our physical-inspired network surrogates the noise accumulation process. For QAOA-type circuits
with up to 12 Trotter steps, we examine a specific instance, visualizing both the quantum cumulative noise N and the corre-
sponding surrogate N derived from the neural network. Our visualization technique employs the Pauli Transfer Matrix (PTM)
representation of A, condensed through sum pooling, alongside the computation of the outer product NTN to represent N.
We proceed to conduct a quantitative analysis, expanding our case study to encompass a statistical analysis that includes 200
sequences. This comprehensive approach, combining both visualization and quantification, substantiates our model’s rapid
detection of structural changes and its structural alignment with quantum cumulative noise. Next, we will delve into the compu-
tational details that underpin these findings.

In our experiments for six-qubit QAOA-type circuits, we confront the challenge of visualizing the immense PTM size of
(4096,4006). To address this, we utilize sum pooling, which not only simplifies the data representation by reducing dimension-
ality but also retains critical information. We employ the sum pooling on a sub matrix of size 128, and the resulting size is
(32,32). For the surrogate N with an experimental size of 32, the outer product results in a square matrix of size (32,32).

When it comes to the correlation analysis in our experiments with six-qubit QAOA-type circuits, we utilize submatrices
extracted from the full PTM of NV, perform a flattening operation, and then normalize each vector before computing the Spearman
correlation coefficient with the flattened and normalized vector of NZA/. The normalization step ensures that each feature
contributes equally to the correlation analysis, mitigating the impact of scale differences. The Spearman coefficient, denoted as
Cspearman 18 Calculated by first ranking the elements of the datasets X and Y after normalization, and then applying the Pearson
correlation formula to these ranks. The formula for cspearman 1S given by:

e — >.i(rg(wi) — g2)(rg(yi) — ry) (24)

V2i(rg(wi) —12)? 32 (rg(yi) — rgy)?

where rg(x;) and rg(y;) represent the rank values of z; and y; after normalization, respectively, and g, and rg, are the mean
rank values of X and Y. This results in a correlation matrix with dimensions of (128,128).

Furthermore, going disordered prompts us to characterize the structural correspondence through differential entropy. We
analyze the variation curves of vector N and the flattened vector from the PTM of AV, with a length of 40962, as the Trotter step
increases. The differential entropy is calculated using the formula:

neo = - [ " J()log f(2) da 25)

where f(z) is the probability density function of the continuous random variable X. For these vectors, we utilize the
scipy.stats.differential_entropy function with the ’auto’ method, which selects an appropriate numerical ap-
proach based on the sample size. Given the lengths of our vectors, the function is likely to employ the Ebrahimi method for the
shorter vector A and the Vasicek method for the longer flattened PTM vector.

C. Experiments for quantum metrology based on GHZ probe state

We employ three metrics to assess the mitigation effectiveness of models for QM, which we will describe in detail.

* Root Mean Square Error (RMSE). The RMSE is commonly used to describe the sensitivity of 6°'(n, V) to the statistical
error given measurement shots number /N. The defination of RMSE is

(AGRYSE(n, N))® = Var[9™(n, N)] = E[|6=(n, N) — 6]7]. (26)
In the noiseless case, AGRMSE(n, N) scales at O(n~2) for all 6, which reaches the Heisenberg scaling.

* MAE of the expectation value (O,,)y. This metric provides a direct assessment of the efficacy of the mitigation strategies.

* Fitting rate r of the RMSE scaling curve with respect to the qubit number n. We model the RMSE scaling curve using the
function by /n", where by is determined by fitting the RMSE scaling curve of the noiseless case with the function by /n2.

The RMSE and fitting rate serve as indicators for QM, with the latter being an upper-bounded metric where values closer to 2
signify better performance, as they approach the noiseless scenario. The MAE, alongside the RMSE, quantifies the error in our
estimates. Since the fitting rate r is calculated by fitting the data across all the qubits, we only illustrate the detailed results for
RMSE and MAE at each number of qubits under varying measurement shots numbers, as given in Fig. S5. Here, the noiseless



13

case refers to the condition that the results only suffer measurement statistical error due to finite measurement shots number. Our
model demonstrates performance improvements generally in accordance with the noiseless case as measurement shots number
increases. This correlation arises from the decreased measurement statistical error. In terms of efficiency analysis as depicted
in Fig. S6, the performance of our model aligns with the outcomes observed in prior QAOA-type circuits. This refines the
conclusion of the superior effectiveness and efficiency of our model compared to standard QEM and universal ML-QEM, even
for qubit-wise quantum algorithm. Notably, in this experiment, the dataset we utilize encompasses a small range of circuit
parameters {6} (at most 50). Relative to universal ML models that rely on directly capturing the relationship between noisy and
noiseless results, learning the corresponding relationship from such a dataset is particularly challenging. This further highlights
the utility of physical prior knowledge in ML-QEM under conditions of limited training set.

V. TRAINING SET GENERATION OF LARGE-SCALE QUANTUM SYSTEMS

As we have discussed in the main text, the acquisition of training labels (noiseless expectation values) for large-scale quan-
tum circuit implementations presents significant computational challenges, primarily due to the reliance on resource-intensive
classical simulations. In this section, we explore two potential solutions to mitigate these challenges. The first approach utilizes
near-Clifford circuits to construct the training set, capitalizing on their efficient simulatability. The second approach employs the
Low-weight Pauli propagation algorithm [14], which efficiently computes expectation values for low-weight Pauli observables in
shallow circuits. Both methods aim to reduce the computational burden and enhance the scalability of training label acquisition
for quantum error mitigation.

A. Training with near-Clifford circuits

Similar to the CDR error mitigation method, we use these circuits for training due to their efficient classical simulation,
while testing the model on more general circuits. Through experiments on representative quantum parameterized circuits, we
demonstrate that our NNAS model can effectively adapt to the patterns in near-Clifford training sets.
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FIG. S7. Extended data on training with the near-Clifford circuits with varying qubit number and the retention ratio of non-Clifford
gates. The average MAE performance for mitigated expectation values is evaluated using near-Clifford circuits with varying retention ratios
« of non-Clifford gates. The near-Clifford training set comprises 500 samples, while the test set, utilizing random parameters with a default
a = 1, contains 200 samples. All the data in the figure presents average results with 95% confidence interval error bars.

In our simulations, We ultilize an four-qubit hardware-efficient (HE) [15] ansatz circuits, as shown in Fig S2 ¢. A single
ansatz layer consists of an alternating trainable single-qubit layers with rotation-y gates, and a fixed entangling layers which is
the fully-connected CX gate layer. For a HE circuit with L layers, the ansatz layer is repeated L times, with each layer having
independent rotation angles. However, the HE circuit differs from other quantum circuits. Unlike previous tasks with consistent
circuit parameters that form a sequence of expectation values across layers/qubits, the HE circuits commonly generate unique
outputs per layer depth, lacking a strict sequential pattern. Yet, as noted in the main text, training data can still be recursively
collected by layer. When we need to predict the mitigated results for circuits with a fixed layer depth, we can treat it as a
sequential and focus solely on the output at the target step.

To better enable NNAS to capture the characteristic information of HE circuits, we have modified the embedding module
of NNAS. The embedding methods for various types of features are the same as those mentioned in the maintext except the
embedding of rotation angles. We adopt segmented encoding for rotation angles, which divides angles into three categories
based on their numerical values and utilizes learnable parameters E;, where ¢ € {0, 1,2}, for feature representation. Formally,
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for angle 6, the embedding f(6) is defined as

EOa Zf NS [Oa 2?‘”)
fO) =4 Er, if0e[5%) . 27)
FE5, otherwise

Our method of generating near-Clifford HE circuits aligns with Eq. 10, where we vary the retention ratio of non-Clifford
gates, which is denoted as «, from 0.1 to 1. We train our model on near-Clifford HE circuits across various « values, using
a fixed o observable. The training set comprises 500 samples, while the test set consisted of 200 HE circuits with random
parameters. Our experiments cover quantum systems with qubit number n ranging from 4 to 10 and a maximum layer depth of
10. As shown in Fig. S7, the performance of NNAS exhibits only slight fluctuations with varying «, with the impact becoming
increasingly minimal as the n grows larger. This robustness can be largely attributed to our segmented encoding, which renders
NNAS relatively insensitive to parameter variations. In practical applications, when aiming to efficiently simulate near-Clifford
circuits, the maximum permissible number of non-Clifford gates is significantly lower than the order of hundreds [16]. In our
experiments, to achieve a precision comparable to that of the original training set (v = 1), the minimum number of non-Clifford
gates required was found to be less than 30, thereby underscoring the potential of training with near-Clifford circuits.

B. Training label acquisition using low-weight Pauli propagation

Pauli propagation methods are widely utilized for classically simulating expectation values of locally scrambling circuits [17,

]. These methods operate in the Heisenberg picture by back-propagating Pauli operators through the circuit, where Clifford
gates transform Paulis to other Paulis, and non-Clifford gates typically convert a Pauli to a weighted sum of multiple Pauli
operators. We employ the low-weight Pauli propagation (LWPP) [ 14] to efficiently construct training sets for large-scale quantum
systems by limiting the number of Pauli terms at each circuit layer.
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FIG. S8. Extended data on classical simulation for acquiring training labels via low-weight Pauli propagation (LWPP). The MAE of
simulated values from LWPP is evaluated by comparing with exact values simulated using the gsimcirq library. a The MAE of LWPP with
varying limited number k&, with different qubit numbers n = 5, 10, 20, 25, averaged across all layer depths of the Hamiltonian evolution (HE)
circuit from 2 to 5. b The MAE of LWPP with varying layer depth and limited number k. All the data in the figure presents average results
with 95% confidence interval error bars.

Suppose the limited number is k£ < n, where n is the qubit number. Given any low-weight observable O = Z‘UP‘ <k APOP,

we denote |op| as the weight (i.e. the number of non-identity terms of op) of the n-qubit Pauli operator op. For j-th (j =
L,L —1,...,1) layer of the quantum circuit with L layers U = U,U,...Ur,, we compute the k-weight approximation of O;_;

the using the Heisenberg evolved observable U JT O;U;:

1
Oj_l = ﬂ Z TI'[UJJ-rOjUjO'p}O'p. (28)

lop|<k

We finally obtain the k-truncated observable 08C ) = UlT O,U; and compute the expectation value by fl(]k) (0) :Tr[Oéf )po]

where pg is the initial quantum state. The time complexity of LWPP is Ln@Uog(e™"5™h) o generate a outcome ff,k) (O) such
that

178 = fu(0)] < €|O] lpai 2 (29)
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with probability at least 1 — 4. Here fi;(O) is the exact value, and we have
101 |pauii2 = > ap- (30)
op

This demonstrates that achieving any small constant error and failure probability necessitates merely polynomial resources.
Typically, when polynomially small error and failure probability are required, the complexity grows quasi-polynomially.

We construct the training set by employing the HE circuits with layer depth ranging from 2 to 5, utilizing the observable
ol, for systems with n varying from 5 to 25. For each circuit instance, we perform simulations with the parameter k ranging
from 1 to 4. To evaluate the precision of LWPP, we use the gsimcirqg library [19] to simulate exact values and compare
them with LWPP results, thereby assessing LWPP’s performance and precision. Results are given in Fig. S8, where we explore
the performance of LWPP with different n,k and layer depth. As shown in Fig. S8 a, the MAE of the LWPP decreases very
rapidly as k increases. When k=4, the precision has already reached close to 10~* on average across all layer depths. This
indicates that LWPP is quite efficient in simulating shallow circuits and is not significantly affected by the increase in the qubit
numbers. However, as shown in sub-figure b, a limitation of LWPP is that the simulation precision decreases with increasing
layer depth. To improve the precision for large depths, it is necessary to increase the limited number &, which in turn increases
the computational overhead of the classical simulation. It is worth noting that for lower layer depths, the performance of LWPP
is particularly remarkable. When the layer depth is 2, LWPP with k > 2 can even achieve a precision of 10~7, which is highly
consistent with the mechanism of our NNAS model. This is because the recursive design of NNAS allows the training set to
contain only a small number of circuits with larger depths, yet still achieve good results on the test set, as demonstrated in the
main text.
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