

Supplementary Notes

Contents

4	1.	Genome sequencing and assembly	4
5	1.1.	Plant material	4
6	1.2.	Short-read sequencing.....	4
7	1.3.	Nanopore sequencing.....	4
8	1.4.	Hi-C library preparation and sequencing.....	5
9	1.5.	PacBio Iso-Seq.....	6
10	1.6.	Contigs assembly, polish and evaluation	7
11		Supplementary Table 3 Statistics of each of the three de novo assembled	
12		genomes	9
13	1.7.	Chromosome construction and validation	10
14	2.	Genome annotation	11
15	2.1.	Protein-coding gene annotation	11
16		Supplementary Table 4 Gene models predicted from different types of	
17		evidence	12
18	2.2.	Functional annotation of gene models	13
19		Supplementary Table 5 Annotated genes in each of the assembled genomes	
20		13
21	2.3.	Noncoding RNA prediction	13
22	2.4.	Repetitive element annotation.....	14
23	2.5.	Pseudogene annotation.....	14
24	3.	Subgenome assignment, validation and nomenclature.....	15
25	4.	Phylogenomics and comparative genomics analyses of cereal crops	17
26	4.1.	Phylogenetic tree construction and divergence time estimation	17
27		Supplementary Table 8 List of 43 species with high-quality reference	
28		genomes	18
29	4.2.	Gene family analysis.....	21

30	Supplementary Table 9 The number of expanded and contracted gene	
31	families for each subgenome identified by CAFÉ.....	22
32	Supplementary Table 10 GO term enrichment of <i>Avena</i> specific gene	
33	families.....	23
34	4.3. Karyotype evolution.....	24
35	Supplementary Table 11 Number of protogenes in rice, bread wheat and the	
36	three assembled <i>Avena</i> genomes.....	24
37	5. Origin of tetraploid and hexaploid species	25
38	5.1. Whole-genome sequencing-based analyses	25
39	Plant material	25
40	Whole-genome sequencing	25
41	Identity plots	25
42	Variant calling.....	25
43	Supplementary Table 12 Mapping rate and number of SNPs identified based	
44	on short paired-end reads using each of the SFS subgenome as the reference	
45	sequences.	26
46	Phylogenetic tree construction using SNPs	26
47	5.2. Transcriptome sequencing-based analyses	27
48	Plant growth and RNA isolation and sequencing	27
49	Transcript assembly and CDS prediction	27
50	Supplementary Table 13 Transcripts de novo assembled by Trinity and the	
51	total number of genes identified	28
52	Phylogenetic tree construction and divergence time estimation.....	28
53	5.3. Organelle-based analyses	28
54	Supplementary Table 14 Assembled chloroplast genomes and their features	
55	29
56	Supplementary Table 15 Chloroplast genomes of <i>Avena</i> species from public	
57	databases	30

58	5.4. Timing of allo-hexaploidy formation.....	31
59	Supplementary Table 16 Peaks of each <i>Ks</i> distribution of orthologues in the	
60	subgenomes of <i>A. insularis</i> and SFS.....	32
61	6. Subgenome evolution.....	34
62	6.1. Chromosome rearrangement.....	34
63	Synteny analysis.....	34
64	Fluorescence in situ hybridization (FISH).....	35
65	Ka/Ks analysis	35
66	6.2. Subgenome contents	38
67	Kmer distribution	38
68	Full-length LTR analyses.....	38
69	Gene loss and retention.....	38
70	6.3. Subgenome dominance	39
71	Plant materials and transcriptome sequencing	39
72	Quantification of gene expression levels	39
73	Identification of differentially expressed genes in stress-treated samples.....	40
74	Supplementary Table 17 Distribution of the DEGs identified on each	
75	chromosome of SFS under different stresses.....	40
76	Analysis of homoeologous gene expression.....	41
77	Supplementary Table 18 Dominant gene expression between the	
78	subgenomes in SFS	42
79	Relationship between gene expression and TE-density.....	42
80		
81		

82 **Supplementary Notes**

83 **1. Genome sequencing and assembly**

84 **1.1. Plant material**

85 The hulless hexaploid oat (*Avena sativa* L. ssp. *nuda*, 2n=6x=42, AACCD) landrace
86 cv. Sanfensan (abbreviated as SFS), the diploid species *A. longiglumis* (accession CN
87 58139, 2n=2x=14, AlAl) and the tetraploid species *A. insularis* (accession 108634,
88 2n=4x=28, CCDD) were chosen for whole-genome sequencing. Sanfensan is a
89 traditional hulless variety that has a long cultivation history in Shanxi, China, which
90 has been assumed to be the region of origin of hulless oat. *A. longiglumis* and *A.*
91 *insularis* have been assumed to be the extant diploid and tetraploid species most
92 closely related to hexaploid oat (**Supplementary Table 1**).

93 **1.2. Short-read sequencing**

94 High-quality genomic DNA was isolated from fresh leaf tissue using the Qiagen
95 DNeasy Plant Mini Kit. Two sequencing platforms, Illumina HiSeq Xten (Illumina,
96 USA) and MGISEQ2000 (BGI, China), were used for genome sequencing. Illumina
97 sequencing libraries were prepared using the TruSeq Nano DNA HT Sample
98 preparation kit (Illumina, USA) following the manufacturer's recommendations. MGI
99 libraries were constructed as follows. In brief, 1-1.5 μ g of genomic DNA was
100 randomly fragmented with a Covaris instrument. Then, fragments with sizes between
101 200-400 bp were selected using an Agencourt AMPure XP-Medium kit, followed by
102 end repair, 3' adenylated and adapter ligation. After PCR enrichment, the PCR
103 products were recovered using the AxyPrep Mag PCR clean-up Kit. The
104 double-stranded PCR products were heat denatured and circularized using the splint
105 oligo sequence. Single-strand circular DNA (ssCir DNA) was formatted as the final
106 library and qualified according to QC procedures. The qualified libraries were
107 sequenced on the Illumina HiSeq X-Ten or MGISEQ2000 platform at the Genome
108 Center of Grandomics (Wuhan, China) (**Supplementary Table 1**).

109 **1.3. Nanopore sequencing**

110 The Oxford Nanopore Technologies (ONT) system was used to sequence all three oat
111 genomes in this study. The ONT ultralong strategy was selected for the whole genome

sequencing of the hexaploid species SFS because of its large, complex genome. For this purpose, approximately 8-10 µg of gDNA was size-selected (>50 kb) with the SageHLS HMW library system (Sage Science, USA) and processed using the Ligation sequencing 1D kit (SQK-LSK109, Oxford Nanopore Technologies, UK) according to the manufacturer's instructions. For the diploid and tetraploid samples, ONT-Regular was used for genome sequencing. A total of 3-4 µg DNA per sample was used as input material for the ONT library preparation. After a sample was qualified, size-selection of long DNA fragments was performed using the PippinHT system (Sage Science, USA). The ends of DNA fragments were repaired and A-ligation reactions were conducted with a NEBNext Ultra II End Repair/dA-tailing Kit (Cat# E7546). The adapter provided in the SQK-LSK109 kit (Oxford Nanopore Technologies, UK) was used for the subsequent ligation reaction, and the DNA library was measured by a Qubit® 4.0 Fluorometer (Invitrogen, USA). DNA libraries with approximately 800 ng and 700 ng inserts were constructed for ONT ultralong and ONT-Regula sequencing, respectively, and were sequenced on the PromethION platform (Oxford Nanopore Technologies, UK) at the Genome Center of Grandomics (Wuhan, China).

Base calling was completed with the ONT basecaller Guppy (v3.2.2) with the following parameters: -c dna_r9.4.1_450bps_fast.cfg. Raw Nanopore reads were filtered, and only reads with a mean_qscore_template ≥ 7 were retained for downstream analyses. A total of 71, 8, and 7 libraries were sequenced for SFS, *A. longiglumis*, and *A. insularis*, generating 1,282.7 Gb, 268.74 Gb, and 481.39 Gb of raw data, respectively. The post-filtered Nanopore reads produced a total of 1,027.83 Gb, 218.67 Gb, and 374.77 Gb of sequencing data, providing approximately 100-, 60- and 60-fold coverage of the genomes, respectively. A summary of ONT read sizes, including the average read length and read N50 value is summarized in **Supplementary Table 2**.

139 1.4. Hi-C library preparation and sequencing

140 The Hi-C libraries were prepared as described previously ¹ with some modifications.
141 In brief, oat plants (*A. sativa* ssp. *nuda* cv. Sanfensan and *A. insularis*) were grown in
142 a growth chamber for two weeks. Samples of 2-4 g of tender leaves were harvested,
143 cut into pieces of ca. 2 cm², and transferred to a 50 ml tubes containing 15 ml of

144 ice-cold nuclear isolation buffer (NBE) with 2% formaldehyde, followed by vacuum
145 infiltration (400 mbar), and incubation with a supplemented crosslinking agent for 1 h.
146 Crosslinking was quenched by adding 2 M glycine to a final concentration of 0.125 M
147 with incubation for 5 min under vacuum, followed by fixation on ice. Then, the fixed
148 leaf pieces were washed three times with sterile Milli-Q water, ground in liquid
149 nitrogen and used for nucleus isolation. The isolated nuclei were purified, checked for
150 quality and quantity and digested with 100 units of *DpnII*. The next steps were
151 Hi-C-specific, including marking the DNA ends with biotin-14-dATP and performing
152 the blunt-end ligation of crosslinked fragments. After ligation, crosslinking was
153 reversed by overnight incubation with proteinase K at 65 °C. Biotin-14-dATP was
154 further removed from nonligated DNA ends using the exonuclease activity of T4
155 DNA polymerase. DNA was purified by phenol: chloroform (1:1) extraction,
156 precipitated and washed as described. The purified DNA was physically sheared to a
157 size of 300-600 bp by sonication and was size-fractionated using standard 2% agarose
158 gel electrophoresis to obtain fragments in the range of 300-600 bp. The fragmented
159 ends were blunt-end repaired, A-tailed, and subjected to Illumina PE sequencing
160 adapter addition, followed by purification through biotin-streptavidin-mediated
161 pulldown. PCR Amplification was conducted through 12-15 cycles of PCR to enrich
162 the ligation products. After the quality check, the Hi-C libraries were sequenced using
163 the Illumina HiSeq X-Ten instruments with 2 × 150 bp reads. A total of 1312.83 Gb
164 and 816.93 Gb of Hi-C raw data were generated for SFS and *A. insularis*, respectively
165 (**Supplementary Table 1**).

166 **1.5. PacBio Iso-Seq**

167 The three ONT-sequenced oat species were grown in the greenhouse or the field to
168 different growth stages, and the following seven types of samples were collected for
169 RNA isolation: two-week-old seedlings, flag leaves at the booting (Zodoks 45) and
170 heading (Zodoks 58) stages, and panicles at the booting (Zodoks 45), heading
171 (Zodoks 50 and 58) and grain dough (Zodoks 83) stages. The above seven types of
172 RNA samples were mixed in equal amounts and subjected to quality checks using
173 0.75% agarose gel electrophoresis, a Qubit fluorometer (Thermo Fisher) and an
174 Agilent 2100 BioAnalyzer. Full-length cDNA Iso-Seq template libraries were
175 prepared by following the protocol provided by Pacific Biosciences with some

176 modifications. For each sample, 500 ng of total RNA was employed for reverse
177 transcription using a SMARTer PCR cDNA Synthesis Kit (Clontech). Then
178 large-scale PCR was performed to amplify the cDNAs using KAPA HiFi PCR Kits.
179 To minimize artefacts during large-scale amplification, the number of cycles was
180 optimized and determined to be 14. After large-scale PCR, the resulting PCR products
181 were purified using 1× AMPure PB Beads, followed by additional purification with
182 0.4× AMPure PB Beads. The purified amplicons were fractionated, and fractions with
183 sizes between 0.5-6 k were harvested using the BluePippin™ Size Selection System
184 to generate SMRTbell™ libraries using the PacBio Template Prep Kit. The SMRTbell
185 templates were then sequenced on a PacBio Sequel II machine at the Genome Centre
186 of Grandomics (Wuhan, China). A total of 46,759,952, 26,389,556 and 13,550,480
187 reads covering 81.14 Gb, 49.94 Gb, and 25.74 Gb were generated for the hexaploid,
188 tetraploid and diploid species, respectively (**Supplementary Table 1**).

189 **1.6. Contigs assembly, polish and evaluation**

190 To provide guidance regarding genome assembly, the genome sizes of the three
191 *Avena* species were estimated by counting the 17-mer frequency among the clean
192 short reads with Jellyfish (v2.0)² software, which resulted in estimated genome sizes
193 of 10.98 Gb, 7.96 Gb and 4.04 Gb for SFS, *A. insularis* and *A. longiglumis*,
194 respectively (**Supplementary Table 3**).

195 De novo assembly was performed based on Nanopore long reads using the
196 NextDenovo (v2.0-beta.1) pipeline (<https://github.com/Nextomics/NextDenovo>).
197 Cleaned Nanopore reads were first self-corrected using the NextCorrect module with
198 the default settings, and the corrected reads were then assembled into contigs to obtain
199 the draft assembly using NextDenovo (parameters: reads_cutoff: 1k and seed_cutoff:
200 54 k for SFS, 25 k for *A. insularis* and *A. longiglumis*). The sizes, contig numbers and
201 contig N50 values of the draft assembled genomes are summarized in
202 **Supplementary Table 3**.

203 To obtain a high-quality genome assembly, the draft assemblies were further
204 improved by using short reads and corrected Nanopore long reads. For this purpose,
205 raw Illumina or MGI reads were processed with Trimmomatic (v.0.40)³ to remove
206 adapter sequences, low-quality reads, and short reads (reads with lengths of less than
207 70 bp). This produced 649.7 Gb, 451.9 Gb, and 204.7 Gb clean reads for SFS, *A.*

208 *insularis* and *A. longiglumis*, respectively, achieving ~50-fold coverage of their
209 genomes. Two steps were included to improve the draft genome assemblies: first,
210 using minimap2 (v2.18)⁴ (parameters: -x map-ont) and Racon (v1.4.21)⁵ (default
211 settings), the corrected Nanopore reads were aligned to the draft assembly for
212 correction; second, the filtered short reads were employed to polish the draft
213 assemblies using NextPolish. After three rounds of Racon polishing and four rounds
214 of NextPolish polishing, the corrected genomes of SFS, *A. insularis* and *A.*
215 *longiglumis* had sizes of 10,759,349,041 bp, 7,520,994,703 bp and 3,738,867,912 bp,
216 respectively, which accounted for 97.98%, 94.49% and 92.54% of the genome sizes
217 estimated from K-mer analysis (**Supplementary Table 3**).

218 **Supplementary Table 3 | Statistics of each of the three de novo assembled**
 219 **genomes**

	Stat type	Preliminary assembly		Polished genome	
		Contig length (bp)	Contig number	Contig length (bp)	Contig number
<i>A. longiglumis</i>	N50	6,994,235	160	7,297,603	160
	N60	5,694,560	218	5,940,850	218
	N70	4,402,736	290	4,594,691	290
	N80	3,215,601	386	3,358,481	386
	N90	2,004,128	524	2,088,414	524
	Longest	27,786,782	1	29,014,927	1
	Total	3,586,284,815	960	3,738,867,912	960
	Length \geq 1 kb	3,586,284,815	960	3,738,867,912	960
	Length \geq 2 kb	3,586,284,815	960	3,738,867,912	960
	Length \geq 5 kb	3,586,284,815	960	3,738,867,912	960
	Estimated genome size			4,040,471,759	
<i>A. insularis</i>	N50	7,506,894	297	7,836,599	297
	N60	5,836,206	406	6,085,207	406
	N70	4,506,187	548	4,689,328	548
	N80	3,306,342	734	3,435,674	734
	N90	2,039,556	1,004	2,124,822	1,004
	Longest	35,041,226	1	36,557,065	1
	Total	7,213,697,221	1,932	7,520,994,703	1,932
	Length \geq 1 kb	7,213,697,221	1,932	7,520,994,703	1,932
	Length \geq 2 kb	7,213,697,221	1,932	7,520,994,703	1,932
	Length \geq 5 kb	7,213,697,221	1,932	7,520,994,703	1,932
	Estimated genome size			7,959,398,247	
SFS	N50	91,712,002	34	93,262,735	34
	N60	74,100,035	47	75,353,051	47
	N70	59,130,319	63	60,156,522	63
	N80	43,002,173	84	43,730,326	84
	N90	20,584,744	119	20,933,943	119
	Longest	398,393,187	1	405,550,188	1
	Total	10,575,387,261	329	10,759,349,041	329
	Length \geq 1 kb	10,575,387,261	329	10,759,349,041	329
	Length \geq 2 kb	10,575,387,261	329	10,759,349,041	329
	Length \geq 5 kb	10,575,387,261	329	10,759,349,041	329
	Estimated genome size			10,981,026,862	

220 **1.7. Chromosome construction and validation**

221 The genome assembly of the diploid species *A. longiglumis* was anchored and
222 arranged into seven pseudomolecules with RaGOO⁶ using the previously published
223 reference genome of the *Avena* A genome diploid *A. atlantica*⁷ as the reference. For
224 the tetraploid and hexaploid assemblies, contig anchoring and orientation were
225 performed with the aid of Hi-C data (**Extended Data Fig. 1**). For this purpose, the
226 raw reads from the Hi-C libraries were filtered using fastp⁸ with the default settings,
227 resulting in a total of 803,368,743,610 bp and 1,296,125,167,024 bp of clean data.
228 Then the clean Hi-C reads were aligned to the assemblies by using Bowtie2 (v.2.3.2)⁹
229 with the end-to-end model (parameters: -very-sensitive -L 30), which resulted in
230 45.43% and 48.37% uniquely mapped paired-end reads out of the total ~2,691 million
231 and ~4,221 million read pairs of clean reads for *A. insularis* and SFS, respectively.
232 After considering the map position and orientation of these unique reads, ~870 and
233 ~1,372 million read pairs were retained as valid interaction pairs for *A. insularis* and
234 SFS, which represented 71.16% and 67.24% of the uniquely mapped reads and 32.33%
235 and 32.52% of the clean reads, respectively. Second, LACHESIS¹⁰ software was used
236 to cluster, order and orient the contigs into chromosome-length pseudomolecules on
237 the basis of the validated Hi-C dataset with the following parameters: CLUSTER
238 MIN RE SITES=100; CLUSTER MAX LINK DENSITY=2.5; CLUSTER
239 NONINFORMATIVE RATIO=1.4; ORDER MIN N RES IN TRUNK=60; ORDER
240 MIN N RES IN SHREDS=60. After LACHESIS scaffolding, the final SFS
241 assemblies contained 21 pseudomolecules with a total length of 10,438,597,837 bp,
242 accounting for 97.02% of total assembly length, leaving 320,751,204 bp unanchored,
243 whereas the *A. insularis* assemblies contained 14 pseudomolecules with a total length
244 of 7,154,017,286 bp, accounting for 95.12% of the total assembly length. To evaluate
245 the consistency of the Hi-C maps and the consensus genetic maps generated by
246 Bekele *et al.*¹¹, we aligned the marker sequences from the consensus genetic maps
247 against chromosomes in our SFS assemblies using BLASTN and then summarized the
248 number of best hits (**Extended Data Fig. 2a**). The completeness of the assembly was
249 evaluated using BUSCO (v3.1.0) program¹². The results showed that 1344 (97.75%),
250 1349 (98.11%) and 1341 (97.53%) BUSCO genes were identified in the SFS, *A.*
251 *insularis* and *A. longiglumis* assemblies, respectively (**Extended Data Fig. 2b**).

252 2. Genome annotation

253 2.1. Protein-coding gene annotation

254 Protein-coding genes were predicted using an evidence-based annotation workflow by
255 integrating different sources of evidence.

256 Transcriptome-based evidence was generated with the following methods. First,
257 full-length transcripts from Iso-Seq were used to produce high-quality opening
258 reading frame (ORF) predictions. For this purpose, raw Iso-Seq sequencing data were
259 first processed with the IsoSeq3 pipeline in SMRT Link (v8.0). Briefly, the “ccs”
260 command (–min-passes 1 –min-rq 0.8) was used to generate consensus sequences
261 (CCSs), which resulted in 1,163,006 (2,476,793,041 bp), 726,902 (1,613,862,251 bp),
262 and 374,567 CCSs (825,983,822 bp) for SFS, *A. insularis* and *A. longiglumis*,
263 respectively. Then, LIMA and REFINE were used to identify the full-length,
264 nonchimeric CCSs with the subsequent step of primer and poly-A tail sequence
265 removal. These sequences were then clustered using an iterative clustering and error
266 correction (ICE) algorithm to obtain unpolished consensus isoforms, which were
267 subsequently polished by using the non-full-length reads and raw bam files with
268 quiver parameters, resulting in a total of 1,150,752, 708,107 and 371,269 high-quality
269 CCSs for SFS, *A. insularis* and *A. longiglumis*. The resulting high-quality CCSs were
270 mapped to the reference genome using minimap2⁴ software with the default settings;
271 then, “fusion_finder.py” and “collapse_isoforms_by.sam.py” implemented in
272 cDNA_Cupcake (v24.3.0) software (https://github.com/Magdolla/cDNA_Cupcake)
273 were sequentially used to filter out fusion genes and redundant sequences, which
274 resulted in the retention of a total of 53,812, 36,397, and 17,961 nonredundant
275 isoforms for SFS, *A. insularis* and *A. longiglumis*, respectively. Finally, the
276 nonredundant full-length transcripts were mapped to the reference genome assemblies
277 using GMAP¹³ with the default settings and the resulting BAM files were used as the
278 input for GeneMarkS-T¹⁴ to determine the locations of potential intron-exon
279 boundaries.

280 Second, a set of homologous proteins from other closely related species was
281 employed as homology evidence using GeMoMa (v1.6.1)¹⁵. These species include
282 *Avena atlantica*, *Avena eriantha*, *Brachypodium distachyon*, *Hordeum vulgare*, *Oryza*

283 *sativa* and *Triticum aestivum*.

284 *De novo* gene predictions were generated using AUGUSTUS (v2.4)¹⁶. For this
285 purpose, an oat-specific AUGUSTUS gene model was trained using GeneMark-ET
286 (v4.0)¹⁷ with the following parameters: -max_intron max_intron -soft_mask
287 soft_length -pbs -sequence=genome -ET=introns.gff. GeneMark-ET uses Iso-Seq
288 evidence as training data and performs two rounds of iterative gene predictions to
289 train model parameters. The 2000 gene models with the highest scores were used as
290 training data for AUGUSTUS. The resulting gene models were employed to predict
291 the coding genes using AUGUSTUS
292 (-gff3=on-hintsfile=hints.gff-extrinsicCfgFile=extrinsic.cfg-allow_hinted_splicesites=
293 gcag, atac-min_intron_len=30-softmasking=1).

294 Finally, all gene predictions were integrated into a final gene annotation set using
295 EVidenceModeler (v1.1.1)¹⁸ (parameters: -segmentSize 1000000 -overlapSize
296 100000) after removing transposable element-related genes, pseudogenes and
297 noncoding genes by using TransposonPSI¹⁹ with the default settings. The results of
298 the annotation process are summarized in **Supplementary Table 4**.

299 **Supplementary Table 4 | Gene models predicted from different types of evidence**

Genome	Gene set	#Genes	Average	Average	Average	Average
			gene	CDS	exons	exon
			length(bp)	length(bp)	number	length
<i>A. longiglumis</i>	De novo	44656	3261.7	1126.51	4.35	258.77
	Homology	114562	2623.65	827.48	2.6	318.23
	RNA-seq	21150	3644.39	1373.62	5.35	256.54
	Final set	43477	3514.61	1163.98	4.34	268.32
<i>A. insularis</i>	De novo	106462	3164.93	1188.89	4.29	276.95
	Homology	170476	6893.24	882.38	3.01	292.86
	RNA-seq	33669	4140.16	1619.69	7.2	224.85
	Final set	89995	3218.01	1195.01	4.48	266.5
SFS	De novo	130178	2787.59	1106.14	4.06	272.57
	Homology	92429	3526.35	1239.09	4.36	284.1
	RNA-seq	35769	3680.68	1499.6	5.97	251.25
	Final set	120769	2940.27	1136.65	4.28	265.53

300

301 **2.2. Functional annotation of gene models**

302 Functional assignments for the predicted protein-coding genes was performed with
303 BLAST by aligning the coding regions to sequences in public protein databases,
304 including the NCBI nonredundant (NR) protein, Kyoto Encyclopedia of Genes and
305 Genomes (KEGG), Eukaryotic Orthologous Groups of proteins (KOG), Gene
306 Ontology (GO) and SwissProt databases. The putative domains and GO terms of the
307 predicted genes were identified using InterProScan
308 (<https://github.com/ebi-pf-team/interproscan>) with the default settings. A total of
309 103,773, 81,027 and 40,216 genes were functionally annotated for SFS, *A. insularis*
310 and *A. longiglumis*, respectively, comprising 88.41%, 90.04% and 92.50% of the
311 predicted gene models of each genome assembly (**Supplementary Table 5**).

312 **Supplementary Table 5 | Annotated genes in each of the assembled genomes**

Sources	Genome assemblies					
	SFS		<i>A. insularis</i>		<i>A. longiglumis</i>	
	Number	Percent (%)	Number	Percent (%)	Number	Percent (%)
SwissProt	78,653	65.13	52,614	58.46	28,811	66.27
KEGG	34,790	28.81	23,422	26.03	12,222	28.11
KOG	52,307	43.31	35,987	39.99	19,612	45.11
GO	63,458	52.54	42,028	46.7	23,268	53.52
NR	106,050	87.81	80,568	89.52	39,980	91.96
Annotated genes	106,773	88.41	81,027	90.04	40,216	92.5
Total gene models	120,769		89,995		43,477	

313 **2.3. Noncoding RNA prediction**

314 Noncoding RNAs (ncRNAs), including microRNAs, small nuclear RNAs, rRNAs and
315 regulatory elements, were identified using the Infernal (v1.1.2)²⁰ program to search
316 against the Rfam database²¹. RNAmmer (v1.2)²² (parameters: -S euk -m lsu,ssu,tsu –
317 gff) was additionally used to predict rRNAs in more detailed subclasses. Transfer
318 RNAs (tRNAs) were predicted using tRNAscan-SE (v2.0)²³ with eukaryotic
319 parameters. miRNAs were predicted using miRanda (v3.0) (<http://www.microrna.org>).
320 A total of 59,916, 40,282 and 15,706 ncRNAs were identified in SFS, *A. insularis* and
321 *A. longiglumis*, respectively. The details of these ncRNAs are given in
322 **supplementary Table 6**.

323 **2.4. Repetitive element annotation**

324 Tandem repeats (TRs) in the genome assemblies were identified using GMATA v2.2
325²⁴ and Tandem Repeats Finder (v4.07b)²⁵ with the following parameters: 2 7 7 80 10
326 50 500 -f -d -h -r.

327 Species-specific de novo repeat libraries were constructed with the following steps.
328 First, MITE-Hunter²⁶ software (parameters: -n 20 -P 0.2 -c 3) was used to identify
329 miniature inverted TEs (MITEs). Then, LTR_FINDER (v1.05)²⁷ and LTR_harvest
330 (v1.5.10)²⁸ were used for long terminal repeat (LTR) identification, and the results
331 were processed with LTR_retriever (v2.8)²⁹ to generate an LTR library. Third, the
332 TR soft-masked reference genome assemblies were hard-masked with both MITE and
333 LTR libraries by using RepeatMasker (v1.331)³⁰ with the following parameters:
334 nolow -no_is -gff -norna -engine abblast -lib lib, and other de novo repetitive
335 elements were identified with RepeatModeler (v1.0.11) (parameters: -engine wublast)
336 (<https://github.com/Dfam-consortium/RepeatModeler>) and classified using TEclass³¹
337 (default parameters). Finally, the libraries obtained from MITE, LTR and
338 RepeatModeler were merged to generate the species-specific de novo repeat library,
339 which was used along with the repetitive elements in Repbase (v19.06)³² to annotate
340 the genomes with RepeatMasker. The results of repetitive element annotation are
341 summarized in **Supplementary Table 7**. The distribution of TEs along each
342 chromosome is visualized in **Fig. 1**.

343 **2.5. Pseudogene annotation**

344 The pseudogenes in each species were identified using Pseudopipe³³. Each of these
345 pseudogenes was then aligned to the parent gene using MACSE (v2)³⁴ and only
346 genes with a frameshift or nonsense mutation were considered as the candidate
347 pseudogenes. The total number of pseudogenes in each assembled genome is given in
348 **Table 1**, and their distributions on the chromosomes are visualized in **Extended Data**
349 **Fig. 9d**.

350

351

352 **3. Subgenome assignment, validation and nomenclature**

353 A reference-guided strategy based on subgenome homeology was used to distinguish
354 the subgenomes of *A. insularis* and SFS. For the subgenome assignments of SFS, we
355 first divided the sequenced *A. longiglumis* genome into 100 bp chunks (referred to as
356 markers), which were subsequently aligned to the SFS reference genome using BWA
357³⁵ with default settings. Uniquely mapped markers were retained (**Extended Data Fig.**
358 **3a**). A syntenic block was generated when more than five markers were consecutively
359 distributed in a syntenic manner (distance between every two adjacent markers of less
360 than 200 kb). This successfully split the 21 chromosomes of SFS into three
361 homoeologous groups (**Extended Data Fig. 3c**). The group showing the highest
362 synteny to *A. longiglumis* was assigned as the A subgenome, the group with moderate
363 synteny to *A. longiglumis* was assigned as the D subgenome, and the remaining group
364 was assigned as the C subgenome according to previous studies which have reporting
365 high homology between the A and D subgenomes but a relatively low homology
366 between the A and C subgenomes^{36,37}. Similarly, the genome sequences of *A.*
367 *insularis* were divided into 100 bp markers and then aligned to the SFS reference
368 genome. The 14 chromosomes were split into two groups, which showed high synteny
369 with the C or D chromosomes of SFS and were hence assigned as the C and D
370 subgenomes, respectively (**Extended Data Fig. 3b, d**).

371 To validate the correction of the subgenome assignments, two independent
372 approaches were used. First, trimmed short reads from *A. longiglumis* and *A. insularis*
373 were individually mapped to the SFS reference genome using the default settings of
374 BWA³⁵. The median depth coverage of the sliding windows (window size: 1 Mb, step
375 size: 0.5 Mb) for *A. longiglumis* or *A. insularis* was calculated using the Mosdepth
376 (v0.3.0)³⁸ program. The results showed that a much higher mapping depth was
377 achieved for the hexaploid A subgenome chromosomes than for the chromosomes of
378 the other two subgenomes after mapping the *A. longiglumis* reads to the SFS genome,
379 while the chromosomes assigned to the C and D subgenomes showed higher mapping
380 depths than the A subgenome chromosomes after mapping the *A. insularis* reads to
381 the reference genome (**Extended Data Fig. 3e, f**). All of these analyses resulted in
382 consistent subgenome assignments for *A. insularis* and SFS. Second, the abundances
383 and distributions of two types of satellite repeats, As120a and Am1, in all three

384 assembled genomes were investigated by BLASTN analyses. As120a and Am1 are
385 DNA repeats that selectively hybridize to the hexaploid A and C subgenome
386 chromosomes, respectively. The results showed that these two types of repeats were
387 overrepresented on seven pseudochromosomes assigned to the A and C subgenomes
388 in *A. insularis* and SFS, whereas the abundance of these repeats on the D subgenome
389 chromosomes was much lower, providing additional strong evidence of the correct
390 subgenome assignments (**Fig. 1**).

391 The nomenclature system for wheat chromosomes was adopted for naming the
392 homologous groups (1-7) of SFS. For this purpose, whole-genome protein sequences
393 and gene positions from bread wheat (IWGSC RefSeq v2.1) were retrieved from the
394 GrainGenes database

395 (https://urgi.versailles.inrae.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.1/). If
396 a gene had more than one transcript, only the longest transcript was retained as the
397 representative sequence. The synteny between the bread wheat and SFS was analysed
398 using the MCScanX program with the default settings. The numbers of conserved
399 genes on every pair of chromosomes between SFS and bread wheat are given in
400 **Extended Data Fig. 4a**. The degree of synteny between the wheat genome and the
401 reference SFS genome is displayed in **Extended Data Fig. 4b**.

402

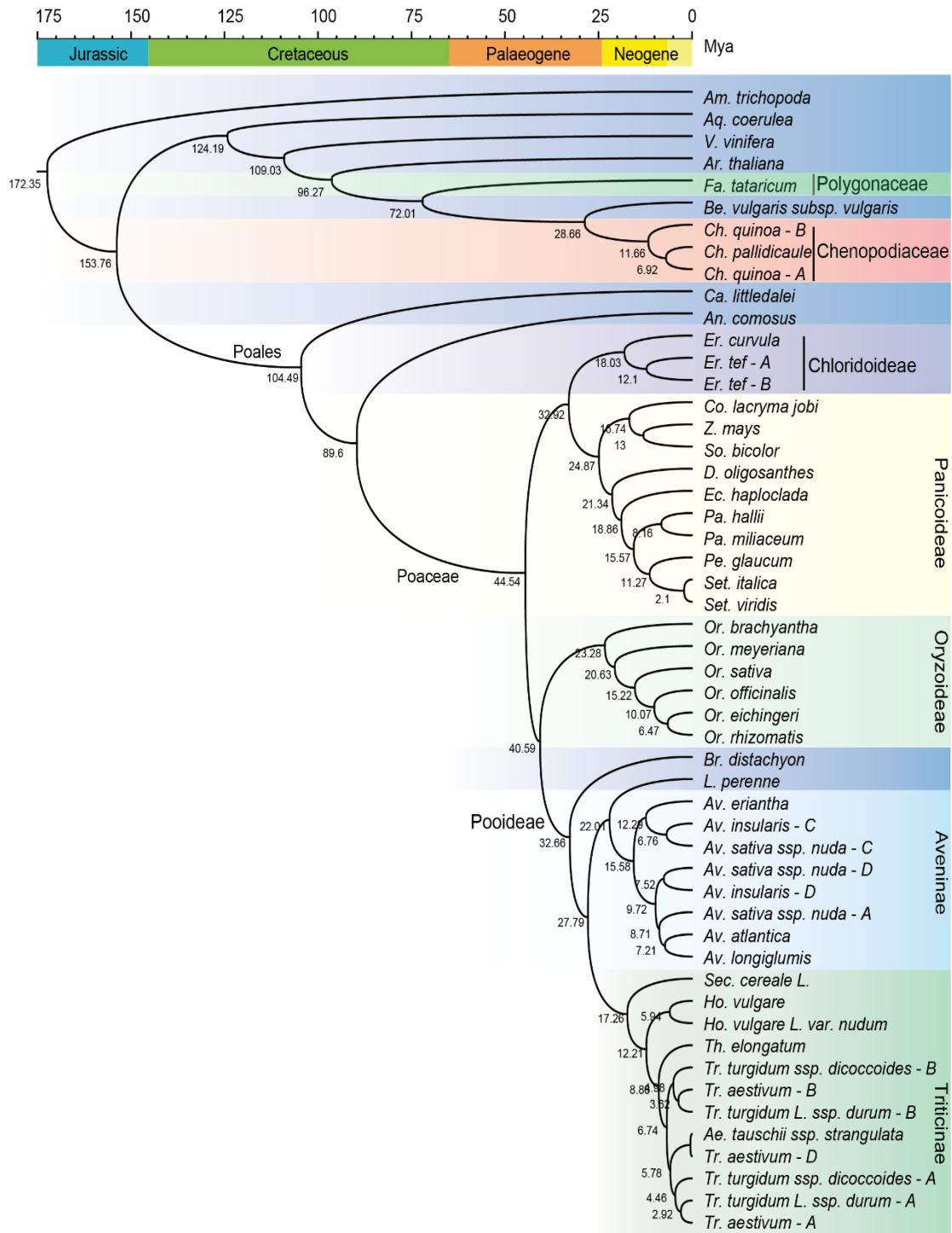
403 4. Phylogenomics and comparative genomics analyses of cereal crops

404 4.1. Phylogenetic tree construction and divergence time estimation

405 Protein sequences of 43 plant species were downloaded from NCBI, JGI and the
406 official website (**Supplementary Table 8**). Only the longest transcript was selected
407 for each gene locus with alternative splicing variants. Additionally, genes encoding
408 proteins with fewer than 50 amino acids were removed.

409 Each proteome was subjected to BLAST searches against *Amborella trichopoda*
410 sequences according to an E-value $\leq 1e^{-5}$. Reciprocal best hits (RBHs) in each pair
411 were obtained and the gene families conserved in all the 43 species (52 subgenomes)
412 were retained. The protein sequences from each family were aligned using MUSCLE
413 (v3.8.31)³⁹ with the default parameters, and the corresponding CDS alignments were
414 back translated from the corresponding protein alignments. The conserved CDS
415 alignments were extracted by Gblocks (v0.9b)⁴⁰, and the retained CDS alignments of
416 each family were used for further phylogenomic analyses.

417 For phylogenetic tree construction, the CDS alignments of each single-copy family
418 were concatenated to generate a supermatrix of 652,068 unambiguously aligned
419 nucleotide positions. Then, 99,3154 DTV sites were extracted from these supergenes
420 and subject to RAxML (v8.2.7) analysis⁴¹ to generate a maximum likelihood tree
421 with the GTR+I+Γ model.


Supplementary Table 8 | List of 43 species with high-quality reference genomes

Species	Abbreviation*	Accession	Level	ID	Database
<i>Aegilops tauschii</i> ssp. <i>strangulata</i>	Atau	AL8/78	Chromosome	ATGSP	official
<i>Amborella trichopoda</i>	Atri	-	scaffold	-	NCBI
<i>Ananas comosus</i>	Acom	F153	Chromosome	GCF_001540865.1	NCBI
<i>Aquilegia coerulea</i>	Acoe	-	scaffold	-	JGI
<i>Arabidopsis thaliana</i>	Atha	-	Chromosome	TAIR10	official
<i>Avena atlantica</i>	Aatl	CC7277	Chromosome	CoGe_53337_v1.0	official
<i>Avena eriantha</i>	Aeri	CN19238	Chromosome	CoGe_53381_v1.0	official
<i>Avena insularis</i>	Ains				This
<i>Avena longiglumis</i>	Alon				This
<i>Avena sativa</i> ssp. <i>nuda</i>	Asat				This
<i>Beta vulgaris</i> ssp. <i>vulgaris</i>	Bvul	-	Chromosome	-	NCBI
<i>Brachypodium</i> <i>distachyon</i>	Bdis	Bd21	Chromosome	GCF_000005505.3	NCBI
<i>Carex littledalei</i>	Clit	-	Chromosome	GCA_011114355.1	NCBI
<i>Chenopodium</i> <i>pallidicaule</i>	Cpal	-	scaffold	-	official
<i>Chenopodium quinoa</i>	Cqui	-	Chromosome	Cq_PI614886_genome_V1	official
<i>Coix lachryma-jobi</i>	Clac	-	Chromosome	Adlay_V1	official
<i>Dichanthelium</i> <i>oligosanthes</i>	Doli	Kellogg 1175	Scaffold	GCA_001633215.2	NCBI
<i>Echinochloa</i> <i>haploclada</i>	Ehap	-	Chromosome	-	official
<i>Eragrostis curvula</i>	Ecur	Victoria	Chromosome	GCA_007726485.1	NCBI
<i>Eragrostis tef</i>	Etef	-	Chromosome	-	official
<i>Fagopyrum tataricum</i>	Ftat	-	Chromosome	-	official
<i>Hordeum vulgare</i>	Hvul	Morex	Chromosome	V2	official
<i>Hordeum vulgare</i> var. <i>nudum</i>	Hnud	Lasa Goumang	Scaffold	-	official
<i>Lolium perenne</i>	Lper	-	scaffold	-	official
<i>Oryza brachyantha</i>	Obra	-	Chromosome	GCF_000231095.1	NCBI
<i>Oryza eichingeri</i>	Oeic	-	scaffold	-	official
<i>Oryza meyeriana</i> var. <i>granulata</i>	Omey	Menghai	Chromosome	GCA_005223365.2	NCBI

<i>Oryza officinalis</i>	Ooff	-	Chromosome	-	official
<i>Oryza rhizomatis</i>	Orhi	-	scaffold	-	official
<i>Oryza sativa Indica</i>	Osat	-	Chromosome	-	official
Shuhui498					
<i>Panicum hallii</i>	Phal	FIL2	Chromosome	GCF_002211085.1	NCBI
<i>Panicum miliaceum</i>	Pmil	-	Chromosome	-	official
<i>Pennisetum glaucum</i>	Pbla	-	Chromosome	-	official
<i>Secale cereale</i>	Scer	Lo7	scaffold	Secale_cereale_Lo7_v2	official
<i>Setaria italica</i>	Sita	Yugu1	Chromosome	GCF_000263155.2	NCBI
<i>Setaria viridis</i>	Svir	A10	Chromosome	GCF_005286985.1	NCBI
<i>Sorghum bicolor</i>	Sbic	BTx623	Chromosome	GCF_000003195.3	NCBI
<i>Thinopyrum elongatum</i>	Telo	-	Chromosome	-	official
<i>Triticum aestivum</i>	Taes	Chinese_Spring	Chromosome	IWGSC_WGA_v1.0	official
<i>Triticum turgidum</i> ssp. <i>durum</i>	Tdur	Svevo	Chromosome	v1	official
<i>Triticum turgidum</i> ssp. <i>dicoccoides</i>	Tdic	Zavitan	Chromosome	151210_zavitan_v2	official
<i>Vitis vinifera</i>	Vvin	-	Chromosome	IGGP_12x	official
<i>Zea mays</i>	Zmay	B73	Chromosome	GCF_000005005.2	NCBI

423 * The first character of the genus name and the first three characters of the species
 424 name or the subspecies/variety name were concatenated to represent the species.

425
 426 Considering that evolutionary rates are varied at different codon positions, the three
 427 codon positions of a concatenated supergene were treated as three different partitions.
 428 Divergence times were estimated under a relaxed clock model using the MCMCTree
 429 program in the PAML4.7 package ⁴². The “Independent rates model (clock=2)” and
 430 “JC69” model in MCMCTree program were used. The MCMC process was run for
 431 6,000,000 iterations after a burn-in of 2,000,000 iterations. We ran the program twice
 432 for each data type to confirm that the results were similar between runs. The
 433 chronogram was produced using FigTree (v1.4.0) (<http://tree.bio.ed.ac.uk/>) with the
 434 first run (**Fig. 2a, Supplementary Fig. 1**).

435

436 **Supplementary Figure 1 | Phylogeny and time scale of 43 plant species, including 33 assembled cereal crops. The number on each branch represents the divergence time.**

437

438

439 **4.2. Gene family analysis**

440 The pairwise sequence similarities between all input protein sequences were
441 calculated using BLASTP⁴³ according to an E-value cut-off of 1e-05 followed by the
442 removal of low-quality hits (identity <30% and coverage <30%). Orthologous groups
443 were constructed by OrthoFinder2 (v2.2.7)⁴⁴ using the default settings based on the
444 filtered BLASTP results. The results showed that 2,202 clusters contained sequences
445 from all 43 species (52 subgenomes). An overview of the cluster structure is shown in
446 Fig. 2b. Expanded and contracted gene families for each subgenome were identified
447 by comparing the cluster size differences between the ancestor and each species by
448 using CAFÉ (v5)⁴⁵. A random birth-and-death model was employed to evaluate
449 changes in gene families along each lineage of the phylogenetic tree. A
450 probabilistic graphical model (PGM) was used to calculate the probability of
451 transitions in each gene family from parent to child nodes in the phylogeny. Using
452 conditional likelihoods as the test statistics, we calculated the corresponding P-values
453 of each lineage, and a P-value<0.05 was used as the cutoff to determining the
454 significance of family size change (**Supplementary Table 9**).

455 The genes that were exclusively found in *Avena* species (>60%) were defined as
456 *Avena* specific. Significantly overrepresented GO terms in each group were identified
457 using the topGO package in the R programming language (<https://www.r-project.org/>).
458 The significantly overrepresented GO terms were identified with an adjusted P-value
459 of 0.05 or below. (**Supplementary Table 10**).

460 **Supplementary Table 9 | The number of expanded and contracted gene families**
 461 **for each subgenome identified by CAFÉ.**

Species*	Expanded	Contracted	Species	Expanded	Contracted
Atri	862	2,544	Osat	767	834
Acoe	2,023	1,861	Ooff	505	919
Vvin	1,693	1,834	Oeic	424	378
Atha	2,606	1,226	Orhi	699	375
Ftat	3,319	911	Bdis	618	1,090
Bvul	676	596	Lper	643	2,920
CquiB	799	1,367	Aeri	1,124	473
Cpal	321	637	AinsC	1,065	632
CquiA	805	854	AsatC	444	2,405
Clit	1,667	2,938	AsatD	648	1,029
Acom	1,536	1,717	AinsD	860	1,178
Ecur	4,048	1,006	AsatA	1,096	1,599
EtefA	449	666	Aatl	823	596
EtefB	405	729	Alon	721	590
Clacr	1,847	1,293	Scer	561	4,632
Zmay	3,381	667	Hvul	550	437
Sbic	451	960	Hnud	925	1,642
Doli	554	2,858	Telo	1,825	346
Ehap	1,326	1,403	TdicB	334	4,108
Phal	92	1,199	TaesB	748	479
Pmil	8,639	166	TdurB	371	1,187
Pgla	992	1,395	Atau	756	809
Sita	283	362	TaesD	565	662
Svir	277	255	TdicA	298	4,173
Obra	350	1,423	TdurA	326	1,270
Omey	971	1,114	TaesA	746	449

462 * The uppercase letter after the abbreviation for a polyploid species indicates the subgenome.

463 **Supplementary Table 10 | GO term enrichment of *Avena* specific gene families**

GO	Class	#total annotated	#group specific	P value	Term
GO: 0004842	MF	628	33	1.50E-18	ubiquitin-protein transferase activity
GO: 0008270	MF	3,957	72	5.80E-13	zinc ion binding
GO: 0004657	MF	9	6	1.10E-11	proline dehydrogenase activity
GO: 0004869	MF	116	9	1.90E-07	cysteine-type endopeptidase inhibitor activity
GO: 0042393	MF	117	9	2.10E-07	histone binding
GO: 0004222	MF	202	11	3.20E-07	metalloendopeptidase activity
GO: 0003984	MF	25	5	9.10E-07	acetolactate synthase activity
GO: 0008970	MF	34	5	4.50E-06	phospholipase A1 activity
GO: 0050664	MF	38	5	8.00E-06	oxidoreductase activity, acting on NAD(P)H, oxygen as acceptor
GO: 0030410	MF	29	4	5.60E-05	nicotianamine synthase activity
GO: 0005515	MF	17,916	169	6.30E-05	protein binding
GO: 0003700	MF	2,229	30	0.0014	DNA-binding transcription factor activity
GO: 0004713	MF	75	4	0.0022	protein tyrosine kinase activity
GO: 0004601	MF	702	12	0.0057	peroxidase activity
GO: 0016747	MF	1,298	18	0.0072	transferase activity, transferring acyl groups other than amino-acyl groups
GO: 0008233	MF	2,660	20	0.0135	peptidase activity
GO: 0017025	MF	42	2	0.0372	TBP-class protein binding
GO: 0016567	BP	614	33	9.50E-20	protein ubiquitination
GO: 0006562	BP	9	6	8.40E-12	proline catabolic process
GO: 0006511	BP	536	17	2.40E-07	ubiquitin-dependent protein catabolic process
GO: 0007275	BP	423	15	3.10E-07	multicellular organism development
GO: 0009082	BP	52	5	3.00E-05	branched-chain amino acid biosynthetic process
GO: 0030418	BP	29	4	4.60E-05	nicotianamine biosynthetic process
GO: 0006886	BP	548	12	0.00048	intracellular protein transport
GO: 0006633	BP	479	10	0.00197	fatty acid biosynthetic process
GO: 0006367	BP	52	3	0.0056	transcription initiation from RNA polymerase II promoter
GO: 0016192	BP	601	10	0.00943	vesicle-mediated transport
GO: 0005992	BP	74	3	0.0147	trehalose biosynthetic process

GO: 0008152	BP	29661	223	0.02089	metabolic process
GO: 0000160	BP	236	5	0.02443	phosphorelay signal transduction system
GO: 0006352	BP	172	6	0.04946	DNA-templated transcription, initiation
GO: 0030117	CC	154	10	2.40E-09	membrane coat
GO: 0005672	CC	23	3	0.00017	transcription factor TFIIA complex
GO: 0005741	CC	52	3	0.00189	mitochondrial outer membrane
GO: 0005634	CC	2722	22	0.00274	nucleus
GO: 0005852	CC	61	3	0.00299	eukaryotic translation initiation factor 3 complex
GO: 0005840	CC	906	10	0.00964	ribosome

464

465 **4.3. Karyotype evolution**

466 The AGK (Ancestral Grass Karyotype) genome, which includes 7 protochromosomes
 467 and 7,010 ordered protogenes, was downloaded ⁴⁶, and the protein sequences of rice,
 468 bread wheat, and four *Avena* species (*A. eriantha*, *A. longiglumis*, *A. insularis* and
 469 SFS) were aligned with the AGK protogenes. Syntenic blocks that were defined based
 470 on the presence of at least five syntenic gene pairs were identified using the
 471 MCSanX ⁴⁷ package with the default settings. These syntenic blocks were then used
 472 to deduce the homologous relationships between the AGK marker genes and the
 473 protein sequences of *Avena* and the related cereal crop species (**Supplementary**
 474 **Table 11**).

475 **Supplementary Table 11 | Number of protogenes in rice, bread wheat and the**
 476 **three assembled *Avena* genomes**

Species	AGK genes	Orthologues	# Syntenic blocks
Aeri	5,463	6,563	234
Ains	5,651	12,577	546
Alon	5,269	6,410	297
Asat	5,669	19,112	732
Osat	5,849	7,386	199
Taes	5,473	17,894	814

477

478 **5. Origin of tetraploid and hexaploid species**

479 **5.1. Whole-genome sequencing-based analyses**

480 **Plant material**

481 To clarify the evolutionary history of hexaploid oat, 14 *Avena* accessions,
482 representing all extant diploid and tetraploid genomes were chosen for whole-genome
483 sequencing. These included As, Al, Ad, Ac, Cv and Cp genome diploids, AB and CD
484 genome tetraploids and ACD genome hexaploid species. Detailed information on
485 these species, including their genome constitutions, accession numbers, and
486 geographical origins, is listed in **Supplementary Table 1**.

487 **Whole-genome sequencing**

488 For the sequencing of the selected accessions, DNA was isolated from the young leaf
489 tissue of a single plant using the Qiagen DNeasy Plant Mini Kit and 400-bp
490 paired-end (PE) libraries were prepared. Sequencing was conducted on an Illumina
491 HiSeq X-Ten sequencer at the Genome Centre of Grandomics (Wuhan, China)
492 (**Supplementary Table 1**). Raw data were processed through the Trimmomatic
493 pipeline as described above. Summary statistics for the whole-genome sequencing
494 accessions are shown in **Supplementary Table 1**.

495 **Identity plots**

496 For each accession that was subjected to whole-genome sequencing, approximately
497 1X clean short paired-end reads were randomly extracted from the resequencing data.
498 Then, these reads were mapped to the repeat hard-masked SFS reference genome
499 using BWA with the default parameters. Uniquely mapped reads were extracted using
500 SAMtools⁴⁸ (samtools view -bS -f 3 -q 10). The best hit for each read was retained
501 when the BLASTN score was 15 greater than that of the suboptimal hit and the query
502 coverage was over 60 bp. The average identity over a sliding window of 20 Mb was
503 calculated and plotted against the chromosomes of the SFS assemblies with a step size
504 of 1 Mb.

505 **Variant calling**

506 For all sequenced accessions, we used the BWA³⁵ program to map the paired-end
507 clean reads to the reference SFS genome. The resulting BAM files were sorted by

508 SAMtools, PCR duplicates were removed using Picard and deduped BAM files were
509 merged using SAMtools. The mapping rate of each sample was calculated
510 (**Supplementary Table 12**). The mpileup and call functions of BCFtools⁴⁸ were used
511 for variant calling. The resulting variants were further filtered using BCFtools with
512 the following parameters: -Ob -g 7 -G 10 -e 'QUAL < 20 || DP < 5'. The numbers of
513 variants identified in each subgenome are listed in **Supplementary Table 12**.

514

515 **Supplementary Table 12 | Mapping rate and number of SNPs identified based on**
516 **short paired-end reads using each of the SFS subgenome as the reference**
517 **sequences.**

Sample	# snps in A	# snps in C	# snps in D	Mapping rate (%)
AclaCN21388	5,198,496	75,881,279	7,521,744	97.6642
AvenCN21405	4,829,563	71,615,650	7,008,480	96.4649
AlonCN58138	42,291,586	2,521,110	35,673,134	95.1203
AlonCN58139	36,316,204	1,361,101	26,845,283	98.0327
AstrCN88610	36,926,996	1,511,234	30,064,718	98.8379
AnudCN58062	36,540,711	1,478,917	29,630,618	98.8892
AcanCN23017	38,286,964	2,626,209	38,951,262	96.4071
AdamCN19457	38,947,899	2,197,424	38,280,348	95.1850
AbarCN65538	59,228,472	4,039,965	57,904,127	98.2189
AagaCN25869	62,467,219	3,749,960	60,797,312	99.1863
AsatC_Ogle	10,300,438	15,021,607	12,987,665	99.3413
AdamCN19457	40,502,159	2,364,012	39,902,336	98.8000
AwieCN90217	36,823,766	1,509,793	29,911,128	98.4024
AinsCN108634	11,700,657	36,216,761	27,094,898	97.0268
AinsINS-4	10,538,413	32,828,326	24,788,646	97.9428
AmarCN57945	17,841,454	42,696,686	32,909,786	99.4978
AmurCN21989	18,606,875	46,893,801	33,759,736	99.1080

518

519 **Phylogenetic tree construction using SNPs**

520 Phylogenetic analysis based on the SNPs identified across the whole genome was

521 carried out using RAxML (v1.0.1, parameters: --all --model GTR+ASC_LEWIS
522 --tree pars{10} --bs-trees 200) with the defaulting settings (**Fig. 3b**). To clarify which
523 species showed the closest relationships to the different hexaploid subgenomes, these
524 SNPs were extracted and compared to each subgenome to construct A-, C- and
525 D-genome phylogenetic trees (**Extended Data Fig. 5**).

526

527 **5.2. Transcriptome sequencing-based analyses**

528 **Plant growth and RNA isolation and sequencing**

529 All diploid accessions that were subjected to whole-genome sequencing were
530 included in the transcriptome analysis. Plants were grown in the greenhouse or the
531 field to different growth stages. Seven sample types from each line, (as described in
532 section 1.5 PacBio Iso-Seq), were collected for RNA extraction. RNA was extracted
533 using a Qiagen RNA isolation kit and RNA quality was accessed by 0.75% agarose
534 gel electrophoresis and on an Agilent 2100 Bioanalyzer. High-quality RNAs from the
535 seven sample types from each accession were mixed in equal amounts. Sequencing
536 libraries were prepared using the MGIEasy RNA Directional Library Prep Kit (BGI,
537 China) according to the manufacturer's protocol and 400-bp paired-end (PE)
538 sequencing was performed using an MGISEQ2000 instrument at the Genome Centre
539 of Grandomics (Wuhan, China) (**Supplementary Table 1**).

540 **Transcript assembly and CDS prediction**

541 MGI raw reads were filtered via the following steps. Read pairs with adapter
542 contamination, read pairs with N contents higher than 3% and read pairs with more
543 than 20% low-quality bases (quality < 20) were first removed. Then, reads with
544 potential low-quality regions were trimmed by applying Trimmomatic (v0.40) ³.
545 Reads with a quality score below 15 at both ends were also trimmed off, and reads
546 containing 3' or 5' ends with an average quality score dropping below Q20 in a 4 bp
547 sliding window were trimmed. Finally, all reads shorter than 32 bp were excluded to
548 obtain clean data for further analyses. The clean reads were de novo assembled using
549 Trinity (v2.0.3) ⁴⁹ with the default parameters. The CDSs were predicted using
550 TransDecoder (v5.5.0) (**Supplementary Table 13**).

551

552 **Supplementary Table 13 | Transcripts de novo assembled by Trinity and the**
553 **total number of genes identified**

Sample	#genes	#transcripts
AlonCN58139	108,830	165,351
AlonCN58138	145,631	214,516
AstrCN88610	101,672	155,779
AstrCN3065	187,658	250,417
AnudCN58062	123,088	188,456
AnudCN79349	164,491	270,651
AnudCN79351	103,147	221,021
AcanCN23017	122,914	180,044
AdamCN19457	114,754	169,443
AclaCN21388	113,988	169,846
AwieCN90217	116,980	175,369

554 **Phylogenetic tree construction and divergence time estimation**

555 Each proteome from a diploid species was subjected to BLAST searches against
556 *Hordeum vulgare* sequences according to an E-value $\leq 1e-5$. The RBHs in each pair
557 were obtained, and the gene families that were conserved in all the species were
558 retained for further study. The protein sequences from each conserved gene family
559 were aligned using MUSCLE (v3.8.31) ³⁹ with the default parameters, and the
560 corresponding CDS alignments were back-translated from the corresponding protein
561 alignments. The same methods described in section 4.1 were used for phylogenetic
562 tree construction and divergence time estimation.

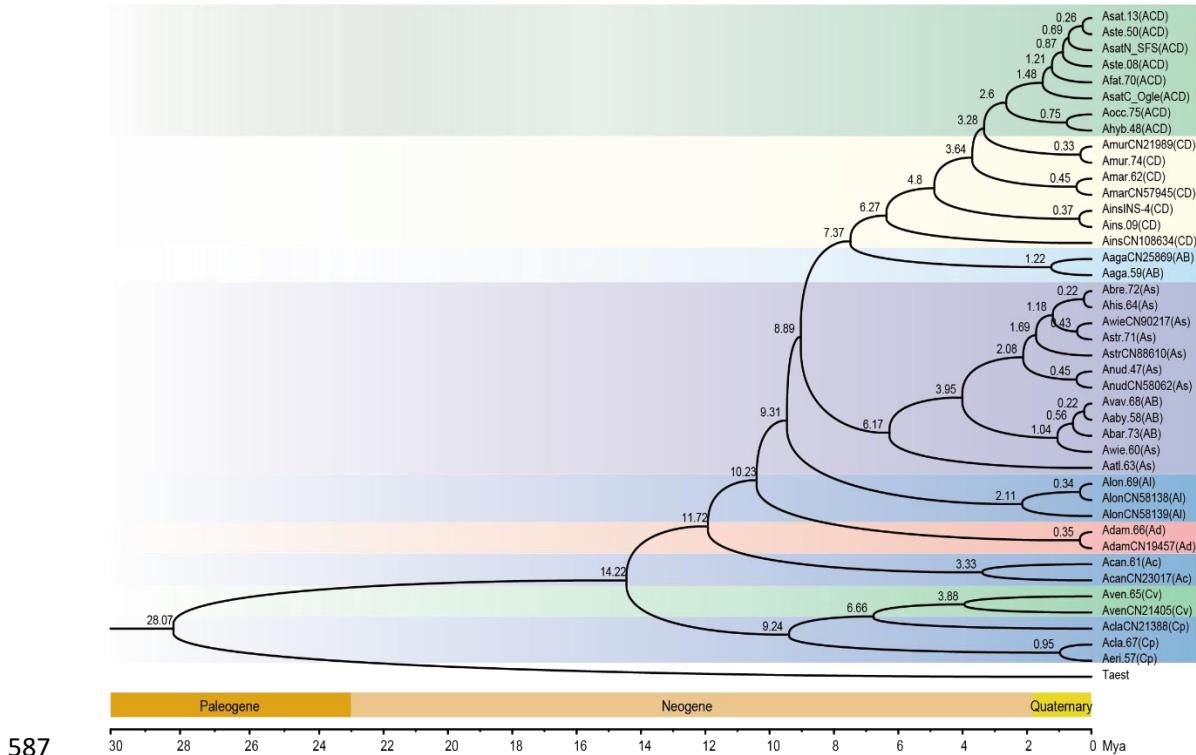
563 **5.3. Organelle-based analyses**

564 The chloroplast genomes of *A. longiglumis*, *A. insularis*, SFS, and the other taxa
565 subjected to whole-genome sequencing were assembled using high-quality short
566 paired-ended reads (**Supplementary Table 1**) with NOVOPlasty (v3.7)
567 (<https://github.com/ndierckx/NOVOPlasty>), in which chloroplasts from *A. murphyi*
568 were employed as the reference (GenBank Accession: NC_044174.1)
569 (**Supplementary Table 14**). We downloaded 26 additional *Avena* chloroplast
570 genomes (**Supplementary Table 15**) to obtain a more comprehensive dataset.

571 Multiple sequence alignments were performed using MUSCLE, and the informative
 572 sites were used for phylogenetic tree construction, in which *Triticum aestivum* was
 573 used as the outgroup. All of these analyses were performed with RAxML (v8.2.7)
 574 with the following parameter settings: -m GTRGAMMAI -N 100 -f a -k -d -p 12345
 575 -x 12345).

576 **Supplementary Table 14 | Assembled chloroplast genomes and their features**

Sample	Species	Haplom e	Length	Content of N	Number of Gaps
AagaCN25869	<i>A. agadiriana</i>	AB	135,946	0	0
AbarCN65538	<i>A. barbata</i>	AB	135,940	0	0
AcanCN23017	<i>A. canariensis</i>	Ac	135,948	0	0
AclaCN21388	<i>A. clauda</i>	Cp	135,906	0	0
AdamCN19457	<i>A. damascena</i>	Ad	135,926	0	0
AinsCN108634	<i>A. insularis</i>	CD	135,944	0	0
AinsINS-4	<i>A. insularis</i>	CD	135,967	0	0
AlonCN58138	<i>A. longiglumis</i>	Al	135,727	0	0
AlonCN58139	<i>A. longiglumis</i>	Al	135,728	0	0
AmarCN57945	<i>A. maroccana</i>	CD	135,884	0	0
AmurCN21989	<i>A. murphyi</i>	CD	135,890	0	0
AnudCN58062	<i>A. nuda</i>	As	135,935	0	0
AsatN_SFS	<i>A. sativa</i> ssp. <i>nuda</i>	ACD	135,891	0	0
AsatC_Ogle	<i>A. sativa</i>	ACD	135,883	0	0
AstrCN88610	<i>A. strigosa</i>	As	135,930	0	0
AvenCN21405	<i>A. ventricosa</i>	Cv	135,761	0	0
AwieCN90217	<i>A. wiestii</i>	As	135,935	0	0


577

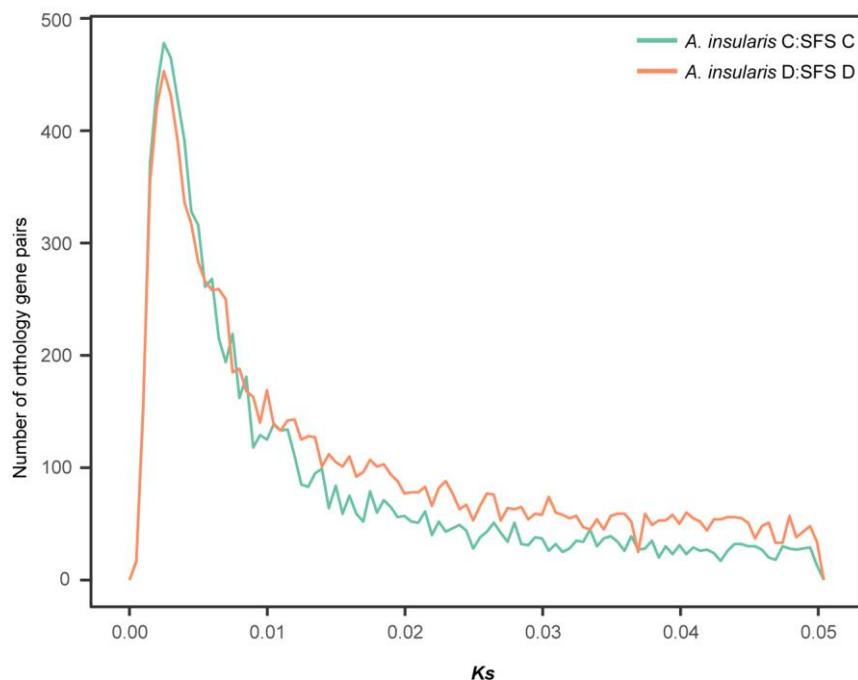
578 **Supplementary Table 15 | Chloroplast genomes of *Avena* species from public**
 579 **databases**

Sample	Species	Haplome	Accession
Aaby.58	<i>Avena abyssinica</i>	AB	NC_044158.1
Aaga.59	<i>Avena agadiriana</i>	AB	NC_044159.1
Aatla.63	<i>Avena atlantica</i>	As	NC_044163.1
Abar.73	<i>Avena barbata</i>	AB	NC_044173.1
Abre.72	<i>Avena brevis</i>	As	NC_044172.1
Acan.61	<i>Avena canariensis</i>	Ac	NC_044161.1
Acla.67	<i>Avena clauda</i>	Cp	NC_044167.1
Adam.66	<i>Avena damascena</i>	Ad	NC_044166.1
Aeri.57	<i>Avena eriantha</i>	Cp	NC_044157.1
Afat.70	<i>Avena fatua</i>	ACD	NC_044170.1
Ahis.64	<i>Avena hispanica</i>	As	NC_044164.1
Ahyb.48	<i>Avena hybrida</i>	ACD	NC_044148.1
Ains.09	<i>Avena insularis</i>	CD	MG674209.1
Alon.69	<i>Avena longiglumis</i>	Al	NC_044169.1
Alus.49	<i>Avena lusitanica</i>	As	NC_044149.1
Amar.62	<i>Avena maroccana</i>	CD	NC_044162.1
Amur.74	<i>Avena murphyi</i>	CD	NC_044174.1
Anud.47	<i>Avena nuda</i>	As	NC_044147.1
Aocc.75	<i>Avena occidentalis</i>	ACD	NC_044175.1
Asat.13	<i>Avena sativa</i>	ACD	MG687313.1
Aste.08	<i>Avena sterilis</i>	ACD	MG687308.1
Aste.50	<i>Avena sterilis</i>	ACD	NC_031650.1
Astr.71	<i>Avena strigosa</i>	As	NC_044171.1
Avav.68	<i>Avena vaviloviana</i>	AB	NC_044168.1
Aven.65	<i>Avena ventricosa</i>	Cv	NC_044165.1
Awie.60	<i>Avena wiestii</i>	As	NC_044160.1

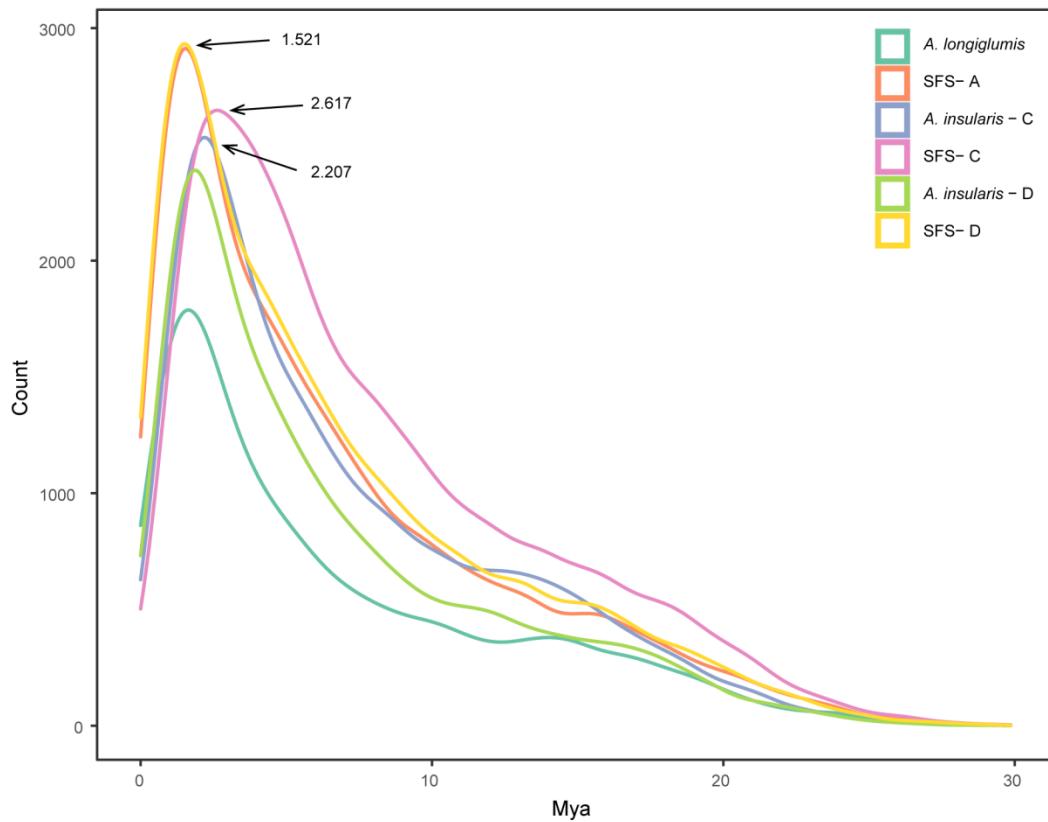
580 Divergence times were estimated under a relaxed clock model using the
 581 MCMCTree program in the PAML4.7 package ⁴². The “Independent rates model
 582 (clock=2)” and “JC69” models in the MCMCTree program were used. The MCMC

583 process was run for 6,000,000 iterations after a burn-in of 2,000,000 iterations. We
 584 ran the program twice for each data type to confirm that the results were similar
 585 between runs. The chronogram was visualized using FigTree (v1.4.0) with the first
 586 run (**Supplementary Fig. 2**).

587
 588 **Supplementary Figure 2 | Phylogenetic relationship among *Avena* species based**
 589 **on chloroplast genome sequences.**


590 5.4. Timing of allo-hexaploidy formation

591 To dating the time of hexaploid origin, we obtained the orthologous gene pairs
 592 between the two C subgenomes and two D subgenomes of *A. insularis* and SFS, and
 593 calculated the synonymous substitution rate (*K_s*) values of the orthologous gene pairs
 594 using the yn00 module of the PAML4.7 package. Divergence time was estimated
 595 using the method described by Salse *et al.*⁵⁰. The results suggested the hexaploid oat
 596 formed around 0.523~0.585 mya (**Supplementary Table 16, Supplementary Fig.**
 597 **4**). For pseudogenes, the nucleotide sequences before the frameshift or nonsense
 598 mutation sites were removed, and the remaining nucleotide sequences were aligned by
 599 MUSCLE. Divergence was calculated by distmat, and the time of pseudogenization
 600 was estimated using a mutation rate of 1.3×10^{-8} mutations per site per year⁵¹
 601 (**Supplementary Fig. 4**).


602 **Supplementary Table 16 | Peaks of each K_s distribution of orthologues in the**
 603 **subgenomes of *A. insularis* and SFS.**

Orthologs	K_s peak value	Divergence time (mya)
<i>A. insularis</i> D vs SFS D	0.0034	0.523
<i>A. insularis</i> C vs SFS C	0.0038	0.585

604 Note: The formula $T=K_s/r$ was used to estimate the divergence time between the
 605 subgenomes as described by Salse *et al.*⁵⁰, where r is the average substitution rate for
 606 grass species which was determined to be 6.5×10^{-9} substitutions per synonymous site
 607 per year⁵².

608
 609 **Supplementary Figure 3 | Dating the divergence of the tetraploid and hexaploid**
 610 **oats.** The K_s distribution is shown for orthologous gene pairs between two C
 611 subgenomes and two D subgenomes of *A. insularis* and SFS. Data are grouped into K_s
 612 units of 0.001.

613

614 **Supplementary Figure 4 | Time of pseudogenization in the Al genome (*A.***

615 ***longiglumis*) and the subgenomes of *A. insularis* and SFS.**

616 6. Subgenome evolution

617 6.1. Chromosome rearrangement

618 Synteny analysis

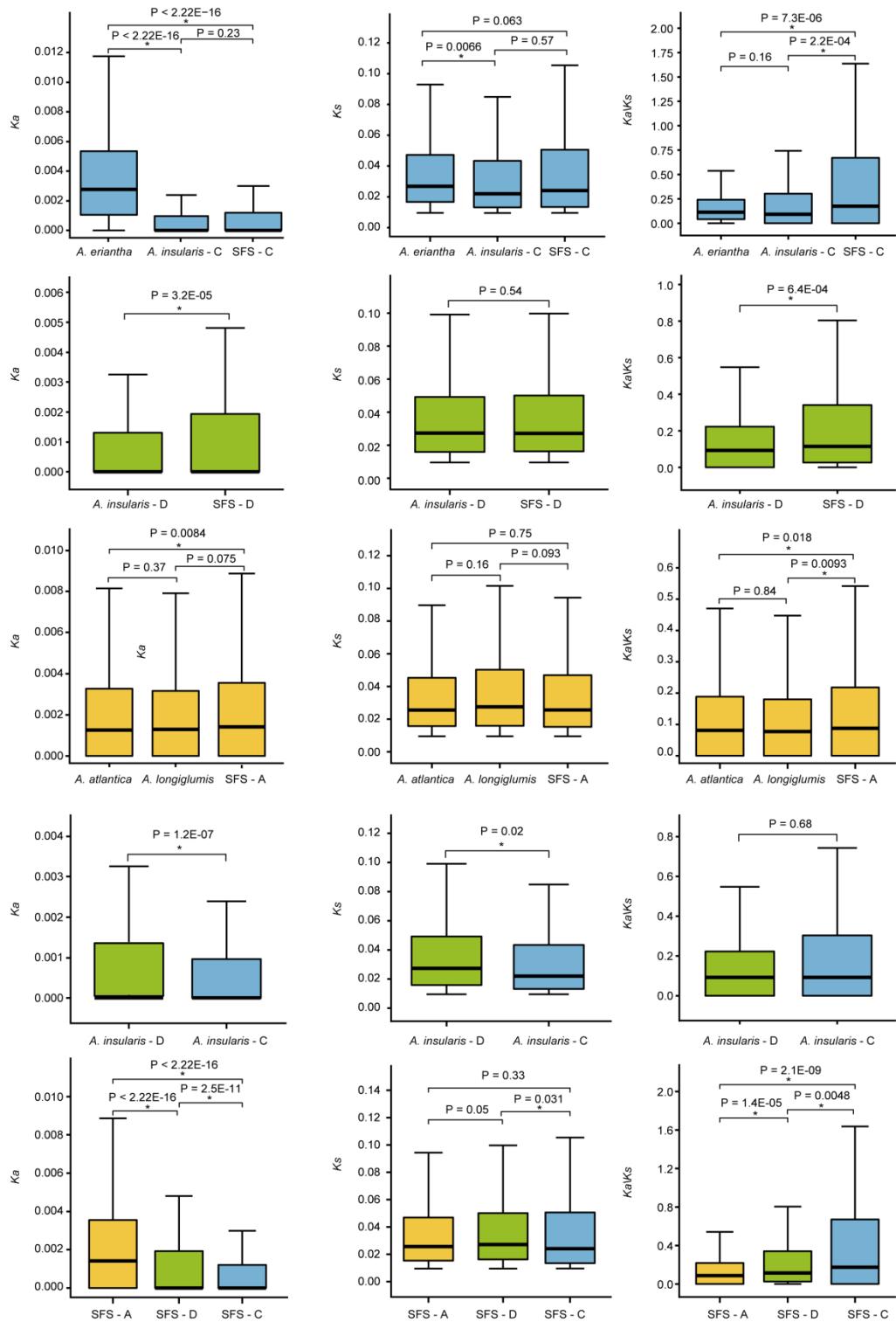
619 Subgenome synteny among the subgenomes of *A. insularis* and SFS was individually
620 analysed by plotting the positions of homoeologous pairs in the subgenome pairs
621 within the context of 14 and 21 chromosomes using Circos⁵³ (**Extended Data Fig. 6**).
622 The synteny blocks between the SFS subgenomes and the tetraploid *A. insularis* and
623 the diploid *A. longiglumis* were identified using MCScanX and were visualized using
624 Circos (**Fig. 1**).

625 To explore broad-scale structural variations after polyploidization, we used SFS to
626 perform in silico painting of the *A. insularis* and *A. longiglumis* genomes with the
627 method described previously⁵⁴. In brief, the SFS genome was divided into 100 bp
628 markers, which were then aligned to concatenated repeat hard-masked genomes of *A.*
629 *insularis* and *A. longiglumis* using BWA with the default settings. The uniquely
630 mapped markers with alignment lengths over 50 bp in the target genome were
631 retained. We then processed the markers on each chromosome by requiring at least
632 five consecutive markers supporting homology to the same SFS chromosome. We
633 consolidated each group of five consecutive potential markers as one confirmed block.
634 These confirmed blocks with a distance of less than 2 Mb were further consolidated as
635 superblocks (**Fig 4a, bottom**). A similar painting analysis was performed by painting
636 100 bp marker from *A. insularis* onto concatenated genomes of *A. longiglumis* and *A.*
637 *eriantha* (**Fig. 4a, top**).

638 To further explore the genomic exchanges between *A. insularis* and SFS after
639 polyploidization, clean short paired-end reads from the Cp genome diploid *A.*
640 *eriantha* and the Al genome diploid *A. longiglumis* were individually mapped onto the
641 reference *A. insularis* and SFS genomes using BWA. The signle-base depth coverage
642 of properly paired reads from the *A. longiglumis* and *A. eriantha* mapping results was
643 calculated using the Mosdepth program and plotted along each chromosome of the
644 reference genome (**Fig. 4c, Extended Data Fig. 7a, c, d**). A similar analysis was
645 performed by aligning reads from *A. insularis* to the SFS genome (**Extended Data**
646 **Fig. 7b**).

647 **Fluorescence in situ hybridization (FISH)**

648 To validate the observed C/D and C/A intergenomic exchanges in the *A. insularis* and
649 SFS genomes, FISH analysis was performed using a C genome-specific repeat, Am1
650 as the probe. The FISH probe was prepared as described in Yan *et al.*⁵⁵. The
651 metaphase chromosome preparation method paralleled that employed in previous
652 experiments⁵⁶ with some modifications. In brief, seeds of *A. insularis* and SFS were
653 imbibed in distilled water for 18 h at 25°C in the dark and then placed in petri dishes
654 with two layers of moist filter papers. The germinated seeds were transferred to a
655 cabinet at a temperature of 4°C to synchronize cell division and allow to accumulation
656 of metaphase plates. Root tips were harvested when they reached to 1.5-2.0 cm and
657 were pre-treated in 1.0 MPa nitrous oxide gas for 3 h followed by fixation using
658 glacial acetic acids for 20 min. The apical meristem was extruded from the fixed root
659 tip and digested with 2% cellulase and 1% pectinase for 2 h. The digested apical
660 meristem was squashed in a drop of 60% acetic acid, and the resulting suspension was
661 dropped onto a clean glass slide.


662 FISH analysis was performed as described by Fu *et al.*⁵⁷. Briefly, air-dried slides
663 were fixed for 10 min with 4% (w/v) paraformaldehyde and then immersed in 2×
664 saline sodium citrate (SSC) for 10 min. After dehydration in an ice-cold ethanol series
665 (75%, 95%, and 100%) for 5 min in each concentration, the slides were air dried. The
666 air dried slides were then subjected to denaturing at 80°C for 2 min in deionized
667 formamide (60 µl per slide), followed by dehydration in 75%, 95%, and 100% alcohol
668 at -20°C for 5 min each before air drying again. A 10 µl aliquot of a hybridization
669 mixture containing 0.5 µl of the FISH probe, 4.75 µl of 2× SSC, and 4.75 µl of 1× TE
670 was applied to each slide, and the slides were then incubated for 2 h at 37°C. The
671 slides were next counterstained with DAPI and Vectashield mounting medium
672 (Vector Laboratories, Inc., Burlingame, CA, USA). Digital images were captured
673 using an Olympus BX-51 epifluorescence microscope equipped with a Photometric
674 SenSys Olympus DP80 CCD camera (Olympus, Tokyo) and processed using
675 Photoshop V7.0 (Adobe Systems Incorporated, San Jose, CA) (**Fig. 4d, Extended**
676 **Data Fig. 7e**).

677 **Ka/Ks analysis**

678 One-to-one orthologous gene sets among the genome assemblies for *Hordeum*

679 *vulgare*, the A and C diploid progenitors, *A. longiglumis* and *A. eriantha*, and the
680 subgenomes of *A. insularis* and SFS were fetched from OrthoFinder2 results ⁴⁴. A
681 total of 2,767 orthologous gene sets were obtained and then used for the
682 nonsynonymous (*Ka*) and synonymous (*Ks*) rate calculations (Fig. 4e, Supplementary
683 Fig. 5). For this purpose, the orthologous gene pair list was used as the input, and the
684 protein sequences from each gene pair were aligned using MUSCLE ³⁹. PAL2NAL ⁵⁸
685 was used to convert the peptide alignment to a nucleotide alignment, and *Ka*, and *Ks*
686 values were computed between gene pairs by using Codeml from PAML4.7 in
687 free-ration mode. All estimates with *Ks*<0.01 were excluded from the analysis. The
688 significance of the differences in *Ka/Ks* values between genomes (subgenomes) was
689 estimated using the Wilcoxon rank-sum test for nonnormal distributions in R.

690

691

692 **Supplementary Figure 5 | Comparison of codon substitution rate distributions**
 693 **between the subgenomes of SFS and *A. insularis*, and the A (*A. longiglumis*, *A.*
 694 *atlantica*) and C (*A. eriantha*) genome diploid progenitors.** Comparison of Ka , Ks
 695 and Ka/Ks distributions between subgenomes and the putative diploid progenitor

696 genomes of *A. longiglumis* (Al genome), *A. atlantica* (As genome)⁷ and *A. eriantha*
697 (Cp genome)⁷. All estimates with $Ks < 0.01$ were excluded from the analysis. The
698 central line for each box plot indicates the median. The top and bottom edges of the
699 box indicate the first and third quartiles and the whiskers extend 1.5 times the
700 interquartile range beyond the edges of the box. The significance of the differences in
701 the values between genomes (subgenomes) was estimated using the Wilcoxon
702 rank-sum test (*, $P < 0.05$).

703 **6.2. Subgenome contents**

704 **Kmer distribution**

705 The 31-mer frequency in the sliding window (window size: 1 Mbp, step size: 0.5 Mbp)
706 of the Al, CD, and ACD genome assemblies was counted using Jellyfish², and the
707 highest frequencies in each window were plotted along the chromosomes (**Fig. 1**).

708 **Full-length LTR analyses**

709 Full-length LTRs (FL-LTRs) were identified using LTR_FINDER (**Extended Data**
710 **Fig. 8b**). The average sequence length of FL-LTRs was calculated (**Extended Data**
711 **Fig. 8c**). The retained FL-LTRs were classified into different families based on
712 sequence similarity. For this purpose, these full-length LTRs were first searched
713 against the Copia and Gypsy domains in Pfam using hmmsearch. Then, the
714 un-classified full-length LTRs were subjected to BLAST searches against the TREP
715 database (release 19). Finally, the remaining repeat elements were further classified
716 using the RepeatClassifier module in RepeatModeler³⁰. The results showed that the
717 two superfamilies, Gypsy and Copia contributed largely to the LTRs in *Avena*
718 genomes.

719 To estimate the insertion times for the full-length LTRs, the 5'- and 3'-LTR
720 sequences were aligned and used to calculate K-value (the average number of
721 substitutions per aligned site) using distmat⁵⁹. The insertion times were estimated
722 with the formula $T = K/2r$, where r represents the neutral mutation rate of 1.3×10^{-8}
723 mutations per site per year⁵¹ (**Extended Data Fig. 8d**).

724 **Gene loss and retention**

725 Orthologues between *A. eriantha* and the C subgenome of *A. insularis* were identified
726 using RBH-based methods. A sliding window approach with a window size of 100

727 genes and a step size of 10 genes by using *A. eriantha* genome as the reference was
728 employed to reveal the percentage of retained genes in the C and D subgenome of *A.*
729 *insularis* (**Extended Data Fig. 9e**). The gene retention rates of the SFS subgenomes
730 were calculated and plotted using the same methods (**Extended Fig. 9f**).
731

732 6.3. Subgenome dominance

733 Plant materials and transcriptome sequencing

734 RNAs were isolated from seven sample types of SFS, including seedlings, flag leaves,
735 and panicles at different developmental stages (as described in section 1.5). Each type
736 of RNA sample was sequenced with 3 biological repeats on an MGISEQ2000
737 instrument. To further understand the responses of genes in different subgenomes of
738 SFS under abiotic stress, seedlings of SFS were exposed to heat, cold, drought,
739 waterlogging, alkalinity and salt. For the abiotic treatments, oat plants were first
740 grown in well-watered conditions in a growth chamber for 14 d at 20°C under 12 h of
741 daily light, and plants were then either left in these growth conditions as controls or
742 transferred to other growth chambers for stress treatments. For cold treatment, the
743 plants were grown in a growth chamber at 4°C, while for heat treatment, the plants
744 were grown in a growth chamber under a light cycle with 12 h of light at 37°C and 10
745 h of darkness at 32°C. For drought and waterlogging treatments, the plants were
746 carefully transferred to other plots containing 10% PEG6000 or muddy soil. For the
747 alkaline and salt treatments, water was replaced by a 6 mmol/L alkaline solutions
748 (Na₂CO₃: NaHCO₃=1:1) or a 40 mmol/L salt solution (NaCl: Na₂SO₄=1:1),
749 respectively. One week after all treatments, the seedlings were harvested with 3
750 repeats from each treatment and used for RNA isolation. The same methods described
751 in section 5.2 were adopted for RNA sequencing libraries construction and
752 sequencing.

753 Quantification of gene expression levels

754 Paired-end MGI reads from the RNA samples described above were subjected to
755 quality trimming using Trimmomatic (v0.40) with the default settings and aligned to
756 the gene models with HISAT2⁶⁰ software according to the default parameters. Gene
757 expression levels were quantified using the HTseq (v0.9.1)⁶¹ program with the SFS

758 gene models as the reference. Expression levels were quantified as transcripts per
759 million values.

760 **Identification of differentially expressed genes in stress-treated samples**

761 The differentially expressed genes (DEGs) between different stress-treated sample
762 pairs were identified with the edgeR software package ⁶². For each gene, an adjusted
763 P-value (corrected for the false discovery rate (FDR)) was calculated using the
764 one-sided Fisher exact test. Genes with an adjusted P-value below 0.05 and a \log_2 FC
765 greater than 0.5 were considered differentially expressed (**Supplementary Table 17**).

766 **Supplementary Table 17 | Distribution of the DEGs identified on each**
767 **chromosome of SFS under different stresses.**

Chromosome	Alkaline	Cold	Drought	Heat	Salt	Waterlogging
1A	21	165	1,480	476	322	10
2A	13	120	885	251	214	7
3A	18	113	856	244	213	7
4A	22	181	1,573	511	370	12
5A	22	156	1,336	351	291	13
6A	21	149	1,305	337	326	15
7A	25	126	1,129	346	224	8
1D	24	180	1,410	461	303	12
2D	15	175	1,478	419	331	8
3D	26	132	1,019	320	229	6
4D	27	171	1,511	473	353	7
5D	33	159	1,409	369	281	9
6D	15	76	706	226	186	9
7D	26	166	1,250	365	293	11
1C	6	66	614	201	126	5
2C	27	145	1,172	366	265	6
3C	17	146	1,090	304	256	6
4C	18	116	979	316	245	4
5C	15	138	1,239	378	292	9
6C	18	121	1,228	353	284	10
7C	9	70	657	188	135	2
Total	446	3,024	25,542	7,603	5,806	190

768 Note: The colour of each cell is proportional to the number of DEGs in each column.

769 **Analysis of homoeologous gene expression**

770 Differences in the expression patterns of homoeologous genes in SFS were analysed
771 to test whether subgenome dominance, a striking whole-genome feature common to
772 polyploids, was present. For this purpose, we used MCScanX⁴⁷ to detect syntenic
773 blocks (regions with at least five collinear genes). Among these blocks, we identified
774 41,232 homoeologous genes that were present in 13,744 triads with a single gene
775 copy per subgenome (an A:C:D configuration of 1:1:1). Then, the raw expression
776 values (TPM values) of these triplets from seedlings, flat leaves, panicles at different
777 developmental stages and seedlings under six abiotic stresses were transformed by
778 adding 1 and taking the common logarithm, and the expression matrix was subjected
779 to two-dimensional hierarchical clustering using the correlation distance and the
780 average linkage method to form clusters (**Fig. 4f**). The differentially expressed
781 orthologous genes (DEOGs) between different subgenome pairs were defined as gene
782 triplets with a pairwise log2-fold change exceeding 0.5 and adjusted P-value below
783 0.05 (**Supplementary Table 18**). The expression patterns of these DEGOSs were
784 visualized in the heatmap shown in **Fig. 4g** using the heatmap.2 command from the R
785 package gplots.

786 **Supplementary Table 18 | Dominant gene expression between the subgenomes in**
 787 **SFS**

RNA Sample *	A vs C		A vs D		C vs D	
	Up in A	Up in C	Up in A	Up in D	Up in C	Up in D
AsatN_SFS_A_L	898	728	488	459	767	900
AsatN_SFS_CK_L	912	722	530	444	784	886
AsatN_SFS_C_L	916	759	472	451	810	901
AsatN_SFS_D_L	931	645	516	467	697	900
AsatN_SFS_H_L	996	838	566	533	871	1001
AsatN_SFS_S_L	1035	853	583	543	915	1044
AsatN_SFS_W_L	651	576	353	334	591	685
AsatN_SFS_L0	605	517	300	283	541	624
AsatN_SFS_L1	1030	864	565	539	887	1057
AsatN_SFS_L3	1035	876	590	534	892	1002
AsatN_SFS_S1	888	656	490	471	716	899
AsatN_SFS_S2	780	570	416	360	627	813
AsatN_SFS_S3	882	615	482	464	660	891
AsatN_SFS_S4	608	465	325	314	522	641
Total	12167	9684	6676	6196	10280	12244

788 * All RNA samples were isolated from different tissues of SFS (abbreviated as
 789 AsatN_SFS to distinguish it from another hexaploid taxon, “Ogle”) grown under
 790 normal conditions or abiotic stresses. A: alkaline, CK: control, C: cold, D: drought,
 791 H: heat, S: salt, W: waterlogging. L: seedling; L0-L3: two-week-old seedlings (L0),
 792 flag leaves at the booting (Zodoks 45, L1) and heading (Zodoks 58, L3) stages;
 793 S1-S4: panicles at the booting (Zodoks 45, S1), heading (Zodoks 50 and 58, S2 and
 794 S3) and grain dough (Zodoks 83, S4) stages.

795 Relationship between gene expression and TE-density

796 To test whether the density of nearby TEs was correlated with gene expression levels,
 797 as observed in previous studies ^{63,64}, we calculated the TE densities of the 5 kb up-
 798 and downstream sequences, both separately and together, for each gene from the
 799 13,744 triads. The results revealed that homoeologs from the C subgenome of SFS
 800 had a higher TE density than those from the A and D subgenomes (**Extended Data**

801 **Fig. 10).** We then divided the 13,744 triplets into 20 bins according to the TE density
802 (both 5 kb up- and downstream sequences were included). The expression values of
803 the genes in each bin were averaged. The results showed that the expression levels
804 decreased with an increasing TE density, supporting a negative correlation between
805 the expression level and the density of nearby TEs.

806 **Supplementary References**

- 807 1 Zhuang, W. *et al.* The genome of cultivated peanut provides insight into
808 legume karyotypes, polyploid evolution and crop domestication. *Nature
809 Genetics* **51**, 865-876, doi:10.1038/s41588-019-0402-2 (2019).
- 810 2 Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel
811 counting of occurrences of k-mers. *Bioinformatics* **27**, 764-770,
812 doi:10.1093/bioinformatics/btr011 (2011).
- 813 3 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
814 Illumina sequence data. *Bioinformatics* **30**, 2114-2120,
815 doi:10.1093/bioinformatics/btu170 (2014).
- 816 4 Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*
817 **34**, 3094-3100. doi:10.1093/bioinformatics/bty191 (2018).
- 818 5 Vaser, R., Sovic, I., Nagarajan, N. & Sikic, M. Fast and accurate de novo
819 genome assembly from long uncorrected reads. *Genome Res* **27**, 737-746,
820 doi:10.1101/gr.214270.116 (2017).
- 821 6 Alonge, M. *et al.* RaGOO: fast and accurate reference-guided scaffolding of
822 draft genomes. *Genome Biol* **20**, 224. doi:10.1186/s13059-019-1829-6 (2019).
- 823 7 Maughan, P. J. *et al.* Genomic insights from the first chromosome-scale
824 assemblies of oat (*Avena* spp.) diploid species. *BMC Biol* **17**, 92,
825 doi:10.1186/s12915-019-0712-y (2019).
- 826 8 Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
827 preprocessor. *Bioinformatics* **34**, i884-i890, doi:10.1093/bioinformatics/bty560
828 (2018).
- 829 9 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2.
830 *Nat Methods* **9**, 357-359, doi:10.1038/nmeth.1923 (2012).
- 831 10 Burton, J. N. *et al.* Chromosome-scale scaffolding of de novo genome
832 assemblies based on chromatin interactions. *Nat Biotechnol* **31**, 1119-1125,

833 doi:10.1038/nbt.2727 (2013).

834 11 Bekele, W. A., Wight, C. P., Chao, S., Howarth, C. J. & Tinker, N. A.

835 Haplotype-based genotyping-by-sequencing in oat genome research. *Plant*

836 *Biotechnol J* **16**, 1452-1463, doi:10.1111/pbi.12888 (2018).

837 12 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov,

838 E. M. BUSCO: assessing genome assembly and annotation completeness with

839 single-copy orthologs. *Bioinformatics* **31**, 3210-3212,

840 doi:10.1093/bioinformatics/btv351 (2015).

841 13 Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment

842 program for mRNA and EST sequences. *Bioinformatics* **21**, 1859-1875,

843 doi:10.1093/bioinformatics/bti310 (2005).

844 13 Tang, S., Lomsadze, A. & Borodovsky, M. Identification of protein coding

845 regions in RNA transcripts. *Nucleic Acids Res* **43**, e78,

846 doi:10.1093/nar/gkv227 (2015).

847 15 Keilwagen, J. *et al.* Using intron position conservation for homology-based

848 gene prediction. *Nucleic Acids Res* **44**, e89-e89, doi:10.1093/nar/gkw092

849 (2016).

850 16 Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and

851 syntenically mapped cDNA alignments to improve de novo gene finding.

852 *Bioinformatics* **24**, 637-644, doi:10.1093/bioinformatics/btn013 (2008).

853 17 Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped

854 RNA-Seq reads into automatic training of eukaryotic gene finding algorithm.

855 *Nucleic Acids Res* **42**, e119-e119, doi:10.1093/nar/gku557 (2014).

856 18 Haas, B. J. *et al.* Automated eukaryotic gene structure annotation using

857 EVidenceModeler and the program to assemble spliced alignments. *Genome*

858 *Biol* **9**, R7, doi:10.1186/gb-2008-9-1-r7 (2008).

859 19 Urasaki, N. *et al.* Draft genome sequence of bitter gourd (*Momordica*

860 *charantia*), a vegetable and medicinal plant in tropical and subtropical regions.

861 *DNA Res* **24**, 51-58, doi:10.1093/dnares/dsw047 (2017).

862 20 Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology

863 searches. *Bioinformatics* **29**, 2933-2935, doi:10.1093/bioinformatics/btt509

864 (2013).

865 21 Griffiths-Jones, S. *et al.* Rfam: annotating non-coding RNAs in complete
866 genomes. *Nucleic Acids Res* **33**, D121-D124, doi: 10.1093/nar/gki081 (2005).

867 22 Lagesen, K. *et al.* RNAmmer: consistent and rapid annotation of ribosomal
868 RNA genes. *Nucleic Acids Res* **35**, 3100-3108, doi:10.1093/nar/gkm160
869 (2007).

870 23 Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection
871 of transfer RNA genes in genomic sequence. *Nucleic Acids Res* **25**, 955-964,
872 doi:10.1093/nar/25.5.955 (1997).

873 24 Wang, X. & Wang, L. GMATA: An integrated software package for
874 genome-scale SSR mining, marker development and viewing. *Front Plant Sci*
875 **7**, doi:10.3389/fpls.2016.01350 (2016).

876 25 Benson, G. Tandem repeats finder: a program to analyze DNA sequences.
877 *Nucleic Acids Res* **27**, 573-580, doi:10.1093/nar/27.2.573 (1999).

878 26 Han, Y. & Wessler, S. R. MITE-Hunter: a program for discovering miniature
879 inverted-repeat transposable elements from genomic sequences. *Nucleic Acids
880 Res* **38**, e199-e199, doi:10.1093/nar/gkq862 (2010).

881 27 Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of
882 full-length LTR retrotransposons. *Nucleic Acids Res* **35**, W265-W268,
883 doi:10.1093/nar/gkm286 (2007).

884 28 Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible
885 software for de novo detection of LTR retrotransposons. *BMC Bioinformatics*
886 **9**, 18, doi:10.1186/1471-2105-9-18 (2008).

887 29 Ou, S. & Jiang, N. LTR_retriever: A highly accurate and sensitive program for
888 identification of long terminal repeat retrotransposons. *Plant Physiol* **176**,
889 1410-1422, doi:10.1104/pp.17.01310 (2018).

890 30 Bedell, J. A., Korf, I. & Gish, W. MaskerAid: a performance enhancement to
891 RepeatMasker. *Bioinformatics* **16**, 1040-1041,
892 doi:10.1093/bioinformatics/16.11.1040 (2000).

893 31 Abrusán, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass-a tool
894 for automated classification of unknown eukaryotic transposable elements.
895 *Bioinformatics* **25**, 1329-1330, doi:10.1093/bioinformatics/btp084 (2009).

896 32 Jurka, J. *et al.* Repbase Update, a database of eukaryotic repetitive elements.

897 33 Cytogenet Genome Res **110**, 462-467, doi:10.1159/000084979 (2005).

898 33 Zhang, Z. *et al.* PseudoPipe: an automated pseudogene identification pipeline.

899 *Bioinformatics* **22**, 1437-1439, doi:10.1093/bioinformatics/btl116 (2006).

900 34 Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N. & Delsuc, F. MACSE

901 v2: toolkit for the alignment of coding sequences accounting for frameshifts

902 and stop codons. *Mol Biol Evol* **35**, 2582-2584, doi:10.1093/molbev/msy159

903 (2018).

904 35 Li, H. & Durbin, R. Fast and accurate long-read alignment with

905 Burrows-Wheeler transform. *Bioinformatics* **26**, 589-595,

906 doi:10.1093/bioinformatics/btp698 (2010).

907 36 Yan, H. *et al.* High-density marker profiling confirms ancestral genomes of

908 *Avena* species and identifies D-genome chromosomes of hexaploid oat. *Theor*

909 *Appl Genet* **129**, 2133-2149, doi:10.1007/s00122-016-2762-7 (2016).

910 37 Jellen, E., Gill, B. & TS, C. Genomic *in situ* hybridization differentiates

911 between A/D- and C-genome chromatin and detects intergenomic

912 translocations in polyploid oat species (genus *Avena*). *Genome* **37**, 613-618,

913 doi:10.1139/g94-087 (1994).

914 38 Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for

915 genomes and exomes. *Bioinformatics* **34**, 867-868,

916 doi:10.1093/bioinformatics/btx699 (2018).

917 39 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and

918 high throughput. *Nucleic Acids Res* **32**, 1792-1797, doi:10.1093/nar/gkh340

919 (2004).

920 40 Talavera, G. & Castresana, J. Improvement of phylogenies after removing

921 divergent and ambiguously aligned blocks from protein sequence alignments.

922 *Syst Biol* **56**, 564-577, doi:10.1080/10635150701472164 (2007).

923 41 Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and

924 post-analysis of large phylogenies. *Bioinformatics* **30**, 1312-1313,

925 doi:10.1093/bioinformatics/btu033 (2014).

926 42 Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol*

927 *Evol* **24**, 1586-1591, doi:10.1093/molbev/msm088 (2007).

928 43 Camacho, C. *et al.* BLAST+: architecture and applications. *BMC*

929 421, doi:10.1186/1471-2105-10-421 (2009).

930 44 Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
931 comparative genomics. *Genome Biol* **20**, 238, doi:10.1186/s13059-019-1832-y
932 (2019).

933 45 De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFÉ: a
934 computational tool for the study of gene family evolution. *Bioinformatics* **22**,
935 1269-1271, doi:10.1093/bioinformatics/btl097 (2006).

936 46 Murat, F., Armero, A., Pont, C., Klopp, C. & Salse, J. Reconstructing the
937 genome of the most recent common ancestor of flowering plants. *Nat Genet*
938 **49**, 490-496, doi:10.1038/ng.3813 (2017).

939 47 Wang, Y. *et al.* MCScanX: a toolkit for detection and evolutionary analysis of
940 gene synteny and collinearity. *Nucleic Acids Res* **40**, e49-e49,
941 doi:10.1093/nar/gkr1293 (2012).

942 48 Li, H. *et al.* The sequence alignment/map format and SAMtools.
943 *Bioinformatics* **25**, 2078-2079, doi: 10.1093/bioinformatics/btp352 (2009).

944 49 Grabherr, M. G. *et al.* Full-length transcriptome assembly from RNA-Seq data
945 without a reference genome. *Nat Biotechnol* **29**, 644-652,
946 doi:10.1038/nbt.1883 (2011).

947 50 Salse, J. *et al.* New insights into the origin of the B genome of hexaploid
948 wheat: Evolutionary relationships at the *SPA* genomic region with the S
949 genome of the diploid relative *Aegilops speltoides*. *BMC Genomics* **9**, 555,
950 doi:10.1186/1471-2164-9-555 (2008).

951 51 Wicker, T. *et al.* Impact of transposable elements on genome structure and
952 evolution in bread wheat. *Genome Biol* **19**, 103,
953 doi:[10.1186/s13059-018-1479-0](https://doi.org/10.1186/s13059-018-1479-0) (2018).

954 52 Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate
955 comparisons between grasses and palms: synonymous rate differences at the
956 nuclear gene *Adh* parallel rate differences at the plastid gene *rbcL*. *Proc Natl
957 Acad Sci USA* **93**, 10274, doi:10.1073/pnas.93.19.10274 (1996).

958 53 Krzywinski, M. *et al.* Circos: an information aesthetic for comparative
959 genomics. *Genome Res* **19**, 1639-1645, doi:10.1101/gr.092759.109 (2009).

960 54 Schield, D. R. *et al.* The origins and evolution of chromosomes, dosage

961 compensation, and mechanisms underlying venom regulation in snakes.
962 *Genome Res* **29**, 590-601, doi: 10.1101/gr.240952.118 (2019).

963 55 Yan, H. *et al.* New evidence confirming the CD genomic constitutions of the
964 tetraploid *Avena* species in the section *Pachycarpa* Baum. *PLoS One* **16**,
965 e0240703, doi:10.1371/journal.pone.0240703 (2021).

966 56 Fominaya, A., Loarce, Y., Montes, A. & Ferrer, E. Chromosomal distribution
967 patterns of the (AC)₁₀ microsatellite and other repetitive sequences, and their
968 use in chromosome rearrangement analysis of species of the genus *Avena*.
969 *Genome* **60**, 216-227, doi:10.1139/gen-2016-0146 (2017).

970 57 Fu, S. *et al.* Oligonucleotide probes for ND-FISH analysis to identify rye and
971 wheat chromosomes. *Sci Rep* **5**, 10552, doi:10.1038/srep10552 (2015).

972 58 Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein
973 sequence alignments into the corresponding codon alignments. *Nucleic Acids
974 Res* **34**, W609-612, doi:10.1093/nar/gkl315 (2006).

975 59 Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular
976 biology open software suite. *Trends Genet* **16**, 276-277,
977 doi:10.1016/s0168-9525(00)02024-2 (2000).

978 60 Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with
979 low memory requirements. *Nat Methods* **12**, 357-360, doi:10.1038/nmeth.3317
980 (2015).

981 61 Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with
982 high-throughput sequencing data. *Bioinformatics* **31**, 166-169,
983 doi:10.1093/bioinformatics/btu638 (2014).

984 62 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor
985 package for differential expression analysis of digital gene expression data.
986 *Bioinformatics* **26**, 139-140, doi:10.1093/bioinformatics/btp616 (2010).

987 63 Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a
988 trade-off between reduced transposition and deleterious effects on neighboring
989 gene expression. *Genome Res* **19**, 1419-1428, doi:10.1101/gr.091678.109
990 (2009).

991 64 Edger, P. P. *et al.* Origin and evolution of the octoploid strawberry genome.
992 *Nat Genet* **51**, 541-547, doi:10.1038/s41588-019-0356-4 (2019).