Supplementary Materials

S.1 DM Tutorial

S.1.1 Morse theory and 1-stable manifolds in the smooth case

We first provide an informal description of the relevant part of Morse theory that motivates the graph reconstruction
algorithm we use. Let f : R? — R be a smooth function on d-dimensional Euclidean space. In our applications for
processing neuron images, the domain is either R? for 2D images or R? for 3D volumetric image data. The gradient
vector at a point p € R? is defined as '

of of ﬂ}T

8X1’8X27.”’8Xd

Vi) =-[

where (xi, . ..,xq) represents an orthonormal coordinate system for R?. In simple terms, V f(p) represents the steepest
descending direction along which the function f decreases fastest when moving away from z, and its norm ||V f(p)|| is
the rate of this change. Gradient vectors for all points in R? form a vector field on R¢, called the gradient vector field.
A point p with vanishing gradient; that is, Vf(p) = [0,0,...,0]7, is called a critical point; otherwise, it is a regular
point. A critical point p of f is non-degenerate if the Hessian matrix (formed by all second-order partial derivatives

[%]) has full rank; otherwise, it is degenerate.
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Supplementary Fig. 1| Three types of critical points (of index 0, 1, and 2) for a Morse function defined on R2.

A Morse function is a smooth function where all critical points are (i) non-degenerate and (ii) have distinct function
values. Morse functions are well-behaved functions whose critical points also have nice characterizations. For example,
by Morse Lemma [46], for a Morse function f on R?, there are d + 1 types of critical points, local minima (index
0), local maxima (index d), and (d — 1)-types saddle points (of indices from 1 to d — 1). In the case of a 2D Morse
function f : R? — R, there are three types critical points, local minima, local maxima, and saddle points as shown
in Fig. 1. Critical points capture local behavior of the function f. The global variation can be partially captured by
concepts such as integral lines and (un)stable manifolds. In particular, an integral line of f is a maximal path in R?
such that the tangent vector of this path at any point coincides with the gradient V f(z). Intuitively, imagine that
we view the graph of the function f:R% — R as a "terrain” defined in R%!; see Fig. 2 for an illustration where the
last coordinate (i.e, the height of each point) corresponds to f(x) at each z € R?. The lift of an integral line to the
surface of terrain is a “flow line” on the terrain that a water drop will follow when flowing in the direction of the
steepest descending direction at any point. See the green solid curve in Fig. 2 for an example of a flow line, which
starts at maximum ¢; and ends at minimum wv.

Consider a flow line. The water drop will keep flowing till it reaches a point where there is no descending direction
— these are exactly points where gradients vanishes, namely critical points. Hence flow lines (thus integral lines) have
to “start” and “end” at critical points. The unstable manifold of a critical point is the union of points along all
integral lines that ultimately “end” at this point. We are particularly interested in the 1-unstable manifolds, which
are those flow lines that end at index d — 1 saddle points. In the example of a function defined in R?, these are pieces
of curves that connecting maxima with saddles; see the white dotted curves in Fig. 2.

Such 1-unstable manifolds for saddles may be conceptualized of as “mountain ridges” of this terrain (graph of
function f), connecting mountain peaks (maxima) to peaks (maxima) via saddles, and separating different valleys
(basins of minima). There is also a dual concept of 1-stable manifolds, that correspond to “valley ridges”, connecting
minima to minima via saddles and separating mountain peaks.

Note that this is a negative version of the sign convention used in classical Morse theory. We use this negated version as it is then aligned with
the steepest descending direction of f; while the usual notion of the gradient vector indicates the steepest ascending direction.



In our setting, we can view a 2D image or a 3D image as a real valued density field on R? or R?, respectively.
Consider the terrain (graph) of this density field. The mountain ridges of this terrain can capture where strong signals
of cell processes are. We will aim to use the l-unstable manifold of this density function to capture its mountain
ridges and further to capture the neuronal cell processes.

Supplementary Fig. 2| White dotted lines are the union of 1-unstable manifolds. The green curve is an example
of a flow line. Pink points are maxima, yellow points are minima, while the blue point v is a minimum.

S.1.2 Discrete Morse theory

Numerical data on a computer are discretely sampled and do not equal the mathematical notion of a smooth function.
We can view the sampled 2D or 3D image data that as a discretization of a smooth function p defined on R? or
R3. While one could compute the 1-unstable manifolds from a continuous extension of the discrete evaluations of p
at pixels (e.g, a piecewise-linear approximation), this could to be sensitive to approximation and numerical error as
(un)stable manifolds are defined based on gradients. Simplifying / denoising the resulting (un)stable manifolds could
be challenging.

Discrete Morse theory, a combinatorial analog of the classical Morse theory for cell complexes, was proposed by
Forman|23, 47] as a mathematically well defined but explicitly discrete and computationally viable approach to Morse
theory suitable for analysis of real life data sets.

We provide a brief informal description of some concepts from discrete Morse theory that are relevant to the present
DM-based graph reconstruction algorithm. We utilize simplicial complexes, which are complexes consisting of building
blocks called simplices, which in 2D consist of points, line segments, triangles and pyramids, glued appropriately along
their faces. A d-dimensional (geometric) simplex is the convex combination of d+1 affinely independent points. Thus 0,
1, and 2-simplices correspond to vertices, edges, and triangles. See Fig. 3 for an example of a 2-dimensional simplicial
complex, triangulating a square, consisting of a collection of vertices, edges, and triangles. In our applications, we use
cubical complexes instead of simplicial complexes to represent images, where pixels are vertices, and cells are squares
instead of triangles. However, we will simplicial complexes to illustrate these concepts for simplicity of presentation.

Given a simplicial complex K, a discrete gradient vector is a pair of simplices (o, 7) such that o is a co-dimension
one face of 7; e.g., 7 is an edge incident on a vertex o, or 7 is a triangle incident on an edge o, and so on. Note
that a discrete gradient vector is therefore a combinatorial pair, instead of a true vector. Nevertheless, a given pair,
say (o,7), still indicates a “flow direction” from o to 7, much like in the case of smooth Morse theory; see Fig. 3
where each discrete gradient vector (o, 7) is indicated by a vector from o to 7. A V-path is a sequence of simplices
00570, 01, T1s - - - Ok, Tk, Ok+1 such that for any ¢ € [0, k], we have (i) the pair (o;,7;) is a discrete gradient vector, and
(ii) 0441 is a co-dimension one face of 7. A V-path is cyclic if ag = ag41; otherwise, it is acyclic. See Fig. 3 for some
examples.

Given a discrete gradient vector field M of K, a simplex o is critical if it is not involved in any pair (ie., discrete
gradient vector) in M; intuitively meaning that the gradient is “vanished” at o. The index of this critical simplex
is its dimension. Intuitively, given a triangulation K of a 2D domain and a discrete gradient vector field M, critical
vertices, critical edges, and critical triangles are analogous to minima (index-0 critical points), saddle (index-1) and
maxima (index-2) for a smooth Morse function defined on this domain. The l-unstable manifolds corresponding to
saddles are V-paths connecting critical edges (saddle) to critical triangles (maxima). Each such V-path is a sequence
of alternating edges and triangles. If K is a triangulation of a d-dimensinal domain, such a V-path will be sequence
of (d —1)-simplices and d-simplices, which can be expensive to compute and manipulate. Hence in practice, following
[22, 24], we use the following trick: Instead of aiming to compute the 1-unstable manifold of an input function (viewed
as a density field) p to capture the mountain ridges, we calculate the I-stable manifolds of the negation of p, that is,
for —p. The 1-stable manifolds capture “valley ridges” connecting the minima (bottom of the valleys) with saddles.
In the discrete Morse setting, 1-stable manifolds correspond to V-paths connecting critical edges to critical vertices
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Supplementary Fig. 3| (a) A discrete gradient vector field. (b) Examples of V-paths analogous to l-unstable
manifolds (connecting t1/t2 to e1) and 1-stable manifolds (connecting v to e2). (Image courtesy of [3].)

via sequence of alternating vertices and edges (regardless of the dimension of the domain), which are much easier to
compute and maintain.

Finally, another advantage of using discrete Morse theory is that it provides a simple and combinatorial method
for simplifying a given discrete gradient vector field W to W’ to reduce the number of critical simplices. This is
achieved via the so-called Morse cancellation operation: Specifically, a pair of critical simplices a and § of dimension
p and p+1 (e.g, a critical vertex o and a critical edge ) is cancellable if there is a unique V-path connecting them.
Given such a cancellable pair of critical pairs (¢, ), we can simply “invert” the direction of the gradient vectors in
this path and this will produce a new gradient field where o and 8 are no longer critical, while other critical simplices
stay the same. This operation can be repeatedly performed as long as there are cancellable pairs of critical simplices
to reduce the number of critical simplices, and thus simplify the discrete gradient vector field.

Note that any pair of critical simplices can be cancelled as long as the unique V-path condition is satisfied. To
decide which pairs to simplify so as to remove the “noise” in the input density field, we will use another topological
concept called the persistent homology which we briefly introduce next.

S.1.3 Persistent homology

Persistent homology [3-5, 48-50] is a fundamental recent development in the field of computational topology, under-
lying many topological data analysis methods. Below we provide an intuitive description about it, to help explain
how it can be used to measure importance of critical points. See [3] for more detailed introduction of these topics.

First we describe the idea for the smooth setting, where we assume that we are given a smooth function f : X - R
defined on a space X (e.g, X is a square for the case of 2D image). Now imagine we trace how the function f evoles
on X via the following growing sequence of subspaces of X:

th gth c.- gXtm = X,with t; <ty <---tn,

where X; := {z € X | f(z) < t} is the so-called sub-level set of f at t. This is called the sub-level set filtration
of X w.r.t. f, which intuitively sweeps X by increasing f values, and tracks the subspace X; already swept. In
particular, during this process, sometimes new topological features (such as components, loops/handles, voids) can
appear, and sometimes they disappear. These topological features can be captured algebraically by the so-called
homology classes. The creation (birth) and destruction (death) of such features can be captured by the so-called
persistent homology [49], which can be summarized by a simple summary, called the persistence diagram. More
precisely, it turns out that the birth and death of topological features (homology classes) can only happen when the
sublevel set X; sweeps through a critical point of f. We can therefore track the birth and death events by a collection
of persistent pairings I1; = {(vp, vq)}, where each pair (vp, vq) contains the critical points where certain topological
feature is created and killed. Their function values f(vp) and f(vg) are referred to as the birth time and death time
of this feature. The corresponding collection of pairs of (birth-time, death-time) is called the persistence diagram,
formally, dgm(f) = {(f(vs), f(va)) | (vs,vq) € I;}. Each persistent point (f(vs)), f(va)), corresponding to the birth
time and death time of some homological features through the filtration, gives rise to a point in the birth-death plane,
as shown in Fig. 4 where we provide a simple example of 1D function. (For example, in this example, as we sweep
pass minimum x3, a new component is created in the sub-level set. This component is merged to an older component
(created at x1) when we sweep past critical point (maximum) z4. This gives rise to a persistence pairing (3, z4)
corresponding to the point (f3, f4) in the persistence diagram.) The importance of the topological feature captured
by the persistent pairing (vs, vg) is captured by its persistence, defined as | f(vq) — f(va)l, as it measures the “lifetime”
of this topological feature through the filtration.



Equivalently, one can also represent a persistent point (¢p,t4) as an interval, called a persistent bar, and the
collection of persistent points then give rise to a collection of “bars”, giving rise to a representation called persistent
barcode. In Fig.2 of the main text, we used the persistence barcode representation to make the relation to the persistent
pairing giving rise to each bar more clear.

Finally, we note that there is an algorithm [9] based on matrix reduction to compute persistent homology, persistent
pairings and the resulting persistence diagram.

f deaql time
(f1> fG)
* . (.f2, f5)
f4 S gfi’;, f4) )
- ) f‘?) birth tim;

Supplementary Fig. 4 | (a) A simple 1D function f : R — R. Its persistence pairings of critical points are marked by
the dotted curves: Iy = {(z1, ), (z2,25), (x3,24),...}. (b) shows its corresponding persistence diagram dgm(f) =

{(f1, f6), (f2, f5), (f3, f1), ...}, where f; = f(x;) for each i € [1,6].

Persistence algorithm in discrete setting. In the discrete setting, suppose we are given a triangulation K and a
function f : V — R defined at vertices of K. We can simulate the above sub-level set filtration by the so-called lower-
star filtration. Specifically, one can think that the function f on V is extended to a function on all simplicies in K by
f(o) = max,e, f(v), for each simplex o € K (e.g, for an edge o, its function value f(o) equals the larger function
value of its two vertices). One can then take the sublevel-set filtration of this simplex-wise valued function. Next, we
can run the standard persistence algorithm [9] to this filtration, and the output is a collection of pairs of simplices
II;. For each pair of simplices (o, 7) € IIy, it intuitively captures the birth and death of some homological feature in
the sublevel sets. Analogous to the smooth setting, this pair of simplices gives rise to a persistent point (f(o), f(7))
in the persistence diagram, and its persistence per(o,7) = |f(7) — f(0)| measures the lifetime (importance) of this
feature. We will use these pairs and their importance as captured by the persistence to guide the simplification of
discrete gradient vector field (and thus the resulting 1-(un)stable manfiolds).

S.1.4 Persistence-guided discrete Morse based graph reconstruction algorithm

We now put all pieces together and introduce the persistence-guided discrete Morse based graph reconstruction
algorithm [24, 44], denoted by DiMorSC ().

On the high level, given a density function p : X — R on a domain X C R%, note that we will consider the
negation f = —p of the density function, and aim to compute the 1-stable manifolds (instead of 1-unstable manifolds)
to capture the valley ridgets (instead of mountain ridges). This is for the purpose to simplify the manipulation of
discrete gradient vector field in the discrete Morse setting. Intuitively, we first compute the persistence pairings of all
critical points of the function —p. We will then simplify the density function p by “canceling” those pairs of critical
points with low persistence, and only consider the 1-stable manifolds of remainder saddles with large persistence
bigger than a given threshold ¢. The union of such 1-stable manifolds will capture important valley ridges of —p (and
thus mountain ridges of the density map p), and is the output reconstructed graph.

The above intuition can be translated to the discrete Morse setting, and we present the resulting algorithm in
Algorithm 1, which is based on the simplified algorithm proposed by [22].

The original algorithm takes a triangulation K of the domain of interests and a density function p given at the
vertices of K as input. In our case, since our inputs are 2D images, instead of a triangulation, we take K to be the 2-
skeleton (vertices, edges, and squares) of the 2D-cubical complex of the domain and use PHAT to compute persistence
directly for such cubic complex. This does not change any part of the algorithm. Note that the algorithm will take as
input a user-defined persistence threshold 7; only 1-stable manifolds of saddles (critical edges) with persistence larger
than 7 will be computed and output.



Algorithm 1 G = DiMorSC (K, p, 7)

1: Persistence Computation
- Compute persistence pairings induced by lower-star filtration of K with respect to -p
2: Obtain Simplified Discrete Gradient Vector Field
- Initialize trivial vector field
- For each persistence pair, perform cancellation if possible and persistence < 7
3: Collect Output
- compute the 1-stable manifold of each critical edge with persistence > 7
4: return union of 1-stable manifolds as reconstructed graph

Step 1.

Given a 2D-cubic complex K with a density function p : V. — R defined at vertices V' of K, we first perform the
persistence algorithm to the lower-star filtration of p’ = —p. The output is a collection II, of pairs of cells in K
(e.g, vertex-edge pairs or edge-square pairs). Note that as mentioned earlier, we use the negation of the density map
p' = —p in our algorithm so that it is easier later to compute the V-path between critical points (minima) and
critical edges (index-1 saddles). In our implementation, we adapted DIPHA[40] to compute persistence because it is

a distributed persistent homology algorithm which helps to reduce computation time.

Step 2.

The second step of the algorithm is to compute and simplify discrete gradient vector field. In theory, one should start
with an initial trivial vector field W where there is no discrete gradient vectors (that is, all simplices are critical at
the beginning). One can then go through the persistence pairs from the output II, of Step-1: any persistence pair
(o, 7) with persistence < 7 is considered as noise, and one then performs the Morse Cancellation operation to cancel
them if possible. In the end, this would give rise to a new discrete gradient vector field W/, where all low-persistence
critical simplices are removed (if possible).

However, to implement this idea, [22] shows that in fact one does not need to explicitly perform Morse cancellations.
Instead, all that is needed is to calculate the spanning forest that is made up of all negative edges (edges that are
paired with vertices in IT;) with persistence less than or equal to 7. Positive edges (edges paired with a square) and
edges with persistence greater than 7 are not part of the spanning forest. No explicit discrete gradient vector field
needs to be computed nor maintained. This spanning forest contains sufficient information for the Step 3 below. This
step takes linear time once the persistence pairings are computed in Step 1.

Step 3.

The third step of the algorithm is to compute the 1-stable manifold of each critical edge whose persistence is at least 7
in the simplified discrete gradient vector field. As shown in[22], for each such edge, the 1-stable manifold is equivalent
to the union of the edge with the paths from both vertices to the sink of their corresponding tree in the spanning
forest computed in Step 2. The union of all 1-stable manifolds is outputted by the algorithm as the reconstructed
graph. Again we note that the 1-stable manifolds of -p are analogous to the 1-unstable manifolds (mountain ridges)
of the density field p.

We refer the output of this algorithm as the Morse skeleton graph, G. As shown in Fig. 1, this skeleton graph will
then feed to the Simplification Step of the entire pipeline, to further remove noise, false branches and output the final
tree/forest summary and produce vectorized objects for quantification.





