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S1. TECHNICAL DETAILS OF NOISE MEASUREMENTS

As described in the main text, upstream and downstream noise was measured in two
distinct amplifiers. Both amplifiers are connected in parallel to an RLC circuit. In our case
the inductance comes from a superconducting coil located at the mixing chamber plate, the
capacitance is the line capacitance leading from the sample to the homemade cryo-amplifier
located at the 4.2K plate, and R = G5} = h/(ve?) is the sample resistance. We configured
the inductance of the coils such that the resonance curves of the two amplifiers don’t overlap:
the central frequencies are fp = 693kHz and fi; = 633kHz (with indices D and U denoting
“downstream” and “upstream”, respectively). The band width of both circuits is 15kHz
(14kHz) for v = 2/3 (v = 3/5). In this case, in the frequency range being picked up by
the downstream amplifier, the upstream amplifier contact is simply a short to ground (see

Fig. S1 for a detailed description of the measurement circuit).

This configuration simplifies the analysis of the downstream noise, which is used for

FIG. S1. False color SEM image of device B1, similar to Fig. 3a in the main text. Here, we have
denoted all hot spots and noise spots that form in the experiment. In addition, we have specified
the circuit components used in our measurements: the color of a component corresponds to its

temperature: room temperature (black), 4.2K (dark blue) and 6mK (light blue).
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FIG. S2. Amplifier calibration. Voltage noise strength Sy as a function of the mixing chamber
temperature T for (a) the downstream amplifier and (b) the upstream amplifier. The slope of the

linear fit is the gain squared (A2).

extraction of the temperature 7,, of the central floating island 2,,. This is described in
more detail in Sec. S12. The measured noise in the downstream amplifier includes several
contributions. The major contribution comes from Johnson-Nyquist noise generated at
the central floating contact due to its elevated temperature. A second contribution comes
from reflected upstream noise. In the frequency bandwidth where the downstream noise
is measured, both the upstream amplifier contact and the source contacts S; and S, are
effectively grounded (the source contacts are connected via a bnF capacitance to ground).
Therefore, the current noise generated at the noise spots, next to these contacts, flows to

,,, and from there to the downstream amplifier. For more details, see Sec. S6 B 1 below.

S2. AMPLIFIER GAIN AND TEMPERATURE CALIBRATION

The method used to calibrate the amplifier gain and electron temperature is based on
Johnson-Nyquist noise®52: Sy = 4A2kpT /Gor, where A is the gain of the amplifiers, kp is
the Boltzmann constant, and 7" is the temperature. Linearly fitting the noise with the fridge
temperature (see Fig. S2), allows us to extract the gain A and the base noise of the amplifiers

Shase- The base noise is used to extract the temperature Tj of the electrons. At the lowest



FIG. S3. Injected power P vs T2 — T, 02 , where T}, and Tj are the Ohmic contact and base temper-
atures respectively. The colored markers (low temperature data T,, < 25mK) were linearly fitted
to extract kop. The black markers are for high temperature points, which were not included in the
fit. Data is plotted for v = 1,2, 3 in orange, green, and blue respectively. The slopes of the linear

lines fit well to expected values of kop/ko = ng = 1,2, 3 respectively.

temperature (typically below 20mK) the electron temperature can be higher than that of
the cryostat. We extract Ty from: Ty = (Sy — Spase)Gor/(4A%kp). In our measurements
the cryostat temperature was always 6mK and Ty was measured between 11mK and 14mK
for all considered Hall states. An interesting observation is that T tends to be smaller for
states with larger kor, such as v = 3 and v = 3/5, and a somewhat larger for states with
small ko such as v = 1 and v = 2/3. This observation suggests that at low temperatures,

the most efficient cooling mechanism of the devices is via the edge modes.

S3. THERMAL CONDUCTANCE MEASUREMENT OF INTEGER STATES

To check that the thermal conductance measurements work properly in our B-devices
(depicted in Fig. S1), we performed thermal conductance measurements at the three integer

fillings v = 1,2,3 (see Fig. S3). The measurement scheme was identical to the fractional
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states and is described in the main text (though for the integer states, all length-controlling
gates were not operational, thereby fixing L to the smallest available value). We find good
agreement with the expected quantizations kor /Ko = ng. For the integer states, where there
are only downstream modes, neither equilibration nor dissipation influences the thermal
conductance. The suppression of a single quantum of thermal conductance due to heat
Coulomb blockade®** was not observed in our devices due to the relatively large central

Ohmic contact.

S4. ESTIMATES OF THE THERMAL EQUILIBRATION AND DISSIPATION
LENGTHS

In the main text, we demonstrated that the decay of the upstream noise with distance L
is essentially the same for all considered filling fractions, and is well described by a simple
exponential with the decay length ~ 200 um (see Fig. 2b in the main text). This observation
strongly suggests that the dominant mechanism determining the decay of the upstream
noise is dissipation (leakage) of the energy from the quantum-Hall edge to the environment,
with the characteristic decay length lg4;s &~ 200 pm. At the same time, inter-mode thermal
equilibration is not operative on the studied distances. In this section, we present further
details of the analysis of the data and the fitting procedure supporting these conclusions.

In Ref. S5, the authors derived, using a phenomenological model, a generic formula for
the temperature of upstream modes, T;(L) in the presence of equilibration and dissipation.

When the upstream modes are sourced at a temperature 7;, and the distance is L, then

1 MT,, — T5)

2 (N] (@)  loaflan) S AL Jlog] + (A/2) coh ALl Y

TH(L) = Tg +

Here, n = (nyna)/(na — nu), N = (ny +naq)/(ng — ny), and A = \/ﬁ —1—4;;1 (% + l{i) In
order to have a quantitative bound on le,, we fit our measured results from device A (Fig. 2b
in the main text) to Eq. (S1). We assume that both loq and lgis do not change between
different states and that these parameters are the approximately the same for different
modes on the same edge. We calculate the goodness of the fit of the model described by
Eq. (S1) with different equilibration and dissipation lengths. The only parameter that we
fit separately for each state is the noise amplitude at the shortest length (which is affected

by micropscopic properties of the hot-spot, and thereby beyond experimental control). The
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FIG. S4. (a) Goodness of fits for the measured noise profiles, as a function of the equilibration
length lq and the dissipation length lqis. No good fit exists for leq < 200pm. On the other hand, our
data is consistent with leq — 00 and lgqis = 200um. The four colored points are at: loq = 1050um,
lais = 220pum (green); loq = 330um, lgis = 330um (blue); loq = 150pm, lqis = 550um (orange);
loq = 50pum, lgis = 1050pum (yellow), and correspond to the four fits presented in (b-e). While the
green and blue curves fits well to all filling factors, the orange curve fits poorly at v = 3/5, and

the yellow curve fits poorly at v =5/3 and v = 3/5.

goodness of the fit is defined as

leg, Lais ) S, ( ))2
2 - ; dis excess
X ( eq> ldlS - N Z & (L)2 ) (82)

where S(leq, lais, L) o< Ty (L) is the expected noise according to Eq. (S1), SY

excess

(L) is the

measured noise, o(L) is the uncertainty in the noise, and N = 32 is the total number of

6



measured points (eight points for each of four different filling factors). The sum is over all
the different lengths of all the different fillings. In Fig. S4(a) we show xy~! = (x?)7'/? as
a function of leq and lgis. We see that our measurements are consistent with a very long
equilibration length, and a dissipation length of roughly 200um. The goodness of the fit
becomes poor for lo, < 200pm, for any value of lgis. The corresponding fits at four distinct

points are presented in Fig. S4(b-e) for all the measured states.

S5. ESTIMATION OF THE CHARGE EQUILIBRATION LENGTH

It was predicted in Ref. S6 that the two-terminal electric conductance exhibits a crossover
from the non-equilibrated to equilibrated value (e.g., from 4/3 to 2/3 at v = 2/3) when the
length is increased. Such a crossover was subsequently observed experimentally in an engi-
neered v = 2/3 edge®”. In contrast, almost all previous experiments on conventional edges
exhibited equilibrated values of the electric two-terminal conductance (i.e., Gor = ve?/h),
indicating very short charge equilibration lengths. A slight deviation in the conductance
value indicating incomplete charge equilibration has been reported at the non-engineered
v = 2/3 edge for very short edge distances®®. In order to study the equilibration of charge in
our devices, we sourced an AC voltage at the resonance frequency of the upstream amplifier
(i.e., not a DC current like in the main measurements) from S; and measured the resulting
voltage in the upstream amplifier. Given a source voltage Vg, and assuming that Gy < Gp,
we get using standard Landauer-Biittiker formalism

Gy
3Gar

‘/amp = VS <S3)

Here, Gy and Gp are the conductances from €2, to the upstream (downstream) amplifier,
with Gy + Gp = Gaop. The factor of 3 in Eq. (S3) comes from the three arms of the device.
For full charge equilibration, the entire charge current flows downstream. Thus, the ratio
Gy /Gaor serves as a quantitative measure of deviation from full charge equilibration.

Our results for Gy /Gar are shown in Fig. S5. For v = 1 and v = 3, we find Gy /Gar = 0
as expected: for integer filling factors, the edge hosts only downstream modes, i.e. there
is only downstream charge transport. By contrast, for v = 2/3 and v = 3/5, and for
short propagation lengths, we observe non-zero values Gy /Gar, indicating incomplete charge

equilibration. However, the observed values of Gy /Gar are very small even for the shortest
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FIG. S5. Upstream charge conductance Gy (normalized to Gor = ve?/h) vs propagation length

>3]

L. When L is short, there is a finite upstream conductance for v = 2/3 and v = 3/5, but not for
v =3 and v = 1.The upstream conductance is always small (below 7 x 10~3Gaor for v = 2/3 and
below 3 x 10~*Gar for v = 3/5) and decays with L, in accordance with charge equilibration. At a
higher temperature of Tj = 21mK (red markers), Gy decreases (vanishes fully for v = 2/3), ruling
out the possibility that the upstream current is a result of a finite longitudinal conductance. Blue
markers denote a lower temperature 7' = 11mK for v = 3 and v = 3/5, T' = 13mK for v = 1,

T = 14mK for v = 2/3, respectively.

length of 15um. Specifically, we found Gy /Gar = 7 x 1072 and 3 x 107 for v = 2/3 and
v = 3/5, respectively. This implies that these edges are nearly fully electrically equilibrated
already for this short length, i.e., the charge equilibration length is substantially shorter
than 15um.

In order to rule out the possibility that the upstream current is a result of bulk currents
due to finite longitudinal conductivity, we repeated the measurement at a higher tempera-
ture. We observed that GGiy decreases when the temperature is raised to 21mK. This behavior

is consistent with charge equilibration, since the charge equilibration length is expected to in-



crease with increasing temperature. At the same time, upstream transport via bulk currents
would show an opposite behavior, as the longitudinal conductivity is expected to increase
with temperature. Thus, the observed temperature dependence confirms that the non-zero
values of Gy are due to incomplete electric equilibration between the counterpropagating
modes. To estimate the value of the corresponding equilibration length lecq, we recall®®>? that

the conductance approaches exponentially its limiting (non-equilibrated) value for L > lecq.

Thus, we estimate the L dependence of Gy for v = 2/3 and v = 3/5 via
Gy (L) = Gy (0) e™/%, (84)

where G7(0) = e?v_/h is the zero-length upstream conductance, and v_ is the total filling
factor of the upstream modes. We find [$, &~ 4pm for v = 2/3 (with v_ = 1/3) and [, ~ 2pm
for v =3/5 (v— = 2/5). These small values of the charge equilibration lengths stand in sharp
contrast to the much larger estimate of the thermal equilibration length obtained in the main

text.

S6. THEORETICAL MODEL OF THE DEVICE
A. Setup

In this Section, we theoretically model an experimental device of type Bl and B2 in the
main text, as depicted in Fig. S6. The device consists of three arms (labelled 1—3), separated
by insulating regions and connected to a central floating contact €2,,,. Each arm is tuned to
filling factor v and the associated edge states have one incoming and one outgoing branch
with respect to €2, and to the charge-flow direction (indicated by arrows in Fig. S6). We
focus on such FQH states that exhibit counterpropagating edge modes, so that each branch
hosts both downstream and upstream modes. Assuming efficient charge equilibration, non-
equilibrium charge currents flow only downstream (in the direction of arrows), which is in our
convention the counter-clockwise direction in each of the arms (see the chirality sign in the
bottom right corner of the figure). By contrast, we assume that the thermal equilibration
between edge channels is very weak. On arm 3, there are two electrodes U and D, with
attached amplifiers Ay and Ap (where subscripts indicate the upstream and downstream
locations with respect to €2,,), in which voltage/current fluctuations are measured. Except

for €,,, all electrodes are assumed to be at the base temperature Tj,.
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FIG. S6. Device schematics. The device consists of three arms (labels 1, 2, and 3), separated by

Y

insulating regions (black stripes) and connected to the central contact €2,,. Black arrows denote
the direction of charge flow along the edge states in each arm. Impinging currents +1 heat up 2,
by Joule heating from voltage drops at the hot spots (red regions) and inside 2,,,. Partitioning of
particle-hole pairs occurs at the noise spots (yellow regions). Excess noise is measured in contacts
U (upstream from €2,,,) and D (downstream from 2,,,), with the help of amplifiers Ay and Ap. The
upstream propagation length, between €2, and Ay, is denoted L. Current and voltage fluctuations

are labelled §V and 61 respectively. For the meaning of specific fluctuations, see Secs. S6 B 1- S6 B 2.

The device is operated by the currents [; and [, biasing the arms 1 and 2 in source
contacts S; and So, respectively. The source contact in the arm 3 is grounded, as marked
by the label G in the figure. The two injected currents have equal magnitude but opposite
sign: [; = —I, = I. The average voltage V,, of the central contact and the injected electrical

power P are then given as

L+ 1

Vin = 2Cr =0, (S5)
I? I?

P=2x = — S6

2G2T GQT ( )

where Gor = ve?/h = vGy. While V,,, = 0, the floating electrode €2,, is subject to voltage

fluctuations 0V/,.
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In Fig. S6, we have also marked hot spots and noise spots. Hot spots are regions where the
injected power dissipates and heat is generated. There are two such hot spots that heat €2,,;
in addition, a part of the heat is dissipated inside €2,,. The noise spots are regions close to
contacts where partitioning of charge due to edge impurity scattering may give rise to excess

10,811 This happens if heat from hot spots or heated contacts reaches the noise

dc noise
spot. Due to the chiral nature of the edge and efficient charge equilibration, partitioning by

scattering in regions other than noise spots does not contribute to the excess dc noise.

Details of the theoretical analysis of heat transport and noise in this setup are presented

in the subsequent Sections. More specifically:

a) In Sec. S7 we develop a microscopic model for the computation of noise, under the
assumption of vanishing thermal equilibration between edge channels, and derive formulas

for the noise on an edge segment connecting two contacts with different temperatures.

b) In Sec. S8 we use the results of Sec. S7 to compute the downstream noise, i.e., the

excess noise SP

excess

in the downstream contact D (with amplifier Ap). This result allows
us extract the central-contact temperature T,, from experimental measurements of the

noise.

¢) In Sec. S9 we use the results of Sec. S7 to compute the upstream noise, i.e., the excess
noise SY .., in the upstream electrode U (with amplifier Ay) as a function of Tj,,.

d) In Sec. S10 we establish a power-balance relation between the injected electrical power P
and the outgoing edge heat current Je%ge = 3kor (T2 — T3)/2. This relation, in combina-

tion with the results for the noise, allows us to extract experimentally the heat conduc-

tance G = korT of the device (which is naturally measured in units of ko = 72k%/3h).

e) In Sec. S11 we discuss theoretical predictions for the heat conductance kor/ko in the

regime of vanishing heat equlibration.

f) A comparison of results from the theoretical analysis with the experiment is presented

in Sec. S12.
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B. General analysis of downstream and upstream noise

As a starting point for the theory, we derive here expressions for the noise in the two

amplifiers from a general analysis of the device.

1. Downstream noise

We begin by computing the downstream noise. We note first that, since we are interested
in the noise at a low frequency w,,, the condition of charge conservation at the central
Ohmic contact €2, should be imposed. The charge conservation holds under the condition
(h/e*)w,C < 1, where C' is the capacitance of the island. Equivalently, this condition can
be written as w,, < F¢, where Eg ~ ¢?/C is the charging energy of Q,,. Let us emphasize
that, at the same time, the capacitance C is assumed to be sufficiently large such that
Ee < kgTy. This ensures that €2, efficiently equilibrates impinging edge channels, so that
heat Coulomb blockade®*5* is not operative.

The incoming and outgoing current fluctuations on €2, are (see Fig. S6)

SI = (SIS + 01g,) + (618 + 61s,) + 0L + 0Ly — 61y — 6o — 613, (S7)
SIOM = 3GordViy, + 6100y + 6140y + 610, (S8)

In Egs. (S7) and (S8), dIg, are non-equilibrium current fluctuations impinging on €,,. These
contributions originate from heat back-propagating from €2, to the noise spots (yellow re-

S$10,811

gions) close to the source contacts Likewise, 01,,; and 6/ come from charge par-

titioning in the noise spots close to the central contact €2, and the upstream contact U.

Finally, 61§, 615

m,i)

and 61! are equilibrium current fluctuations from sources, the central
contact (2,,, and the upstream contact U, respectively. Their noise correlations are given by
Johnson-Nyquist noise with their respective temperature.

As discussed in Sec. S1, the upstream contact is assumed to be grounded at the fre-
quency range where downstream noise is measured. Then, the current fluctuations from the
upstream contact U read §I{! + 617, which appear in Eq. (S7).

Equating (in view of charge conservation) 61" = §I°"* and solving for GordV,,, we find

1
GardVin = (AISl 4 Alg, + ALy — ALy — ALy — AImg), (S9)
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where Al; = 0It" + §1; for i = (9)),(S2),(m, 1), (m,2),(m,3), or U. Next, by equating

incoming and outgoing fluctuations at the downstream contact D, we find
(6125 + 81 3) + GardViy = GardVp + 617, (S10)

where §Vp are the local voltage fluctuations and It are thermal fluctuations associated with
the temperature T of the contact D.
The excess downstream noise is defined as
SD

excess

= (GQT(SVD)Q — 4G2T/€BT0 . (Sl]_)

By inserting GordV, from Eq. (S9) into Eq. (S10), solving for GordVp, and substituting in
Eq. (S11), we obtain

4—= 1 —
Sexcess = §(Afm,3)2 + (01)” + g [(Afm,l)2 + (Alp2)* + (Alg,)* + (Alg,)* + (AIU)2]
— 4GorkpTh
= g(AIm) + § [Sexlcess + Sexzcess + Sexcess] - §G2TkBTO' (812)

Here we have used independence of different sources of fluctuations, which implies that

the cross-correlations are zero. In the final equality, we assumed that (Al ;)* = (Al,)

are independent of j, i.e., equal for all three arms. We have also defined excess noises

Si o = (AL)? = 2GarksT, for i = (Sy), (Sz), and U. Furthermore, ((5[7}51)2 = 2GorkpTy.

Let us analyze the final form of Eq. (S12). The first two terms there represent two distinct
contributions to the downstream noise. The first term is the thermal noise of €2,,, (see Sec. S8
for a detailed discussion), while the second term results from the sum of excess noises from

partitioning close to the upstream amplifier, SY (see Secs. S6B2 and S9 for detailed

excess
discussions) and the source contacts, Sitcess. The last term (with the minus sign) is the
subtraction of thermal noise (with temperature 7p), in correspondence with the definition
of the excess noise.

If edge channels are thermally equilibrated (e.g., by impurity scattering), the Johnson-

Nyquist relation holds for (AIm)Q, yielding (A_fm)2 = 2Go7kpT,,. In this case we arrive

at

e %kBGQT(Tm —Ty) + % [ s + S52ess + St (S13)

excess 3 excess excess BXCBSS:| :
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Equation (S13) establishes a relation between the downstream noise and AT = T, — Tj.
Therefore, it allows one to determine the temperature of the central contact €2,, by measuring

the downstream noise SZ The last term in Eq. (S13) is a relatively small correction (due

excess”
to the factor 1/9). Still, it is appreciable and should be taken into account if one wants to find
T,, with a good accuracy. This is done in the present work, when the formula generalizing
Eq. (S13) on a non-equilibrated regime is used for determining 7},,. The noise SY is

excess

directly measured experimentally. The noises S5 and S52__ can be also be obtained

excess excess

from measurements of S since the generation of upstream noise is fully analogous in all

three arms.

In Sec. S8, we microscopically compute m in Eq. (S12) for the case of the absence
of thermal equilibration at the edge. We find how the Johnson-Nyquist formula for m
should be corrected when the edge is not thermally equilibrated. This allows us to extend
on such non-equilibrated regime the procedure of determining the temperature 7}, by means

of measuring the downstream noise S2

excess”

2. Upstream noise

We now consider the upstream noise on arm 3, as measured in the contact U by means

of the amplifier Ay. Conservation of current fluctuations at the upstream contact U gives
— 81V + 61 = GordViy + 0137, (S14)

where 5[%2 are equilibrium fluctuations impinging from the top left grounded contact. Here
we have taken into account that, under the used experimental design, the upstream contact
U is floating at the frequency range where upstream noise is measured. Re-arranging, we

get GordVy = 01§ — 01} — 01V = 01 — Aly, so that the upstream excess noise is given by

excess

Sexcess = (GardVyy)? — dkpGarTy = (Aly)? + (018)? — 4GarkpT

= (Aly)? = 2GrkpTh. (S15)

Here, we used that all cross-correlations are zero and ((5[51;)2 = 2GorkpTy. In Eq. (S15),
(Aly)? is the non-equilibrium noise generated by partitioning at the noise spot just to the
right of the contact U. Equation (S15) states that the upstream amplifier detects noise which

is generated when heat flows from (2, and heats the noise spot. Hence, the upstream noise

14



can be used as a local thermometer of the noise spot. Under the assumption that the contact
U is acting as a heat reservoir (i.e., its temperature is kept fixed at Tp), the upstream excess

noise is independent of other non-equilibrium noise sources in the device. In Sec. S9, we

compute (Aly)? microscopically.

S7. MICROSCOPIC MODEL AND CALCULATION OF NOISE ON AN EDGE
SEGMENT

In the preceding Section, we derived general formulas for the excess noise. The key
quantities there are m in Eq. (S12) for the downstream noise and (AT;)? in Eq. (S15)
for the upstream noise. Both these quantities represent a noise generated on an edge segment
connecting two contacts with different temperatures: 7y and 7,,, with 7,, > Ty. The only
difference is that in the case of m the upstream contact 2,,, is hot and the downstream
contact D is cold, while in the case of m the situation is opposite: the upstream contact
U is cold, while the downstream contact €2,, is hot. We are now going to compute the noise
generated on a segment between the contacts with two different temperatures, T, and Tg.
For Ty, > Tx this will give (AI,,)%, and for Ty, < Ty we will find (ALy)2.

To this end, we present in this Section a microscopic model to compute noise generated
on a FQH edge segment connected to two contacts at x = 0 and x = L (see Fig. S7a). To do
so, we use a formalism developed in Refs. S10-S13. In accordance with experimental obser-
vations, we always assume full charge equilibration, leCq < L, where le% is the characteristic
length scale (charge equlibration length) of inter-edge channel electron tunneling. However,
in contrast to previous work®'*, we are here interested in noise in the regime of no thermal
equilibration between the edge channels. Weak thermal equlibration can be theoretically
achieved with sufficiently strong inter-channel interactions®®. We first focus on the v = 2/3

state, which is the archetypical hole-conjugate state, and whose edge hosts channels of both

chiralities. Our approach is then generalized to other hole-conjugate states.

A. Filling 2/3

The edge segment consists of two counter-propagating edge channels, one downstream (+)

associated with the corresponding filling factor discontinuity v, and one upstream channel

15
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FIG. S7. Noise generation on the edge. a) The two contacts are at different temperatures 77,
and Tr but at the same voltage. Excess dc noise is predominantly generated in the region of the
spatial extent ~ lgl (noise spot) close to the left contact, see Eq. (S16). b) Bosonic scattering
states ¢ 0 and ¢ro emanating from the left and right contacts are characterized by equilibrium
distribution functions Bz, o and Bg controlled by temperatures of the contacts. The distribution
functions B+ of the eigenmode states ¢4 in the interacting region are determined by By, g and Brg
in combination with reflection (r) and transmission (¢) amplitudes of bosons at boundaries between

the contacts and the interacting region, see Eqgs. (S30)-(S31).

(-) associated with v_. In contrast to the standard Luttinger liquid (v, = v_ = 1), the
chiral nature of the edge is captured by v, > v_; downstream transport is taken from left
to right. Specifically, v, =1 and v_ = 1/3 for the v = 2/3 edge®!5. We divide the the edge
segment into three regions: the left contact region, a central region, and the right contact
region (see Fig. S7Tb). While the inter-channel interaction is assumed to be screened to zero
in the contacts, it is finite in the central region (see Ref. S17 for a detailed discussion on
this assumption). The scaling dimension A of the inter-channel tunneling operator (to be
discussed below) quantifies the strength of the inter-channel interaction; A = 2 corresponds
to non-interacting channels while A = 1 corresponds to the regime of strongly interacting
channels®'%. Fig. S7b shows A(z) as a function of position x due to the attached contacts.

We assume that A varies sharply at the boundaries between the regions, which is justified
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at low frequencies®. The two contacts are taken at different temperatures T;, and Tg, but

at the same electrochemical potential.

The zero frequency noise S in either of the two contacts is generally given asS!!
2 v_ L ~2 2¢? (vy —v_)?
S=—— Wy —v_ dr A tea 4+ —kplTy———. S16
r o) [ e A@e TR S ($16)

Here, the first term describes the noise resulting from inter-channel electron tunneling along
the edge. The exponential factor in the integral is a result of the chiral charge transport,
and implies that the dominant noise contribution comes from a region of size ~ lecq close to
the left contact. We call this region the noise spot. The local noise generated by impurity
scattering is described by the noise kernel A(x) given by

A(])) SIOC($7TL7TR) 7
29106(1:7 TL> TR)

where Sioe(z,Tr, Tr) and gioc(z,Tr, Tr) is the local electron tunneling dc noise and the

(S17)

tunneling conductance, respectively. Most generically, Si,. and g, depend on microscopic
details such as the inter-channel interaction, the edge disorder strength, the local voltage
difference between the channels, and the edge channel energy distributions.

The second term in Eq. (S16) describes downstream propagating thermal fluctuations
injected by the left contact. The thermal fluctuations injected by the right contact reaching
the noise spot are suppressed by a factor that is exponential in L/ lg] > 1 and thus can be
safely neglected!?.

In the present work, we are interested in the case of no voltage bias and no thermal
equilibration. In this situation, Eq. (S16) can be simplified. Specifically, A becomes inde-
pendent of x, and the integration can be trivially performed. Further, A depends only on
the temperatures T;, and Tk and the interaction parameter A. To emphasize this, we use
the notation A(7, Tg, A) for the noise kernel. Thus, Eq. (S16) reduces to

e?v_

2e? vy —v_)?
S = EZ(’# — v )A(TL, Tr, A) + TkBTL%'

(S18)

Our goal is now to use Egs. (S17) and (S18) to compute the excess charge noise generated
by the temperature difference, T, # Tg, in the absence of a net charge current flow. This
type of noise is called “AT noise”, and has in recent years attracted increasing attention,
both from theoretical®'®5?* and experimental®?*5?® points of view.

Equations (S17) and (S18) are applicable to both downstream and upstream noise (see

Fig. S6). As discussed above, the upstream noise corresponds to 77, = Ty and T = T, i.e.,
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to the right contact being hot, Tr > T, (the edge segment on arm 3 to the left of €, in
Fig. S6). Conversely, the downstream noise corresponds to 71, = T,, and Tr = Ty, i.e., to a
hot left contact, T, > Tx (the edge segment on arm 3 to the right of €, in Fig. S6).

The expectation values of the local noise and electron tunneling conductance can be

computed within the chiral Luttinger liquid model®?’. To leading order in the tunneling

strength T'y (that is assumed for simplicity uniform), these quantities are given as>®52!
Sec=1 [ dn(T(r0)T1(0.0)), (519)
e =2 [ drr(T(r0)T1(0.0)). (520)

Here

T(1,0) = 2F—7rob exp [z'\/A —1¢(7,0) + iVA + 1o_(T, 0)] (S21)

is the local tunneling operator expressed in terms of the bosonic eigenmodes ¢4 in the
interacting region®®, and b is a short distance cutoff. Evaluating the correlation function,

we find

(T(r,0)77(0,0)) = %Cﬂ(r, 0)271G_(1,0)

A+1

(522)
where

G+ (7,0) = exp [(¢+(7,0)0+£(0,0)) — (¢+(0,0)p+(0,0))] = exp [BL(7,0)] . (S23)

The Fourier transform of Bi(7,0) in frequency space, Bi(w,0), corresponds to the dis-
tribution functions of the eigenmodes ¢.. In the absence of thermal equilibration, these
are non-equilibrium distribution functions, arising from scattering of bosonic modes at the
boundaries between contacts and the interacting middle region (see Fig. S7b). We therefore
now seek to express B4 in terms of the known equilibrium Bose distributions By g of the
non-interacting bosons ¢r,/r in the contacts. Our approach follows closely that in Refs. S6

and S30. The bosonic states in the central region ¢.(7,z) can be expanded as
Oy(T,x) = tZ'r’Q"(bL,O(T —2nT,x) + tr Z " $pro(T — 207, 1),

¢_(1,2) = tz " ¢pro(T — 207, 1) + tr Z r* ¢ o(T — 207, x). (S24)

n
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Here, the parameter 7 = %(v;l + v-1) is the mean “flight-time” through the interacting
region®® and v, and v_ are the velocities of ¢.. The parameters ¢t and r are transmission
and reflection coefficients due to the sharp change in interaction strength at the boundaries.

The coefficients are given as

2(1 — ¢2 1/4
_ -7 (525)
Vi—c+V1+e¢
1—vV1—-¢2
r=—Y_ (S26)
c
where c is related to A as
9 _
A2V (S27)
V1—¢?
It follows from Eq. (S24) that
B. (w7 0) — 42 Z r2(n+m)€2i(m—n)w’?BL/R(w’ 0) + 1272 Z TZ(n—l—m)e?i(m—n)w%BR/L(w’ 0)7 (S28>
where Bg/r,(w,0) is the Fourier transform of
BR/L(Tv O) - <¢R/L (T7 0)¢R/L(O7 0)> - <¢R/L(07 O)¢R/L(Ov O)) (829)

We now neglect terms of the form e*™" which arise due to the Fabry-Perot interference
of bosonic modes reflected at boundary. These terms lead to an oscillatory behavior in
energy on the scale mvy /L. These oscillations will however be suppressed at temperatures

Tp,Tgr > mvy/L, which is assumed as follows. In this case, Eq. (S28) reduces to

T TR

B (w,0) = 1 RQBL(%O) + 1_7R25R(W,0% (S30)
T TR

B_ (w, 0) = 1—7]%281?(00’ 0) + 1_7}%28[,((4}, O) (831)

with T = t?, R = r?. Substituting the relations (S30)-(S31) into Eq. (S23), and the result

into Eq. (S22), we express the tunneling correlation function as

(T(r,0)77(0,0)) = (|21;0b|)2 G1(7, 002 Gp(r, 0) %, (S32)

where G'(7,0) and Gg(7,0) are the equilibrium free-fermion Green’s functions,

T,
Grr(r,0) = 7:; LA/VLE (S33)
sin | T4 (b — i )|
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Here, vy r are the velocities of the bosonic modes in the contacts. At zero temperature,

G r reduce to

b

b— ’L.TUL7R.

GL,R(Ta 0) = (834)

The exponents d;, and dg in Eq. (S32) capture the interaction dependence of the tunneling.

They are given in terms of A by the following expressions:

AP A /3(A%-1)

2d S35
L A2 +3 ’ (535)
A3 +5A + /3(A2 -1
2y = S OB+ VI ), ($36)
A? 43
The Fourier transforms of the factors Gy g(7,0)*.% read
PL7R(O.), TL,R) = / dTBiw‘rGLR(T, O)QdL’R
2dp, r—1 T(d @ V|2
_ (zwaLvR> LR ( b ) i P L e | (37)
VL,R UL,R F(QdL,R)
In the zero-temperature limit, 77, p — 0, they reduce to
o0 ) 2 b 2dL,R 2dL,R_1C»—<)
PL,R(W,O) _ / dTeMTGL,R('C 0)2dL,R _ 7T< /UL,R) w (W> (838)
Here, I'(2) is the gamma-function, and ©(w) is the Heaviside step function.
With the Fourier transforms, the noise (S19) can be expressed as
4|F0‘2 /OO dw
e = 0 Py(—w, Ty) Pa(w, Tr), S39
e = oz | 9m L(—w, Tr) Pr(w, Tr) (S39)
and the tunneling conductance (520) as
2|F0|2 0 /oo dw ’
oC — TA 159 o —P - ,T P ,T S40
9 (2m0)2 0w’ \ J_ 27 1o = @, T1) Pr(w, Tr) W' —0 (840)
Combining Egs. (S39) and (540), we express the noise kernel (S17) as
* dwPp(—w, Ty)Pgr(w, T,
A(Ty, T, A) = Jooe AP0, Ti) Pl o) (S41)

57 (ffooo dwPp (W' —w, Ty ) Pr(w, TR))

w'=0

Let us briefly recapitulate the procedure leading to Eq. (S41) for the noise kernel A.
In this equation, the numerator and the denominator are, respectively, the local noise and

the conductance of electron tunneling between two edge channels out of equilibrium. The
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bosonic scattering theory has allowed us to express these quantities in terms of known equi-
librium distributions in the contacts. We recall that the situation of no thermal equilibration
considered here is complementary to the limit of strong thermal equilibration, for which the
local noise kernel can be expressed in terms of local edge channel temperatures® %512, Let
us further emphasize that A depends on the edge interaction parameter A through the
exponents 2dy, g [see Egs. (S35)-(536)] in the expressions for Pp, g [see Eq. (S37)-(S38)].

Substituting the expression (S41) into the noise formula (S18), we arrive at the final

expression for the noise on the 2/3 edge:

2 ¢? 8 e?
S = 5% X A(TL,TR, A) + §EkBTL (842)

It is instructive to inspect Eq. (S42) in the case of global equilibrium, T, = T = Tp. In
this situation, we can analytically perform the integrals in Eq. (S41) to obtain A(7y, 7o, A) =
2kpTy, independent of A. Then, Eq. (S42) reduces (as expected) to the Nyquist-Johnson

relation
2 e?
S = QGQTkBTO, GQT = ——. (843)
Further, we briefly consider the regime of strong thermal equilibration. Then both edge
channels equilibrate to 77, at the noise spot. In this case, the measured downstream noise

is the Johnson-Nyquist noise at temperature 77, i.e,

2 e?
S — 2G2T]€BTL, GQT - gﬁ (844)

B. Filling 3/5

The edge at filling v = 3/5 consists of three modes. One downstream mode ¢; with
filling factor discontinuity vy = 1 and two upstream modes ¢1 /3, ¢1/15 with v/3 =1 /3 and
V115 = 1/15 respectively. To greatly simplify the noise analysis of this edge, we now make
the following assumptions. First, we assume that the equilibration lengths (for both charge
and heat) of the two upstream modes is very small. We thus “merge” these two modes into
one effective upstream mode. Secondly, we assume that both inter-mode tunneling and the
inter-mode interaction is dominated by that between ¢, and ¢;,3. This assumption is based
on that these modes are spatially closer than ¢; and ¢,/5. Additionally, tunneling and

interactions between the co-propagating ¢;,3 and ¢;/15 does not influence the equilibration
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or the heat conductance. With these simplifications, the noise kernel in Eq. (S16) becomes
the same for v = 2/3 and v = 3/5 since they are based on the same single tunneling operator
[see Eq. (S21)]. The difference in the generated noise for these fillings, in the thermally non-
equilibrated regime, is the values of v.. While v = 2/3, we have v, =1 and v_ = 1/3, for
v = 3/5, we have instead v, = 1 and v_ = 1/3 + 1/15 = 2/5. With these parameters, we

have obtain the noise for v = 3/5 as

6 e? 18 €2
= —— x AT, Tr, A ——kgTr}. 4
S 25h>< (T, T, )+25hk‘BL (545)

For global equilibrium, we recover S = 2GaorkpTy with Gor = (3/5)e?/h, and for full thermal
equilibration at temperature 77, in the noise spot, we find S = 2GorkgTy,.
In the following two Sections, we use Egs. (S42) and (S45) to compute downstream and

upstream noise in the case of no thermal equilibration.

S8. CALCULATION OF DOWNSTREAM NOISE

In this Section, we use the results of Sec. S7 to compute the downstream noise on an edge
segment. The downstream noise configuration corresponds to choosing 1, = T,, = Ty + AT

and T = Ty with AT > 0. We may then identify the noise in Eq. (S42) with the downstream

noise (Al,;,)? from Eq. (S12). We then have for v = 2/3

2 e 8 e2
(AL = 55 < AMAT + T, Ty, A) + 5 k(AT +Th). (346)

In Fig. S8a, we plot (Al,)? as a function of AT for T, = 14 and various values of
A. We choose this value of the base temperature Tj for convenience of comparison to our
experiment: T was measured to be 14 mK for v = 2/3. We set the prefactor (e?/h)kp in
the expression for (Al,,)? to be unity. As a result, (AI,,)? is measured in the same units as
the temperature.

We first note that the A-dependence of A(Ty + AT, Ty, A) is rather weak, within a few
percent. It becomes especially weak for not too large AT, i.e., AT < 30. In this regime,
an excellent approximation to A(Ty + AT, Ty, A) is obtained by expanding Eq. (S42) to first

order in AT for A = 1. The result is the simple expression
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FIG. S8. Downstream noise, (A,,)? [see Eqs. (S46) and (S48)], as functions of AT = Ty, — Ty in
units of mK. We set e2/h = kp = 1 so that (AI,,)? is also measured in mK. (a) For v = 2/3, with
Ty = 14 corresponding to the experimentally measured value Ty = 14 mK at this filling. The blue
circles correspond to A varying from 1 (bottom) to 2 (top). The blue dashed line, Eq. (S47), is an
excellent approximation for 0 < AT < 30. The black dashed line is obtained by using the large-AT
asymptotics A(AT +Tp,0,A = 1) ~ 0.948(AT +Tp). The red dashed line is Johnson-Nyquist noise

with the temperature Tp+ AT [see Eq. (S44)], for which (AI,)? = 4(AT+Tp)/3 = 2Gor(To+ AT)
with Giar = 2/3; this corresponds to the limit of full thermal equilibration. (b) Similar to (a) but
at v = 3/5, with Tj = 11 corresponding to the measured Ty = 11 mK at this filling. The red,
dashed line is Johnson-Nyquist noise 2Gop(Ty + AT') with Gap = 3/5.

The corresponding result for the noise (A] )2 is shown by the blue dashed line in Fig. S8a.
In the same plot, we present (by black dashed line) the result for (Al,,)? obtained by using
the large-AT asymptotics A(AT + Tp,0,A = 1) ~ 0.948(AT + Tp), which is a very good
approximation for AT 2 20. Further, the red line displays the Nyquist-Johnson noise
2Gorkp(AT + Ty), which is obtained for (Al,,)? in the limit of full thermal equilibration,
see Eq. (S44). Quite remarkably, the difference between the limits of no equilibration and
full equilibration is rather small, within &~ 20%. In the intermediate case of partial thermal
equilibration, the results are expected to be in between. This weak dependence of the
downstream noise on the degree of thermal equilibration, in combination with its very weak
dependence on A in the non-equilibrated regime is highly favorable for using the downstream

noise as a thermometer for measuring 7,,,. Indeed, even if the degree of thermal equilibration
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FIG. S9. Upstream noise, (Al7)?2, as a function of AT = Tr—Tj [see Eqgs. (S49) and (S51)] in units
of mK. We set e2/h = kp = 1 so that (AI)? also is in units of mK. (a) For v = 2/3, with the base
temperature Ty = 14, corresponding to the measured Ty = 11 mK at this filling. The blue circles
correspond to A between 1 and 2. The blue dashed line, Eq. (S50), is an excellent approximation
for 0 < AT < 30. The black dashed line is the large-AT asymptotics A(0, AT + Ty, A = 1) ~
1.72(Tp + AT). The red dashed line is the Johnson-Nyquist noise with the temperature Tp [see
Eq. (S44)], for which (AI,)2 = 4Ty/3; this corresponds to the limit of full thermal equilibration.
(b) Similar to (a) but at v = 3/5, with Tj = 11 corresponding to the measured Ty = 11 mK at this

filling. The red, dashed line is Johnson-Nyquist noise (Al;,)? = 2GrTy with Gor = 3/5.

and the value of A are not known, one can use one of the limiting formulas (for the full
equilibration or no equilibration) and obtain in any case a result for T, with a reasonable

accuracy.

Turning next to v = 3/5, we have from Eq. (S45) that the downstream fluctuations

become

Al 2226—2 ANAT + Ty, Ty, A gejk AT + T, S48
(ALy) 25h><( + 1o, Lo, >+25hB( + To). (S48)

This is plotted in Fig. S8b for Ty = 11, since the base temperature at v = 3/5 was measured

to 11 mK. The conclusions of the analysis is the same as those for v = 2/3.
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S9. CALCULATION OF UPSTREAM NOISE

In this Section, we use the results of Sec. S7 to compute the upstream noise on an edge
segment. The upstream noise configuration corresponds to the choice T = T,,, = Ty + AT
and T, = Ty with AT > 0. With this choice of parameters, we identify Eq. (S42) with the
upstream noise (Aly)? from Eq. (S15) and obtain for v = 2/3

— 92¢2 8 e2
(AL = 5% x A(Ty, AT + T, A) + §%kBTO. (S49)

We plot (Aly)? as a function of AT for various A in Fig. S9a. We note that similar to the
downstream noise, the A-dependence is very weak, especially for small AT. In the interval

0 < AT < 30, the perturbative expansion in AT,

which is shown by blue dashed line, serves as an excellent approximation for A(7g, Ty +
AT, A). For AT = 30, the large-AT asymptotics, A(0,Ty + AT, A = 1) ~ 1.72(Ty + AT)
(black dashed line) is a better approximation. Note that both asymptotics are actually
rather close to each other and in fact serve as very good approximations in the whole range

of AT.

Comparing Figs. S8 and S9, we see that, for given AT, the upstream noise m is
weaker than the downstream noise (AI,,,)2. The main reason is the second term in Eq. (S18)
which corresponds to “hot fluctuations” for the downstream noise but to “cold fluctuations”
for the upstream noise. This asymmetry between downstream and upstream “AT noise” is

a consequence of the chiral nature of the edge.

A similar analysis for v = 3/5 gives, using Eq. (S18), the upstream noise

6 e 18 2

Aly)2 = —— x ATy, AT + T, A — —kgTy. 1
(Aly) S (o, + 1o, )+25hk‘30 (S51)

This is plotted for » = 3/5 in Fig. S9b. Similarly to v = 2/3, the approximation (S50) is

excellent in the considered temperature regime.

S10. POWER BALANCE EQUATION AND THEORETICAL FOUNDATIONS OF
EXPERIMENTAL DETERMINATION OF HEAT CONDUCTANCE.

In this Section, we present theoretical foundations for experimental determination of

the heat conductance kop on the basis of measurements of the noises S2 and SY as

excess excess
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functions of the heating current I.

The heat conductance rkop of the device is obtained by the principle developed in Ref. S31
and applied to FQH states in Refs. S14, S15, and S32. The key principle at work is that,
in the steady state, a power Py is dissipated in €2,,, which in turn is evacuated by heat

and edge states, .J @ . This relation is captured by

currents carried by phonons, J @ edge-

phonons’

the power balance equation

3
~J9 =22 2y (S52)

Q
+ Jﬁhonons edge 9

}2hss ::(](?

edge

Here, it is assumed that J9

honons X Ty — T can be neglected, which is the case for suf-

ficiently low temperatures. (Alternatively, ngnons can be independently measured and
accounted for.) The edge heat current Jgige includes heat evacuated on all three connected
arms. Equation (S52) shows that ko7 (in units of kg = 72k%/3h) can be extracted from a
plot of Py vs (T2 —T3): it is given by 2/(3k¢) times the slope of the corresponding linear
dependence. As explained in detail in the preceding Sections, T}, and T are found from
noise measurements [see Egs. (S12), (546), and (S48)]. The remaining ingredient for deter-
mining experimentally the heat conductance is the heat current Je%ge equal to the power
Pyiss dissipated at the central contact €2,,. We explain now how the value of Py is found.

For states with only downstream heat flow (e.g., particle-like or integer edges), Pyiss is
simply equal to the injected power P [given by Eq. (S6)], Pass = P, since all injected energy

531 By contrast, for states

is transported downstream to 2, (assuming small bulk losses)
with upstream heat flow, such as v = 2/3 and v = 3/5, part of the dissipated Joule heat
in a hot spot may propagate upstream without heating the central contact. In this case,
the power dissipated at €2, may be smaller than the total injected power®®?, Py < P. In
order to use Eq. (S52) for the determination of kor, it is thus important to explore what
part of the injected power is actually used to heat the contact €2,,, i.e., to calculate the
ratio Pgiss/P. In the following, we perform this analysis in the regime of vanishing thermal
equilibration.

The injected electrical power on each of the arms i = 1,2 is P, = I?/(2Gor). This power

c

is dissipated not only inside 2, but also within a finite region of size [, outside {1, i.e., at

the hot spot (see Fig. S10). The power dissipated at this hot spot isS!?

I? V_
e X o (S53)

}%JL& =
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For v, = 1, which holds for all hole-conjugate states in the lowest Landau level (particularly
for v = 2/3 and v = 3/5 considered in this work), we have v = 1 — v and Eq. (S53)
simplifies to

12
2Gar

In the absence of thermal equilibration, a fraction of this power propagates ballistically away

Pins. = (1-v). (S54)

from €, (upstream), while the remaining part propagates to €, and thus contributes to
Piss. In the extreme case where P}, ¢ is distributed uniformly over the edge modes, we have
that only a part of P, propagates downstream and heats €2,,:

Ngq

P —
¢ Ng + Ny

X -Pi,h.s.- (855)

Here, ng and n, are the numbers of downstream and upstream edge channels, respectively.

Ny
? ngtny

The remaining contribution X P, 1, 5. is instead carried by upstream propagating modes
away from €2,,, i.e., back towards the source contact. The electrical power dissipated directly
inside €2, is given by the voltage drop close to €2,,. This directly dissipated power is given
by

2
2Gor
Conservation of energy is ensured by 2P, + 2P, = P. Adding the contributions (S55)

Pdir =V (856)

and (S56), for arms 1 and 2, we obtain for the total dissipated power on ,,:

I? ng I? tng+ nyv I?
Piss =2F ir 2Pm: 1- = = 0—".
d d + GZT |:V + Ny + nu( V)] GZT |: Nng + m } GQT (857)
P, =PIG P, = BI’IG
I . L4

b} i/
a ’ as
TR

.‘" < < J ""

~ ‘ ) *

(1 -priG hot spot

FIG. S10. Dissipation of injected power. Upon injecting a current in the left contact, only a
fraction S of the injected power Pyjs is dissipated in the right contact if the edge channels are
not thermally equilibrated. The fraction (1 — /3) is carried upstream and does not heat the right

contact.
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Equation (S57) determines the fraction 5 of the injected power that is used to heat €,
in the absence of thermal equilibration. For v = 2/3 we have n, = ngy = 1, which yields
S =5/6~0.83. For v = 3/5, with ngy = 1 and n, = 2, we get § = 11/15 ~ 0.73. For an
edge without counterpropagating modes (n, = 0), we have § = 1, so that the dissipated
power is equal to the injected power, as expected.

Using Eq. (S57), we can rewrite the power balance equation (S52) in the form

e
Gor  2f

(T2 —1T3). (S58)

m

According to Eq. (S58), the heat conductance can be obtained by plotting P vs (T2 — Tg).
The dimensionless heat conductance kor /K is then given by 23/(3k) times the slope of the
resulting linear dependence.

The calculation of 8 in Eq. (S57) is using a specific model of the contact and hot spot,
and hence the actual value can differ somewhat. Also, let us emphasize that (3 is quite close
to unity. Previous works®'%532 used 3 = 1 and obtained proper values for the equilibrated
regime. In view of this, and since we do not have experimental control on 3, we also choose
B = 1 in our analysis (i.e., we assume that all dissipated power heats the central ohmic

contact).

S11. HEAT CONDUCTANCE: THEORY

In this Section, we discuss the expected value of the heat conductance xor. The heat
conductance for v = 2/3 was analyzed in various regimes in Ref. S6, and we briefly sketch
the relevant results. As in the rest of this work, we focus on the regime of negligible thermal
equilibration, L < leq, where loq is the thermal equilibration length. As shown in Ref. S6,
this regime is subdivided into two. For very short systems (or very low temperatures),

L < Ly, where Ly is the thermal length,

1

Lp=—
T o DT

(S59)

the two-terminal heat conductance kop is given (up to a small correction) by the number of

edge modes,
Kar

— =2, L < Lp. (S60)

Ro
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For larger L (or higher T'), the heat conductance is reduced due to partial back-scattering
of thermal bosons at boundaries between the non-interacting contacts and interacting part

of the wire, cf. Sec. ST:

4R 1
fer _ o 2\/ Ly K L < log.- (S61)

ko 1+R  \[7A2 -4 /BAZ(A?_1)-3
In the non-interacting limit, A = 2, we have R = 0 (no reflection of bosons at the interfaces),
and Eq. (S61) yields ko7/kg = 2. On the other hand, for A = 1, corresponding to a regime
of strong interaction, one finds

K

%T:l, Ly < L < leg, (S62)
0

i.e., the thermal conductance us reduced by a factor of two. For the three-arm geometry of

the present work, we obtain, for the regime of vanishing thermal equilibration and for strong

interactions (A & 1), a total heat conductance
302 _ 3 (S63)

The scattering analysis can be generalized to other hole-conjugated FQH edges (at fillings
v =p/(2p — 1) with integer p > 1) with counter-propagating edge channels. The analysis is
simplified at a low-energy fixed point where neutral modes are completely decoupled with a
charge mode; this fixed point corresponds to A =1 for v = 2/3, discussed above. At such a
fixed point, the neutral sector possesses a (global) SU(p) symmetry®*+535. Since this fixed
point is a basin in a wide range of interaction-parameters space, it would be desirable to
understand the value of thermal conductance at the fixed point.

We consider the case of v = 3/5 (p = 3) for a detailed computation. The edge of the v =
3/5 hosts one downstream mode ¢; and two upstream modes ¢1/3 and ¢1 15, which satisfy
the commutation relation [¢1(z), ¢1(2')] = imsgn(x —a’), [p1/3(x), ¢1/3(a")] = —imsgn(z —2a’),
and [¢1/15(x), ¢1/15(2")] = —imsgn(z — 2'), respectively; furthermore [¢;(x), 5 (2')] = 0 for
Jj # 7 with 7,7/ =1,1/3,1/15. We define a downstream charge mode (¢.) and two neutral
modes (¢, and ¢y, ) in terms of ¢y, ¢1/3, and ¢115 as

¢c:\/§<¢1+¢1—\/§+%}/1—155)7
1

Ony = ﬁ((bl + \/§¢1/3),
- (st 10,)
Py = NG (¢1 + e + \/ﬁ%/m : (S64)
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These charge and neutral modes are eigenmodes at the SU(3) symmetric low-energy fixed
point, and are thus decoupled.

We next calculate the thermal conductance employing the contact model depicted in
Fig. S7. This is the model used for the noise calculation discussed in Sec. S7. The edge
segment consists of three regions: the left contact region, a central region, and the right
contact region. While the bare modes ¢1, ¢i/3, and ¢;/15 are incoming modes out of the
contacts or outgoing modes to the contacts, the charge and neutral modes are assumed to
be eigenmodes in the central region. The left contact is thermally biased compared with
the left contact: Ty, > Tg. Scattering of the bosonic modes between different regions is

described by the scattering matrices S, and Sg, given as

Pe d1,L b1.R Pe
¢1/3,L =51 Oy | o ®n, = Sk ¢1/3,R ) (865)
®1/15,L Py Py ®1/15,R
with
Vi Ve Vi
Sp=1| —y/% 0 |, Sr=5;" (S66)

2

VERRTE
. /JLr . /1 3
15 V30 Vio
Here, ¢, and ¢;r for j = 1,1/3,1/15 are incoming or outgoing modes in the left (L)
and the right R contacts, respectively. This type of scattering problem is characterized
by transmission amplitude 7 (w) from the left to the right, calculated from the scattering

matrices Sy, and Sk as

B T B v
1= Re2iw? 1 — (1 _ ,/)emf

T(w) (S67)

with 7' = v and R = (1 — v) being the the transmission and reflection coefficients for the
¢ mode. Furthermore, 7 = L(1/v" + 1/v7)/2 is the mean flight time through the central
region, vy and v_ are the velocities of the charge mode and the neutral modes, respectively.
Note that the SU(3) symmetry of the neutral sector renders the velocities of the two neutral
modes to be the same. Calculating the energy current in the edge mode ¢;, we obtain the

reflected thermal conductance ko with

6 < wdw 9
on=r (1= [ TP)). (565)
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Here, T is the average temperature T = (T}, + Tg)/2. For very short length [ < Ly =
1/[(vi' + vZ")T), k12 becomes zero, and hence the two-terminal heat conductance kyr =
(ny + ng)ko — 2K12 is given by the total number of modes ko = (n, + ng)ko. On the other

hand, in the regime of Ly < L < loq, we have k12 = ko (2R/(1 4+ R)) and thus

4R 41 —v
RoT = Ko (nu+nd— H——R> = Ko (nu+nd— %) . (869)

Note that Eqgs. (S67)-(S69) generically holds for any hole-conjugated states with v = p/(2p—
1) at a SU(p) fixed point. The case p = 2 corresponds to v = 2/3, with n, = ng = 1.
Equation (S69) yields in this case kor = Ko, in agreement with Eq. (S62). For p = 3 we
have v = 3/5, with n,, = 2 and ng = 1, and Eq. (S69) yields

B2 13)7 ~ 1.86, (S70)

Ko
as stated in the main text. The total heat conductance of the three-armed devices is then

obtained as 3kor /Ko &~ 5.57.

S12. EXTRACTING HEAT CONDUCTANCE AND TEMPERATURE DEPEN-
DENCE OF UPSTREAM NOISE FROM EXPERIMENTAL DATA AND COMPAR-
ISON TO THEORY

In this Section, we present details of determining the heat conductance and the tempera-
ture dependence of the upstream noise from the experimental data by using the theoretical
framework developed in Secs. S6-S11. Further, we compare the obtained results for the
upstream noise and the heat conductance to the theoretical predictions for the FQH state

with filling factor v = 2/3.

A. Determining the central-contact temperature T,,

As a first step, we extract the central contact temperature T, for a given injected current

I (or equivalently a given injected power P). For this purpose, we combine Eq. (S12) for the

downstream excess noise S2 ... with the microscopically computed (AI,)? from Eqs. (S46)

excess

and (548). We further use the approximation (S47). As a result, we obtain the following

equation relating AT = T,, — Ty and the measured noises:

4 1
2 GopkpAT ~ SP S[85 4 g% 4 gU

2
ve
3 excess 9 |: excess excess excess:| ’
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FIG. S11. Upstream excess noise SY, vs AT = T, — Ty, where T, is the temperature of the hot

excess

central contact and Ty is the base temperature. (a) Filling v = 2/3. Triangle symbols: experimen-
tally measured noise, with the temperature AT determined as explained in Sec. S12 B, for three
different lengths for the upstream heat propagation: 15um (red), 45pm (blue), and 75um (green).

Dashed lines are linear fits, which gives thermal Fano factors fr = SU_.../(2GorkgAT). The black

X

solid line is the theoretical result (for vanishing thermal equilibration and under assumption of no

losses to the bulk), fr = 1/4 [see Eq. (S72)], which becomes S

excess

~ 0.017AT when the noise is
measured in units of 1072A%/Hz and the temperature in mK. (b) Filling v = 3/5. Circles denote
measured data with color coding as that in (a). The black line is the theoretical result (S73):

fr =3/10 or SY s ~ 0.019AT in the units referred to in (a).

Here, a = (4vy — 3v_)/v4, which yields a = 3/4 for v = 2/3 and a = 7/10 for v = 3/5.

Furthermore, SD .. and SY .. are measured directly for various lengths between €, and

the upstream contact U with the amplifier Ay (see Fig. S6). By contrast, the noise from

sources, S and S

excess excess?

are not directly measured. However, since these noises are of

exactly the same nature as the upstream noise SY they should be essentially equal to

excess?
SU

oxcess At lengths equal to the distances between the sources and €2,,. In the experiment,

these lengths were fixed at 30pum and 150um for S; and Ss, respectively. Thus, all the terms
in the r.h.s. of Eq. (S71) are obtained from experimental measurements, which allows us to

determine AT as a function of I.
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B. Determination of temperature dependence of upstream noise. Comparison to

theory.

Next, we plot the measured SY

excess

against AT extracted from Eq. (S71) as explained in
Sec. S12 A. The results are shown in Fig. S11 for three different values of the length between
Q,, and the upstream contact U. While the noise decreases with increasing length, we see
that this dependence is rather weak. This is particularly true for shorter systems: the noise
decreases only by =~ 10% when the length increases from 15um to 45um. This is a clear
demonstration of the fact that the system is in the regime with essentially vanishing heat
equilibration: the heat propagates ballistically from the central contact €2,, to the noise
spot near the contact U. A slow reduction of noise with increasing length may be due to
two reasons: (i) weak thermal equilibration, and (ii) losses of heat propagating along the
edge to the environment (“bulk”), including phonons as well as electronic modes in the bulk

mediated by Coulomb interaction®*®

. As the data on heat conductance demonstrate (see
Sec. S12C below), the dominant source in our experiment is losses to the bulk, while the
effect of thermal equilibration within the edge is negligible.

In Fig. S11 we further compare the results for SY . (AT) (obtained from experimental

measurements as detailed above) to the theoretical formula for the upstream noise in the

regime of vanishing thermal equilibration,

1 2¢?

1 e?

S(S(cess = g Ek AT = Z X 2G(2Tl€BAT77 GQT — 3h (872)
9 e? 3 3e?

Sexcess = _5ﬁk’BAT 10 % 2GorkpAT, Gor = T (S73)

Equation (S72) is obtained from the general expression (S15) of SY

excess DY inserting Eq. (549)
and using the approximation (S50). Similarly, Eq. (S73) follows by using Egs. (S50)
and (S51) in Eq. (S15). Equations (S72) and (S73) yield the excess upstream noise in
the limit of zero thermal equilibration and no losses to the bulk, i.e., when the heat from
(), propagates ballistically and without losses to the noise spot near the contact U (see
Fig. S6).

Equations (S72)-(S73) define the thermal Fano factors fr = SY .../
for v =2/3 and v = 3/5 gives fr = 1/4 and fr = 3/10 respectively.

(QGQT]{?BAT) which

We see that the linear dependencies of SU_ . (AT) is in full consistency with experimental

data. At the same time, the experimental value of the noise for the shortest distance (for
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FIG. S12. Injected power P vs T2 — Tg. (a) Filling v = 2/3. Triangles denote measured data
for three lengths between the central contact €2, and the upstream contact U: 15um (red), 45um
(blue), and 75um (green). The heat conductance kar/Ko is given by the slope of the dependence
P vs T2 — T2, multiplied by 2/(3k¢), [see Eq. (S57), were we take 3 = 1.]. This results in
kor /Ko ~ 0.97, 0.93, and 0.97 for the lengths 15um, 45um, and 75um, respectively. (b) Filling
v = 3/5. Circles denote measured data at the same lengths as in (a). We find xar/ko =~ 1.36, 1.46,

and 1.46 for the lengths 15um, 45um, and 75um, respectively.

which the effect of losses and thermal relaxations are negligible as pointed out above) is
approximately twice smaller than the theoretical prediction. It is not clear to us at present

what is the source of this discrepancy.

C. Determination of heat conductance. Comparison to theory.

To extract the heat conductance kor /K¢ from the experimental measurements, we use the
approach described in Sec. S10. In accordance with the power balance equation (S58), we
plot in Fig. S12 the injected power P as a function of T2 — T¢ = AT? + 2T,AT. Here, the
base temperatures Ty = 14mK for v = 2/3 and Ty = 11mK for v = 3/5 are extracted from
equilibrium noise (i.e., noise at zero current bias I = 0). The temperature difference AT is
obtained from the experimentally measured noise according to Eq. (S71). We extract the
heat conductance for three lengths, 15um (plotted in red), 45um (blue), and 85um (green),

between (2, and the upstream contact U. The heat conductance ka1 /K is obtained as 2/kq
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times the slope of the resulting linear dependences, see Eq. (S58) (as motivated in Sec. S10,
we have taken = 1 for all considered states). The slopes are extracted in the linear regime
0<ST2 -T2 <0.4x107°K% For v = 2/3, we find kor/ro ~ 0.97, 0.93, and 0.97 for the
lengths 15um, 45um, and 75um, respectively. For v = 3/5, we find kor /Ko &~ 1.36, 1.46, and
1.46 for the lengths 15um, 45um, and 75um, respectively. The result is that ko independent
on the length, within the uncertainty determined by the statistical scattering of data.

The length-independence of the measured heat conductance is a strong evidence of the
absence (within the accuracy of our data) of heat equilibration at the length scales studied
in our experiment. Indeed, in the presence of heat equilibration, the heat conductance xap
of a v = 2/3 edge shows, with increasing length L, a crossover from the ballistic behavior
(L-independent kar) at L < leq to the diffusive behavior, kop o< 1/L at L > o, see Ref. S6.
Our results thus imply that the devices studied in this experiment are in the regime L < loq.

Let us further comment on the insensitivity of the thermal-conductance measurements
to losses to the bulk. Indeed, for the length 75um, these losses are clearly observable in the
upstream noise measurement, see Fig. S11. At the same time, the results for the thermal
conductance shown in Fig. S12 do not show any trace of the losses. The reason for this
insensitivity of the heat conductance measured with the present method to bulk losses is as
follows®**. The measurement protocol matches the incoming and outgoing heat flows with
respect to €2, [see Eq. (S58)]. The crucial point is that the heat is evacuated from the central
contact €2, via the edge states. Whether the full outgoing energy reaches another electrode
or some part of it leaks to the bulk on the way there is irrelevant. The assumption here is
that the heat that is leaking to the bulk does not return to the central contact €2,,, which is
expected to be a very good approximation. This should be contrasted to the effect of heat
equilibration within the edge, which leads to back-scattering of heat that thus returns to
., leading to a decrease of Kkop.

Summarizing, our results for the upstream noise and the conductance are interpreted in
the following way: (i) the thermal relaxation within the edge is negligible at studied length
scales, and (ii) leakage of energy to the bulk leads to reduction of the upstream noise with
distance but is irrelevant for the thermal conductance.

Finally, we compare the value kor/kg &~ 1 obtained from experimental data at v = 2/3
with the theoretical result (S62) derived for the thermally non-equilibrated regime and strong

interaction (A &~ 1). We see that the experimental value is in good agreement with the
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theoretical prediction. For v = 3/5, the obtained ror/Kkg =~ 1.45 lies below the predicted
Kor/ko = 13/7 ~ 1.86 [see Eq. (S70)]. This deviation could be related to a deviation of the

system from the infrared fixed point.
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