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Figure S1: Grid-scale river network of AM4.0/LM4.0 that discharges runoff to the ocean following Milly et al. (2014). The

blue arrows denote the 8-connectivity streamflow direction. The blue lines denote major river streams from the Natural

Earth Database(https://www.naturalearthdata.com, last access: 03/20/2025).
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Figure S2: Climatological biases in mean precipitation (a+c) and AR precipitation (b+d) between nudged CTRL simulation
and IMERG observations (a+b) and between free run CTRL simulation and IMERG (c+d). AR detection for IMERG dataset is

done based on IVT deduced from ERA5. Dry bias over central US in free run CTRL simulations are mostly resolved in

nudged simulations. Overall, reduction of RMSE is found for both P and Par in nudged simulations.
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Figure S3: Snapshot of an Atmospheric River on 2016-01-21 over the Western US in the CTRL simulation (a), P2K

simulation (b) and in Observations (c). Observations are based on ERA5 for IVT and the derived AR mask and IMERG for
precipitation.
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Figure S4: Changes in atmospheric winds with warming at 250 hPa (first row), 700 hPa (second row) and at 10 m above
ground (third row) for three different sets of CTRL and P2K warming experiments. The first experiment uses AM4.0 with
unconstrained atmospheric dynamics, i.e. without nudging (first column), in the second experiment atmospheric winds

are against NCEP reanalysis with a nudging timescale t,, of 6 hours (second column), and in the third experiment 7, is
reduced to 30 minutes (third column).
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1. Identify high-flows

High flow days

2. Calculate hydrological characteristics

Find upstream basin
from model river network
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4. Assign unique driver and evaluate
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Figure S5: Workflow of high-flow attribution method. First, high-flows are identified using the 99.7" percentile of the 70
year timeseries of daily streamflows at each grid-point of the CTRL simulation as a threshold for the CTRL and the P2K
simulation, resulting in 70 identified high-flow events at each grid-point in the CTRL simulation and a varying number of
events in the P2K simulation. Secondly, for each high-flow event, the upstream river basin is identified and the area sum of
different upstream water sources is calculated, distinguishing AR precipitation, non-AR precipitation and melt. A drainage
timescale is calculated using the downstream flow-velocity and the upstream basin area. In a third step, the timeseries of
upstream water sources and downstream streamflow are temporally correlated within a temporal window around the
high-flow day, which is set by the drainage timescale. In addition, the timeseries of upstream water sources is shifted by
by a varying number of days that ranges between 1 and twice the drainage timescale. If for any of these lagged correlation
analyses a correlation coefficient > 0.8 is found for any of the upstream water sources, we consider this water source the
upstream driver of the high-flow. Step 4 summarizes an evaluation of the method, when applied to the CTRL simulation,
showing a map of the fraction of successfully attributed events to the total number of high-flow events and a line plot
showing the dependence of the attribution rate on the upstream basin size. The method is able to attribute 35 % of all
high-flow cases, and performs best for small river basins.
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Figure S6: Seasonal dependence of absolute changes with warming in some additional hydrologically relevant metrics. a)
shows snow water equivalent (SWE), b) surface albedo «, c) total cloud cover and d) runoff R, e) liquid precipitation Py, f)
melt M, g) total precipitation P and h) evapotranspiration ET.
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Figure S7: Mean seasonality of surface energy balance, dividing the net (black) into shortwave (blue) and longwave (red)
components across the three sub-regions of CONUS, the west coast (first row), the mountainous west (second row) and
the eastern US (third row). Second column shows absolute change with warming, and third column shows relative change
with warming with reference to specific heat of vaporization and ETcrr. to achieve comparability to relative ET changes.
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Figure S8: Seasonality of (a) change in evaporative Index € = ET /(P; + M) and its decomposition into (b) changes from
the denominator (P, + M) and (c) changes from the nominator (ET) for the three subregions of CONUS. Second row shows
the same decomposition for the dryness IndexD = PET /(P, + M). The decomposition is achieved by following the
product rule of derivation. The y-axis is shared among all sub-plots.
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Figure S9: Contribution of AR precipitation to total precipitation (a+c) and to days exceeding 99th percentile of daily
precipitation (b+d) for nudged CTRL simulation (a+b) and observations (c+d) based on IMERG precipitation and ERAS5 IVT

data used for AR identification.
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Figure S10: Example of timeseries of downstream discharge Qus, upstream area-sum of precipitation Pus and upstream
soil saturation at 1 cm depth around a high-flow event indicated by red dot. The example is the same as the one in suppl.
Fig. S5, showing the same correlation window that is determined based on tirin. The antecedent soil saturation is defined
as the minimum soil saturation within the correlation window leading up to the high-flow, as indicated by the green arrow

in the figure.



