

Transcriptomic Signature-Guided Depletion of Intermediate Alveolar Epithelial Cells Ameliorates Pulmonary Fibrosis in Mice

Fei Peng^{1,2,#}, Chun-sun Jiang^{3,#}, Zhen Zheng^{1,#}, Shahram Aliyari¹, Dan Shan¹, Aaryan

Sabharwal¹, Qinyan Yin¹, Chao He⁴, Joseph A. Lasky¹, Victor J. Thannickal¹ and Yong Zhou^{1,*}

5
6
7

8

9

10

Online Supplemental Materials

12

13 **SUPPLEMENTAL METHODS**

14 **Antibodies and reagents**

15 The following primary antibodies were used in this study: anti-Sprrla (Thermo Fisher
16 Scientific), anti-p16INK4a/CDKN2A (clone S04-8C9, Novus Biologicals), anti-p53 (Cell
17 Signaling Technology), anti-p21 (Proteintech), anti-Ki67 (Abcam), anti-Collagen I (Novus
18 Biologicals), anti- α SMA (American Research Products), anti-fibronectin (Proteintech), anti-
19 GAPDH (Proteintech), anti-Krt8 (Thermo Fisher Scientific), anti-SFTPC (Abnova), anti-Krt5
20 (Proteintech), and anti-Krt17 (Proteintech). Secondary antibodies included Alexa Fluor 488-,
21 555-, and 647-conjugated goat anti-mouse or goat anti-rabbit IgG (Invitrogen). Additional
22 reagents used were a 5'-FAM-labeled RNA fluorescence in situ hybridization probe targeting
23 mSprrla (NM_009264.2; Qiagen), X-gal substrate (Invitrogen), and diphtheria toxin (Sigma-
24 Aldrich).

25

26 **Plasmids**

27 To construct mRNA expression vectors, cDNAs encoding mouse *Sf1pc*, *Pdpn*, and *Sprrla*
28 were PCR-amplified from mouse lung cDNA and cloned downstream of and in-frame with
29 *mCherry* in the lentiviral vector pCL245, generously provided by Dr. Chao Li (University of
30 Alabama at Birmingham). In this construct, the *EF1 α* promoter drives *mCherry* expression.
31 Amplified fragments were inserted into BamHI-linearized pCL245 using the Gibson Assembly
32 Cloning Kit (NEB, E5510S). Primer sequences used for amplification are listed in
33 **Supplementary Table 2**. AAV vectors for sesRNA expression were derived from a previously
34 reported AAV backbone (Addgene plasmid #184943). The vectors were linearized with the AgeI
35 restriction enzyme, and synthesized sesRNA fragments were inserted using Gibson Assembly.

36

37 **Cell culture and transfection**

38 Human embryonic kidney 293T (HEK293T) cells were maintained in Dulbecco's Modified
39 Eagle Medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco), 100
40 U/ml penicillin, and 100 µg/ml streptomycin. Cells were cultured at 37°C in a humidified
41 incubator with 5% CO₂. For plasmid transfection, cells were seeded into 12-well plates at a
42 density of 1 × 10⁵ cells per well and allowed to adhere overnight, reaching approximately 70–
43 80% confluence. Transfections was carried out using polyethyleneimine (PEI; Polysciences)
44 following the manufacturer's instructions. Briefly, 1 µg of plasmid DNA was diluted in 100 µl of
45 Opti-MEM (Gibco), and 3 µl of PEI was diluted in a separate 100 µl of Opti-MEM. The two
46 solutions were combined, incubated at room temperature for 10–15 minutes to allow complex
47 formation, and then added dropwise to the cells. After 6 hours of incubation, the transfection
48 medium was replaced with fresh complete DMEM. Cells were harvested 24–72 hours post-
49 transfection for downstream applications, including immunoblotting, fluorescence imaging, or
50 RNA extraction.

51

52 **Immunoblot and densitometry analysis**

53 Cell lysates containing 10 - 20 µg total proteins were loaded onto SDS-polyacrylamide gels
54 under reducing conditions. After electrophoresis, proteins were electrophoretically transferred
55 from the gels to nitrocellulose at 100 V for 1.5 hr at 4°C. Membranes were blocked in casein
56 solution (1% casein, 25 mM Na₂HPO₄, pH 7.1) for 1 hr at room temperature. Primary antibodies
57 were diluted in TBS-T and casein solution (1:1) at a working concentration recommended by
58 manufactures. Membranes were incubated with primary antibodies at room temperature for 1 hr.

59 After extensive washing, membranes were incubated with peroxidase-conjugated secondary
60 antibodies (0.1 µg/ml) diluted in TBS-T for 1 hr at room temperature. Immunodetection was
61 carried out by chemiluminescence. Blot images were scanned. Bands were quantified by ImageJ
62 (NIH, Bethesda).

63

64 **Fluorescence-activated cell sorting (FACS)**

65 Whole-lung single-cell suspensions containing EGFP+ and/or tdTomato+ cells were prepared
66 from enzymatically dissociated mouse lung tissue using established protocols. Following
67 dissociation, cell suspensions were filtered sequentially through 100 µm and 40 µm strainers to
68 remove debris. Cells were resuspended in cold FACS buffer consisting of PBS supplemented
69 with 2% fetal bovine serum (FBS) and 2 mM EDTA, and maintained on ice throughout the
70 procedure. Fluorescently labeled cells were isolated using a BD FACSymphony S6 cell sorter
71 (BD Biosciences). Live single cells were identified and gated based on forward and side scatter
72 profiles. EGFP and tdTomato fluorescence were detected in the FITC and PE-Texas Red
73 channels, respectively. Sorted cells were collected directly into tubes containing FBS and kept on
74 ice for immediate downstream applications.

75

76 **Annexin V apoptosis assay**

77 Apoptosis analysis of EGFP-labeled *Sprr1a*+ cells was performed using an Annexin V-
78 APC/Propidium Iodide (PI) Apoptosis Detection Kit (Thermo Fisher, A35110), according to the
79 manufacturer's instructions. After FACS sorting, EGFP+ cells were pelleted by gentle
80 centrifugation (300 × g, 5 minutes), washed twice in cold PBS, and resuspended in 1× binding
81 buffer at a concentration of approximately 1 × 10⁶ cells/ml. To stain for apoptotic cells, 100 µl of

82 the cell suspension was transferred into a flow cytometry tube, followed by the addition of 5 μ l
83 of Annexin V-APC and 5 μ l of propidium iodide solution. Samples were gently mixed and
84 incubated for 15 minutes at room temperature in the dark. After incubation, 400 μ l of 1 \times binding
85 buffer was added to each tube, and samples were analyzed immediately by flow cytometry using
86 a FACSymphony A3 instrument (BD). Data were analyzed using FlowJo software. Live cells
87 were defined as Annexin V-/PI-, early apoptotic cells as Annexin V+/PI-, late apoptotic or
88 necrotic cells as Annexin V+/PI+, and dead cells as Annexin V-/PI+. EGFP+ gating was used to
89 restrict analysis specifically to the target cell population.

90

91 **Cytospin preparation**

92 Sorted EGFP+ cells were washed with PBS and resuspended at a concentration of 1×10^5
93 cells/mL. A 200 μ l aliquot of the cell suspension was loaded into cytospin chambers and
94 centrifuged at 500 rpm for 5 minutes using a Thermo Shandon Cytospin 4 cytocentrifuge. Cells
95 were deposited onto Superfrost Plus microscope slides and immediately air-dried. Slides were
96 then fixed with 4% paraformaldehyde (PFA) and subsequently processed for either β -
97 galactosidase staining or immunofluorescence analysis.

98

99 **β -Galactosidase (β -gal) staining**

100 Senescence-associated β -galactosidase (SA- β -gal) activity in freshly isolated cells was
101 assessed using 5-bromo-4-chloro-3-indolyl β -D-galactopyranoside (X-gal, Sigma, 9630). Freshly
102 isolated cells were cytospon onto slides using a Statspin Cytofuge, fixed, and immediately
103 stained with X-gal. SA- β -gal-positive cells (blue staining) were counted under a Nikon Eclipse
104 Ts2 Microscope and expressed as a percentage of total cells.

105

106 **Fluorescence and confocal microscopy**

107 Mouse lung tissue sections or cytospun slides were fixed in 4% paraformaldehyde (PFA) for
108 15 minutes at room temperature, followed by washing with PBS. Permeabilization was
109 performed using 0.2% Triton X-100 in PBS for 10 minutes, after which slides were blocked with
110 5% normal goat serum in PBS for 1 hour at room temperature. Primary antibodies, diluted in
111 blocking buffer, were applied and incubated overnight at 4 °C in a humidified chamber.

112 The following day, slides were washed three times with PBS and incubated with fluorophore-
113 conjugated secondary antibodies for 1 hour at room temperature. After final washes, nuclei were
114 counterstained with DAPI, and slides were mounted using antifade mounting medium.
115 Fluorescence signals were detected using a confocal laser-scanning microscope Zeiss LSM710
116 confocal microscope equipped with a digital color camera (Oberkochen, Germany). All
117 fluorescent images were acquired using sequential laser scanning, with only the corresponding
118 single-wavelength laser line activated through acousto-optical tunable filters, to avoid cross-
119 detection between fluorescence channels.

120

121 **Lung histology, TUNEL assay, and immunofluorescent staining**

122 Masson trichrome staining was performed to evaluate collagen deposition in mouse lung
123 tissues according to the manufacturer's recommendation (Polysciences Inc, Warrington, PA,
124 USA). Digital images of the stained sections were captured using a Nikon Eclipse TS2
125 microscope equipped with DS-Fi3 camera. For immunofluorescence staining, 30 µm cryostat
126 sections were rehydrated in PBS for 10 minutes. Tissue sections were blocked with 5% normal
127 goat serum and co-stained with anti-Sftpc (1:200 dilutions), anti-Krt8 (1:200 dilutions), anti-p21

128 (1:200 dilutions), anti-p16 (1:200 dilutions), anti-p53 (1:200 dilutions), anti-Ki67 (1:100
129 dilutions), anti-Krt17 (1:200 dilutions), or anti-Spr1a (1:200 dilutions) antibodies diluted in PBS
130 containing 1% goat serum, 0.3% Triton X-100, and 0.01% sodium azide according to
131 manufacturer's instructions. Fluorochrome-conjugated secondary antibodies (Invitrogen) were
132 used according to the manufacturer's recommendation. TUNEL assay was performed with TdT-
133 fluor kit (Trevigen). For co-staining, TUNEL was followed by IF using primary antibodies and
134 fluorophore-conjugated secondaries. Nuclei were stained with DAPI (Thermo Fisher Scientific,
135 Waltham, MA). Fluorescent signals were detected using a confocal laser-scanning microscope
136 Zeiss LSM710 confocal microscope equipped with a digital color camera (Oberkochen,
137 Germany).

138

139 **Hypoxypoline assay**

140 Right lungs were homogenized in water, precipitated with TCA, hydrolyzed in 12 N HCl at
141 110°C for 14–18 h, and redissolved. Samples were incubated with chloramine T and Ehrlich's
142 reagent, and OD measured at 550 nm.

143

144 **Hydroxyproline assay**

145 Lung collagen content was determined by an assay for hydroxyproline as previously
146 described¹. Briefly, Mouse right lungs were homogenized in 2.0 ml distilled water and incubated
147 with 125 µl of 50% trichloroacetic acid on ice for 20 min. Samples were centrifuged and the
148 pellets were mixed with 1 ml 12 N hydrochloric acid and baked at 110°C for 14-18 h. Dry
149 samples were dissolved in 2 ml deionized water. 200 µl samples (or standards) were added to
150 500 µl 1.4% chloramine T (Fisher Scientific, Cat. AAA1204430) in 0.5 M sodium acetate/10%

151 isopropanol and incubated for 20 min at room temperature. 500 μ l Ehrlich's solution (Sigma, Cat.
152 03891) was added, mixed, and incubated at 65°C for 15 min. Optical density of each sample and
153 standard was measured at 550 nm and the concentration of lung hydroxyproline was calculated
154 from a hydroxyproline standard curve.

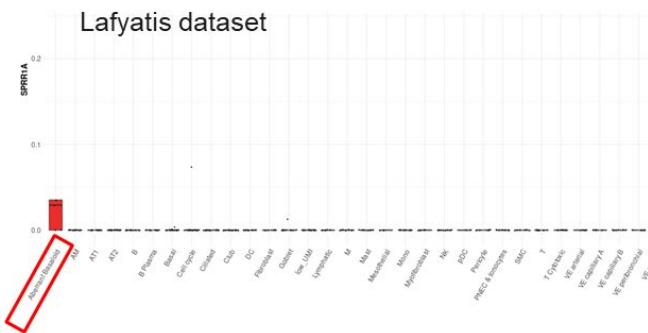
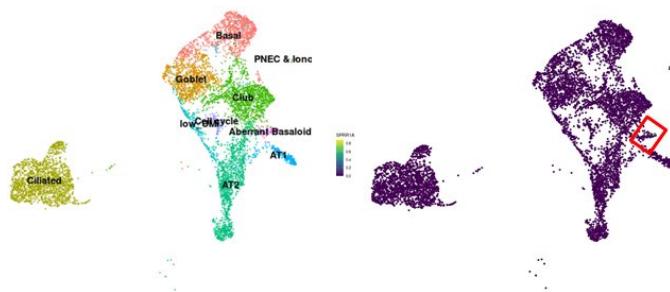
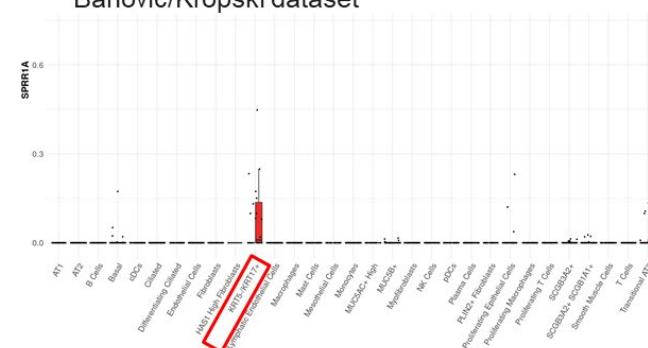
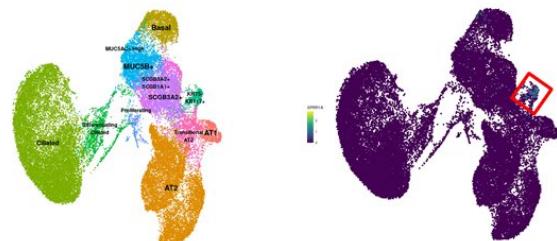
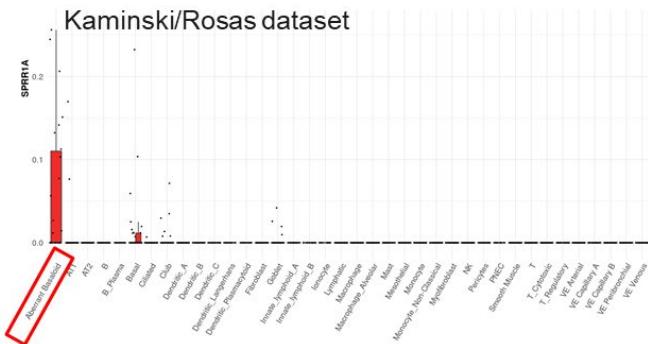
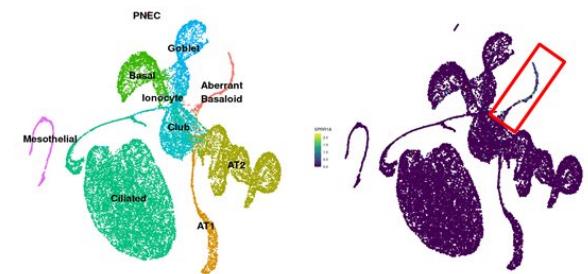
155

156 **SUPPLEMENTAL FIGURE LEGENDS**

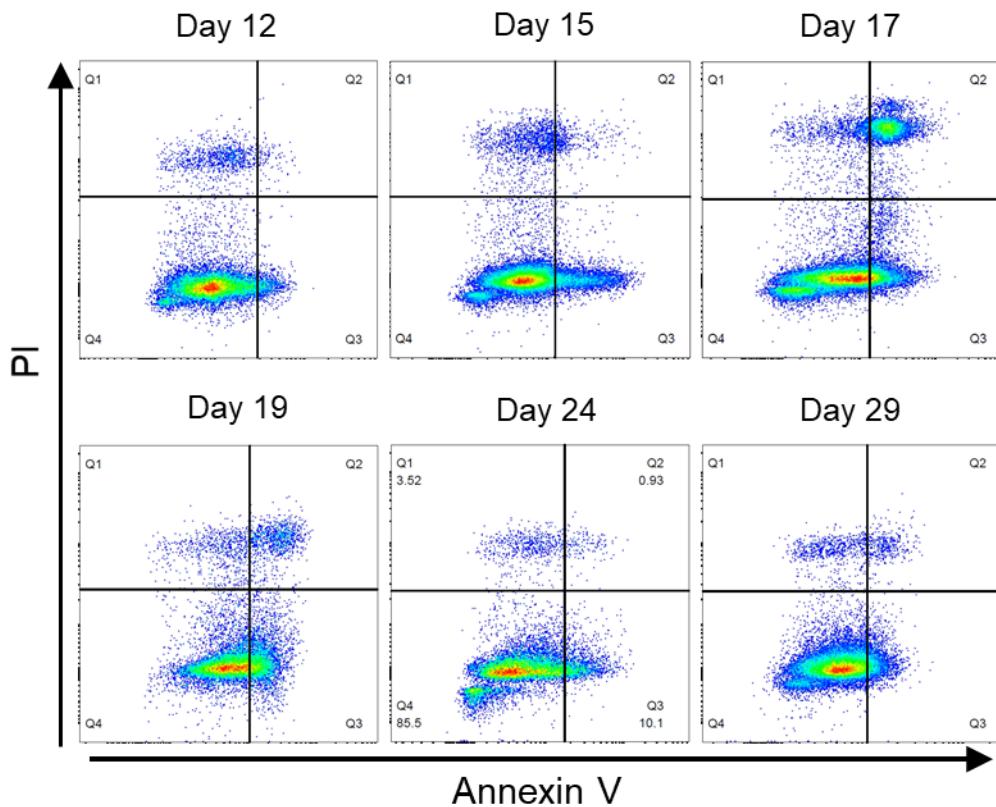
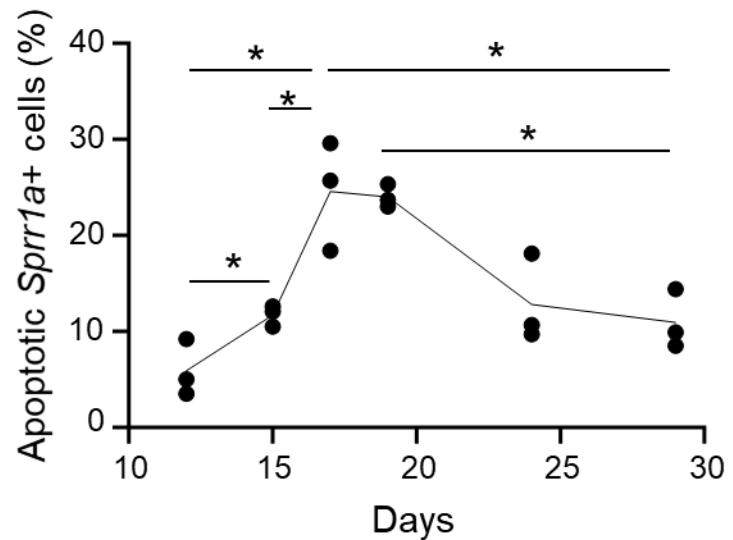
157 **Supplemental Figure 1: SPRR1A is selectively expressed by KRT5-KRT17+ aberrant**
158 **basaloid cells in human IPF.** Expression of *SPRR1A* across major lung cell populations in IPF
159 and control subjects was analyzed from three independent scRNA-seq datasets available in the
160 IPF Cell Atlas.

161

162 **Supplemental Figure 2: *Sprr1a*+ cells undergo spontaneous apoptosis during lung repair and**
163 **regeneration following bleomycin injury in mice. A,** Flow cytometry analysis of ZsGreen1-
164 labeled *Sprr1a*+ cells isolated from C57BL/6 mouse lungs at Days 12, 15, 17, 19, 24, and 29
165 after bleomycin administration; **B,** Quantification of apoptotic *Sprr1a*+ cells at each time point.
166 Data are presented as mean \pm SEM from 3 mice per group. * p < 0.05







167

Supplemental Table 1. SesRNA sequences used to target specific alveolar epithelial cell types



<i>Sftpc</i> SesRNA	5'-AGGAACAGGG TGGCAGGGAT CCTTGGTTTT GGGGGCACAA GGTCCTGGG GTAGTGGCTG GCAAGGCTGC TTCACCTGCT GCTGGTGCAG CTGAGGAGGT AC-3'
<i>Pdpn</i> SesRNA	5'-TCTCGTTGGA GCCTCAGCAG CTACTGGTT TTTTGTTGGG TTGTAAAAG ATCAAAAACA AAACAAAACA AAACAAAAAA CTTCGAAGCC ACAGGCCAG CCGGGAAGAG CTCGGGAGGA GGTTAGAAGG CGCTGAGCAA AAGTCTCAGC GCCAGAGAGT GCCCGGGCTT TCTGGACTCG CAGAGGCAGC AAGCACAGCA AACTTGGCAG CTGGCACACT CTCGGCACAG TCGGCATTAA TGTCTCCGGT CCCGGGGCGG GAGCGGGTGG GCGTCAGGTG GTCCCGGAGA TCTAGGACCG-3'
<i>Sprrla</i> SesRNA	5'-AGGAACAGGG TGGCAGGGAT CCTTGGTTTT GGGGGCACAA GGTCCTGGG GTAGTGGCTG GCAAGGCTGC TTCACCTGCT GCTGGTGCAG CTGAGGAGGT AC-3'

Supplemental Table 2. Primer sequences used to amplify target mRNAs from mouse lungs

<i>Sftpc</i>	Forward: 5'-GTGGAGGAGA ATCCCAGGCC TGGATCCCGA CATGAGTAGC AAAGAGG-3'
	Reverse: 5'-ATACCGTCGA GATTAATTAA AGGATCCCAG GCTGCTTAT TCTTTGTG-3'
<i>Pdpn</i>	Forward: 5'-GTGGAGGAGA ATCCCAGGCC TGGATCCCGG TCCTAGATCT CCGGGA-3'
	Reverse: 5'-ATACCGTCGA GATTAATTAA AGGATCCAGG AAGAGGATGG GGAACAG-3'
<i>Sprr1a</i>	Forward: 5'-GTGGAGGAGA ATCCCAGGCC TGGATCCATG AGTTCCCACC AGCAGAA-3'
	Reverse: 5'-ATACCGTCGA GATTAATTAA AGGATCCCAC ACACTTGTCT CACTCCTC-3'

Supplemental Figure 1: SPRR1A is selectively expressed by KRT5-/KRT17+ aberrant basaloid cells in human IPF. Expression of *SPRR1A* across major lung cell populations in IPF and control subjects was analyzed from three independent scRNA-seq datasets available in the IPF Cell Atlas.

A**B**

Supplemental Figure 2: *Sprrr1a*⁺ cells undergo spontaneous apoptosis during lung repair and regeneration following bleomycin injury in mice. A, Flow cytometry analysis of ZsGreen1-labeled *Sprrr1a*⁺ cells isolated from C57BL/6 mouse lungs at Days 12, 15, 17, 19, 24, and 29 after bleomycin administration; B, Quantification of apoptotic *Sprrr1a*⁺ cells at each time point. Data are presented as mean \pm SEM from 3 mice per group. * p < 0.05.