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Further comparison between Multi-linear model and Random Forest8

On Figure 4 we can see four one-to-one diagrams of prediction and ground truth for the multi-linear model (top) and for9

the random forest (bottom) for an observation period equal to 1 hr (left column) and 1.5 hrs (right column). Both models10

overestimate small systems and underestimate large ones, consistent with a strategy to use the mean over systems as a prediction11

(see also Figure 5). They both fail in providing a good prediction. However, with an extra 30 minutes of data, we observed that12

both models improve their prediction for systems smaller than 100 km : the scatter is sharper and follows the y = x function.13

The multi linear model tends to overestimate system sizes with a systematic biais of 10-15 km for these kind of systems (smaller14

than 100 km). Random forest prediction for 1.5 hrs of observation shows lower performance for small systems but higher15

performance for large systems.16

Figure 5 displays the mean (dashed line) and deviation (error bar) of the mean-square error as a function of the maximal17

extension of DCSs, for the multi-linear model (lasso, on the top) and the random forest (bottom) with the prediction based only18

on the area growth rate (left column) and with all features (right column). The black line is the mean-square error value for a19

constant prediction equal to the mean of the dataset, and it has the typical shape of a ’v’. For 30 min (blue curve), we see that20

the prediction for both models follows closely the ’v-shape’, assessing that models simply predict the average value. At 1 hr21

(turquoise curve) the error is smaller but is still large (40%) for small (below 60 km) and very large (beyond 160 km) systems.22

At 1.5 hrs (orange curve), the error of the model is under the ’v-shaped’ curve and is flattened. The error is reduced by 15% for23

very small systems (smaller than 60 km) and reduced by 5% for systems as large as 140 km. For 2 hrs (red curve), the scatter is24

flattened near below 20%, supporting that the model has learned how to predict the maximal extension. We observe that the25

mean-square error is increasing for larger systems, as well as the standard deviation, which may be partly due to the fact that26

there are less systems in this range (and thus less systems to learn from).27

Evolution of the prediction error as a function of system duration28

Can this method — which relies on physical features and machine learning models to predict system size — effectively operate29

on short-lived systems? Here, we show evidence supporting that the method is able to predict the maximal size of DCSs even30

for longer ones. The progression of the the root-mean-square-error (RMSE) versus the systems’ lifespan is illustrated in figure31

3, for the multilinear model trained for either 1 hr (panel A) or 1.5 hrs (panel B). Mean values for each duration are indicated by32

dashed lines, accompanied by error bars representing the associated standard deviation. In panel A, the RMSE is approximately33

17% for systems lasting 7.5 hours, reaching 20% for those lasting 12.5 hours. To further support this, in panel B, precision34

improves for systems with a 7.5-hour duration, with a RMSE below 15%, while systems lasting 12.5 hours are predicted with35

an average error of 20%. The graphical representation highlights a weak correlation between model skill and system duration.36

Tracking algorithm calibration37

Prior to applying the TOOCAN algorithm to the SAM outputs, it is required to convert the OLR of the SAM model to equivalent38

brightness temperatures (BTequi). To do this, we compute a relationship between OLR and brightness temperature (BT) from39

the Scanner for Radiation Budget (ScaRaB) radiometer onboard the Megha-Tropiques satellite over the entire 2012 period. The40

ScaRaB instrument enables simultaneous observations of the OLR at the Top Of the Atmosphere (TOA) and infrared thermal41

measurements within the 10.5-12.5 µm window channel. We took advantage of this capability to compute a regression equation42

estimating an equivalent IR brightness temperature (BTequi) from the OLR at TOA. A flux equivalent brightness temperature43

(BTf) is first determined from OLR by:44

OLR = σBT 4
f . (1)

Then, the derived equation regression between BTequi and BTf is of the form:45

BTequi = aBT 2
f +bBTf + c (2)
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where a = 0.0035215, b =−0.146688 and c = 86.6780.46

The residual bias between BTequi and the observed BT is ∼ 0.16K for a BTf < 245K, and is of the same order of magnitude47

as the residual bias calculated with the method proposed by1 to estimate BT from OLR. We then perform then the detection and48

tracking of individual DCSs by applying the TOOCAN storm tracking algorithm on the simulated BTequi of the SAM simulation49

for a 40°S-40°N latitudinal band over the 1 August–10 September 2016 period. To address the cyclic feature of longitudes and50

guarantee continuity of DCS tracking across the 0° and 360° meridians, a specific preprocessing step is undertaken for each IR51

image. This involves duplicating a 20° longitude band from 340° to 360° and appending it adjacent to the 0° longitude, and52

similarly, a 20° longitude band from 0° to 20° is duplicated and placed alongside the 360° meridian. By extending the IR data53

in this manner, the cloud tracking algorithm can identify and track DCSs which propagate across the 0° and 360° meridians.54

DCSs identified twice, once on each side of the 0° and 360° meridians, are removed from the resulting deep convective systems55

database. Only DCSs occurring between 10 August and 10 September 2016 are included in our analysis to avoid the model56

spin-up period, ensuring the reliability of our results2, 3. Also, we focus solely on tropical DCSs, restricting our analysis to57

within +-30° of latitude.58

Assessing realistic properties of DCSs in Dyamond-SAM simulation59

Fig. 9 A and B show the distributions of DCS lifetime duration and maximum area (Amax) simulated by the SAM model over60

the tropical belt (+-30° of latitude), and observed by a fleet of geostationary satellites for similar period and region4. First,61

we can notice than the simulated DCSs are more numerous (∼ 184000) than the observed ones (∼ 148000). The lifetime62

duration distributions, as illustrated in Fig. 9a, are characterized by a mode at 5 hours with quite similar occurrence for both63

simulated (∼ 43000) and observed DCSs (∼ 47000). Following this, there is a decline in the frequency of occurrence for both64

distributions. The slope of the distribution for observed DCSs is more pronounced, indicating these systems exhibit shorter65

durations. The observed systems have a maximum lifetime duration of ∼ 41 hrs, while it is approximately 48 hrs for simulated66

DCSs. The distributions depicting the maximum area reached by the DCSs throughout their life cycles (Fig. 9B) demonstrate a67

substantial similarity in the cloud surface between the observed and simulated DCS events. Observed DCSs are slightly larger68

(∼ 720000 km²) than the simulated ones (∼ 360000 km²). Fig. 9C and D illustrate the two-dimensional distribution of both69

observed and simulated DCSs, as a function of their maximum spatial area and the duration of their lifetime. This phase diagram70

can be seen as a measure of the organization of deep convective systems4. The analysis shows that, similarly to observed71

DCSs, simulated DCSs exhibit a broad spectrum of organizational structures, ranging from short-lived systems spanning a few72

thousand km2 to long-lived systems covering several thousand square kilometers. There is an apparently strong relationship73

between lifetime duration and the maximum spatial area. However, for both simulated and observed DCSs, a more detailed74

analysis indicates that, for any specific lifetime duration, the maximum spatial area can vary significantly, covering a spectrum75

that spans several orders of magnitude. This dispersion appears more significant for the simulated systems. Overall, the DCS76

events simulated by the SAM model exhibit life cycles that appear realistic and comparable to those observed. The distribu-77

tion of maximum area aligns closely with observational data. However, the simulated lifetime durations tend to be overestimated.78

79

A recent study5 conducted a detailed analysis of tropical mesoscale convective system (MCS) characteristics in the80

DYAMOND models, including DYAMOND-SAM, across both summer and winter phases. Eight feature-tracking algorithms,81

including TOOCAN, were applied to both simulations and satellite observations, aiming to identify biases in the global82

convection-resolving models (GCRMs) and the tracking methods used. Results show that the probability density function83

(PDF) of simulated Brightness Temperature (Tb) from most DYAMOND models agrees reasonably well with observations,84

with no significant deviation observed in DYAMOND-SAM. However, simulated rain rates exhibit greater spread across85

models than Tb, with most models overestimating the frequency of heavy rain rates (10–40 mm h−1) while underestimating86

light rain rates. This variability likely affects MCS identification, and most models (13 out of 19), including SAM, show87

higher precipitation-to-precipitable water (PW) ratios than observations, with biases ranging from approximately 10% to 33%88

(SAM’s bias is 19% higher). These findings suggest that most DYAMOND models tend to overestimate the sensitivity of89

precipitation to environmental moisture over tropical oceans. Despite these biases, DYAMOND-SAM appears reasonably90

consistent with observational data overall. Additionally, the study assessed the models’ ability to simulate the cloud and91

precipitation characteristics of MCSs throughout their lifecycle. Lifecycle composite analysis for MCSs with median lifetimes92

in each model showed that most DYAMOND models captured the canonical MCS lifecycle, though the magnitude and rate of93

change varied among the trackers. Model-observation differences in cloud shield properties were smallest with the TOOCAN94

tracker compared to others.95
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Name and meaning of features
We use the following abbreviations:

For each variable we compute the mean and the standard deviation and use this abbreviation:

• mean: mn

• standard deviation: std

Mean and standard deviation are compute in four different manners with the assiciated abbreviation and meaning:

• total subdomain: ts - the domain is 5deg×5deg

• under cloud: uc

• neighbor systems: ns - the variable is averaged only below other systems

• except the system: es - the variable is averaged everywhere in the subdomain except below the considered system

Format for Variable Names

• mn_uc_vX_tY: Mean under cloud for variable X at timestep Y

• std_uc_vX_tY: Standard deviation under cloud for variable X at timestep Y

• mn_ns_vX_tY: Mean for neighbor systems for variable X at timestep Y

• std_ns_vX_tY: Standard deviation for neighbor systems for variable X at timestep Y

• mn_es_vX_tY: Mean except the system for variable X at timestep Y

• std_es_vX_tY: Standard deviation except the system for variable X at timestep Y

• mn_ts_vX_tY: Mean for total subdomain for variable X at timestep Y

• std_ts_vX_tY: Standard deviation for total subdomain for variable X at timestep Y

For the features relative to the system’s neighbor, we use the following abbreviations

• nb_neighbours: Number of neighbors

• number_of_active_neighbour: Number of active neighbors (growth phase)

• mean_position_neighbour: Mean distance of neighbors

• min_position_neighbour: Minimum distance of neighbors

• average_age_neighbour: Average "age" of neighbors

• max_age_neighbour: Maximum "age" of neighbors

• long_lived_neighbour_detected: Long-lived neighbor detection (greater than 5 hrs)

• mean_interaction_power: Mean interaction power - mean distance of neighbor system weighted by their size

• max_interaction_power: Maximum interaction power - maximum distance of neighbor system weighted by their size

Format for Variable Names
<abbreviation>_time_Y: Variable description at timestep Y
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Index Variable Name Long Name Variable Physical Meaning
2 PW Precipitable Water Total column-integrated water vapor
3 RH500 Relative Humidity at 500 hPa Moisture content at mid-troposphere (500 hPa

level)
4 RH700 Relative Humidity at 700 hPa Moisture content at lower mid-troposphere (700

hPa level)
5 T2m 2m-Temperature Temperature near Earth’s surface (2m above

ground)
6 IWP Ice Water Path Column-integrated mass of ice particles
7 U10m U-component of Wind at 10m Zonal wind speed (east-west) near the surface
8 V10m V-component of Wind at 10m Meridional wind speed (north-south) near the sur-

face
9 LANDMASK Land Mask Binary indicator for land vs ocean
10 OM500 Omega at 500 hPa (Vertical Velocity) Vertical motion in mid-troposphere (500 hPa level)
11 OM700 Omega at 700 hPa (Vertical Velocity) Vertical motion at lower mid-troposphere (700 hPa

level)
12 OM850 Omega at 850 hPa (Vertical Velocity) Vertical motion near boundary layer (850 hPa level)
13 SHEAR Wind Shear Difference in wind speed between 1000m and sur-

face
14 DEEPSHEAR Deep Wind Shear Difference in U-wind speed between 6000m and

surface
15 SHEARV Wind Shear in V Difference in V-wind speed between 1000m and

surface
16 DEEPSHEARV Deep Wind Shear in V Difference in V-wind speed between 6000m and

surface
17 INT_FMSE_BL Integrated Moist Static Energy within

Boundary Layer
Energy related to moisture and temperature at
boundary layer

18 INT_FMSE_MID Integrated Moist Static Energy within
Mid-Troposphere Layer

Energy related to moisture and temperature at mid-
troposphere

19 DIFF_FMSE
_MID_BL

Difference in Integrated Moist Static
Energy between Mid-Troposphere and
Boundary Layer

Instability between mid-troposphere and boundary
layer

Table 1. Variable Index, Variable Name, Long Name Variable, and Physical Meaning
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100km

B.
LWNTA [W/m2]

100km

C.
PW [kg/m2]

100km

D.
IWP [kg/m2]

100km

E.
Neighbors

100km

F.
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81.0 187.9 294.9 36.9 56.3 75.8

0.0 3.2 6.4 0.1 0.5 1.0

297.8 299.8 301.7 -58.3 -15.4 27.6 -22.8 -6.2 10.3

Figure 1. Example of considered physical fields for a given DCS at 1 hr of development : A. the system alone. B. its
neighbors. C. long wave top of atmosphere. D. precipitable water. E. ice water path. F. relative humidity at 500 hPa. G. surface
temperature. H. vertical velocity at 700 hPa. I. Wind Shear at 1000m
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Figure 2. Method to derive from physical fields in SAM-Dyamond the interpretable features used as input of the models.
Based on the tracking algorithm, physical fields in a window of 5deg×5deg centerd on the barycenter of a DCS are extracted.
We then perform the mean and the standard deviation either on the total window (environment features) or only within the
system by applying the mask of the considered DCS (system features). Additionnaly we compute features based on the system
shape and position, as well as features related to the neighboring systems. All these features are concatenated for a given
timestep and a given DCS. We can repeat this procedure for each timestep and concatenate over the full period of observation.
This is eventually the input of our models, here only the neural network is represented but it is the same for the Lasso and
Random Forest.
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Figure 3. The figure shows the evolution of the root mean-square error (RMSE) as a function of the duration of the systems
when the multilinear model is trained for either 1 hr (panel A) or 1.5 hrs (panel B). The graphical representation illustrates only
a weak dependence of model precision on duration. Notably, the mean RMSE remains below 15% for systems lasting 7.5 hours
and approximately 20% for those with a duration of 12.5 hours. Thus, we conclude that the model can predict the maximum
area even for long duration.
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Figure 4. One-to-one diagrams for the prediction and the target for the multi-linear model (top) and random forest (bottom).
The results are displayed for models trained with all features, and observation period of 1 hr (left) and 1.5 hrs (right).
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B.
Random Forest, only growth rate
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Figure 5. Mean (dashed line) and standard deviation (error bars) of the mean-squared error from the multi-linear model (lasso,
top panels) and random forest model (bottom panels) prediction as a function of the effective maximum size of DCSs (x-axis).
Blue curves correspond to 30 min of observation and red curves to 2 hrs of observation (different colors from blue to red
correspond to 30 min increments in the observation period). The black line represents the mean-squared error for a model that
predicts constantly the mean of the set. On the left, only growth rate of area is considered to predict the final size, whereas on
the right, models use additional features, including shape, physical fields, migration distance and neighboring systems
influence.
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Figure 6. In orange, the normalized Coefficients optimized for the multi-linear model to solve the supervised task of
predicting the maximal extension, based on the first 1.5 hour evolution of the DCS growth rate and additional features (ice
water path IWP, migration distcance, etc). In blue, similar but for the Random Forest model (averaged Gini index scores).
There are 15 features displayed, other features are considered negligible (coefficients are below 0.1). Starred variables are the
ones characterizing the system, while unstarred variables characterize its environment. For instance std IWP* refers to the
standard deviation of ice water path computed over the system cloud shield; similarly std MSE denotes the standard deviation
of the moist static energy computed over the system cloud shield. Although they do not appear in exactly the same order, nor
without exactly the same coefficients, 9 over the top 15 features are selected by both of these models.
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Figure 7. Correlation matrix between the 14 selected features from the value of their coefficient. It shows that features are not
independant and there might be redundant information. Nevertheless, all correlations between different variables are smaller
than 0.5 (the only larger correlations are between the same variable at different heights or locations, such as RH at 700hPa and
500hPa, as expected).
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Figure 8. Principal component analysis applied on the 15 features selected from the multi-linear model (lasso). The axes are a
linear combination of these features and it is not straightforward to attribute them a physical meaning. However this analysis
shows an overall clustering of small (blue) and large (red) systems.
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Figure 9. A. distribution of the DCS lifetime duration simulated by SAM and observed by a fleet of geostationary satellites for
the period 10 August-10 September 2016 over the entire tropical belt [30°S;30°N]. B. distribution of the DCS maximum extent
simulated by SAM and observed over similar period and region. C. occurrence of the observed deep convective systems
according to maximum extent and lifetime duration. D. same but for simulated DCS.
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Figure 10. A. Example of a system evolution truncation of the life cycle to consider only the active life cycle. B.
Determination of threshold in area growth rate as a trade off between a maximized correlation of duration and the square root
of maximal area, and minimized number of systems removed. Empirically, the threshold is found at 1000 km2/hr.
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