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SI Fig. 1. (a) Uncurated EM images generated by the diffusion foundation model,
alongside the Fréchet Inception Distance (FID) value calculated between 2500 training
images and 2500 generated images. (b) Randomly selected EM images from training
dataset (1.7M patches).
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Brain step size =1 step size =3 step size =5 step size =0

step size =415 step size =20 step size =25 step size =50

SI Fig. 2. Visualization of the effect of the parameter step size (gradient scaling
coefficient in the likelihood term) on denoising reconstruction results. The results show
that a small step size (e.g., 1 or 3) leads to overly smoothed and blurred images, while
a large step size (e.g., 50) introduces noise and artifacts. Optimal step size values (e.g.,
15) balance the image prior from the diffusion model and the data consistency, yielding
high-quality results.
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SI Fig. 3. (a) Super-resolution results of EM Generalist applied to mouse brain images
down-sampled by factors of 2-, 3-, and 4-fold, alongside comparisons with the ground
truth. (b) Quantitative evaluation of the reconstruction results. As the downsampling
factor increases and effective information is progressively lost, the reconstruction
quality gradually declines. Nevertheless, even under 4-fold downsampling, EM
Generalist achieves a FRC resolution below 35 nm (pixel size = 4.0 nm), with a PSNR
of 26 and a SSIM of 0.75, demonstrating its ability to significantly recover the original
image details.
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SI Fig. 4. (a) Recovery results of EM Generalist for mouse brain EM images with slight
defocus, moderate defocus, and severe defocus, alongside comparisons with the
ground truth. (b) Quantitative evaluation of the reconstruction results. For images
with severe defocus, EM Generalist significantly mitigates the impact of defocus,
achieving a PSNR of up to 29 and a SSIM of 0.72, with a FRC resolution below 30 nm
(pixel size = 4.0 nm), demonstrating its robustness in challenging restoration scenarios.
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SI Fig. 5. (a) Comparison of 6-fold super-resolution results (x-z plane, mouse liver
dataset) between interpolation, EMDiffuse and EM Generalist. EM Generalist
demonstrates superior reconstruction quality as visualized by the highlighted regions
(orange dashed boxes). (b) Quantitative metrics (PSNR, SSIM, FRC resolution) of EM
Generalist reconstruction also surpass those of interpolation and EMDiffuse.
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SI Fig. 6. EM Generalist achieves 10-fold super-resolution on raw anisotropic fly brain
vEM data (resolution: 4x4x40 nm). Selected slices (0, 20, 40, ..., 100) of raw images
and reconstructions along yz-plane (a) and xz-plane (b) highlight the restoration of fine
structures. Green borderlines in (a) and pink borderlines in (b) show that EM Generalist
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recovers clear boundaries of neuronal cells and mitochondria in different layers.
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SI Fig. 7. Isotropic reconstructions of synaptic vesicles in fly brain data at 10-fold
super-resolution using EM Generalist. Orange dashed boxes denote known anisotropic
slices, while other green dashed are reconstructed slices. Since the vesicles marked in
green are present in both the upper and lower known planes, they are correctly and
consistently recovered across all intermediate reconstructed slices. In contrast, vesicles
marked in blue, observed only in the lower plane, appear predominantly in the latter
half of the reconstructed volume. The reconstructed images successfully approximate
the spherical morphology of these vesicles across different reconstructed planes,
effectively recovering their 3D structures.
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SI Fig. 8. Reconstruction of another mouse brain dataset (4x4x4 nm resolution, down-
sampled to 16 nm axial resolution, from
https://elifesciences.org/articles/25916/figures#videos). EM Generalist accurately
recovers vesicles in both (a) x-y (interpolated slice) and (b) x-z planes, matching the
number and location in the ground truth.
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a Merger error b Over-segmentation error

¢

SI Fig. 9. (a) Merger error: The red masks in vEM image (left) and segmentation map

(right) highlight an example of a merger error, where an individual dendritic spine is
incorrectly segmented together with adjacent regions. (b) Over-segmentation error: The
red masks in VEM image (left) and segmentation map (right) highlight a complete
neural process within the vVEM image, which has been erroneously divided into separate
segments by the segmentation result.
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SI Fig. 10. The architecture of the diffusion foundation model for EM Generalist is a
U-net model, comprising an encoder and a decoder (hidden layer dimension: 128 ,64

32, 16, 8; layers: 64, 128, 256, 512, 1024). Attention blocks are integrated into the third
and final layers to enhance model performance.



108

109
110
111
112
113
114
115
116
117
118
119

EM Generalist
(and all baseline methods)

ground fruth noisy image

Misalignment Recover

) A
Alignment
Optic Flow SIFT

SI Fig. 11. To address the misalignment issues of the ground truth image and degraded

image in real paired imaging datasets, we use preprocessing procedures offered by the
alignment method in the supervised baseline, EMDiffuse. Both degraded images and
the results from EM Generalist or other baseline methods were aligned using optical
flow and SIFT-based registration before metric computation. We performed alignment
on the recovered images rather than on the raw images, as the alignment procedures
alter the noise distribution of the raw data, thereby degrading the denoising performance
of EM Generalist. The bottom row showcases optical flow and SIFT alignment results,
with the orange dashed box highlighting regions of significant mismatch. This
alignment ensures fair and accurate performance evaluations for different methods.
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SI Fig. 12. The large-scale image generation process using a diffusion model trained
on 128x128 patches. During each denoising step, the large image is divided into
overlapping 128x128 patches with a 16-pixel overlap margin. After denoising, the
patches are reassembled into the full image, with overlapping regions blended by
averaging.
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SI Fig. 13. Flow matching, a novel variant of diffusion model, is used to accelerate the
reconstruction process in EM Generalist framework. (a) A comparison between the
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ground truth image, and the recovered results by flow matching and diffusion model
for 6-fold axial super-resolution tasks on kidney and liver VEM test data. (b)
Evaluations for the flow matching and diffusion model results. Flow matching can
recover images over 20 times faster, and hold a comparable evaluation result with the
diffusion model-based approach.



a Training data

Pixel size Equipment Source
CEM500K 2-20 nm multiple https://elifesciences.org/articles/65894
Tobacco Leaf Chloroplast 3.6 nm SBF-SEM https://www.ebi.ac.uk/empiar/EMPIAR-11831/
Human hepatocellular carcinoma cell 4 nm FIB-SEM https://www.ebi.ac.uk/empiar/EMPIAR-11849/
Myelin 5nm FIB-SEM https://www.ebi.ac.uk/empiar/EMPIAR-11214/
Human brain 4 nm ssSEM https://h01-release.storage.googleapis.com/data.html
Microphage 4 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_macrophage-2
Mouse brain 3.3 nm FEI Verios SEM https://zenodo.org/records/10205819
Mouse Heart 4.4 nm FEI Verios SEM https://zenodo.org/records/10205819
Mouse Liver 4.4 nm FEI Verios SEM https://zenodo.org/records/10205819
Hela cell 4 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_hela-3
T cell 8 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_ctl-id8-4
Mouse Kidney (3D) 8 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_mus-kidney
Mouse Liver (3D) 8 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_mus-liver
Mouse Skin (3D) 8 nm FIB-SEM

https://openorganelle.janelia.org/datasets/jrc_mus-skin-1

b 3D test data

Pixel size Equipment Source
Mouse Brain CA1 hippocampus region 5x5x5 nm SEM https://www.epfl.ch/labs/cvlab/data/data-em
Fly brain 4 x4 x40 nm SEM https://www_janelia.org/project-team/flyem/manc-connectome
1 36 Mouse Brain 4 x4 x4 nm FIB-SEM https://elifesciences.org/articles/25916/figures#videos

137  SITable 1: Lists of training datasets (a) and 3D test datasets (b), including their sample

138  types, pixel sizes, imaging equipment and source links.
139
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Sample Preparation and Imaging Details
The experimental validation samples for denoising task (plant stigma, kidney, HeLa
cells, heart, and mouse oocytes) were collected from Electron Microscopy Platform,
School of Life Sciences, Peking University, originating from experiments conducted
by multiple independent research groups. And for super-resolution and deblurring tasks,
we prepared the mouse brain cortex sample.

(1) Stigma, kidney, human HeLa cells, heart, and mouse oocytes: Imaging was
performed using a Helios dual-beam scanning electron microscope at an accelerating
voltage of 2 kV. Images were acquired with dwell times of 500 ns, 1 us, 3 us, and 10 ps,
where the first three were used to produce noisy images, and the images captured at
10 pus served as ground truth. Three magnifications were applied: 15,000x (pixel size
8.98 nm) for stigma and kidney tubules, 20,000% (pixel size 6.73 nm) for kidney
Glomerulus, mouse oocytes, and human HeLa cells, and 40,000% (pixel size 3.36 nm)
for imaging mitochondria in kidney cells. Subsequently, by manually adjusting the
defocus and stigmator (X and Y axes) settings, we acquired blurred-clear paired images
at a dwell time of 3 ps, ensuring that the imaging area matched the noisy region, and
the pixel size remained consistent with that of the noisy images for each category.

(2) Mouse brain cortex data: Animals were anesthetized and perfused with 15 mL PBS
followed by 30 mL fixative mixture containing 2% PFA (EMS), 2.5% glutaraldehyde
(EMS), 2.1% sucrose (EMS), and 0.1 M sodium cacodylate buffer (pH=7.4) (Sigma-
Aldrich). Mouse brain was cut into small sizes and fixed with fixative 48-72 h. Then,
the samples were fixed with 2% OsO4 aqueous solution (EMS) and 1.5% potassium
ferrocyanide (EMS) in 0.1 M sodium cacodylate for 1h at 40C. Subsequently, the
samples were incubated with 1% thiocarbohydrazide (EMS) for 20 min at RT, 2%
0s0O4 aqueous solution for 30 min at RT, and 2% Neodymium (Sigma-Aldrich) at 40C
overnight. Tissues were washed three times (5 min each) using H2O between each step.
On the next day, the samples were dehydrated through a graded ethanol series (30, 50,
75, 85, 95, 100%, 7 min each, all cooled at 4°C) followed by immersion into 1:1 and
2:1 mixtures of acetone and EMbed 812 embedding kits (EMS) at room temperature
for 1h and pure Embed 812 resin overnight on a rotator. Immersed samples were then
incubated in pure resin and placed in embedding moulds (Ted Pella) in a pre-warmed
oven (60°C) for 48 to 72 h. After polymerization, the resin-embedded tissue was cut
into thick sections of 100 nm. The sections were mounted on a silicon wafer.

Imaging was performed using a Zeiss GeminiSEM 360 scanning electron microscope
at an accelerating voltage of 2 kV. The ground truth pixel size was 4 nm, and the dwell
time was 1.6 ps. For each task, only one imaging condition was altered. For super-
resolution tasks, the dwell time was kept constant at 1.6 ps, while the pixel size was
varied to 16 nm, 12 nm, and 8 nm, respectively. For defocus tasks, the focus was
manually adjusted until the images appeared blurred. For ultra-large images, the pixel
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size remained 4 nm, with the total number of pixels reaching approximately 320
megapixels.

Publicly Available EM Datasets Collection

To clearly document the sources and characteristics of various public EM datasets used
in this paper, we provide detailed information in Supplementary Information (SI) Table
1. Both the training data and test data are included.

Model architecture and implementations for EM Generalist

We employed the ‘UNet2DModel’ from the Hugging Face ‘diffusers’ library as the
basic architecture of our diffusion model, As depicted in SI Fig. 10, the model consists
a down-sampling pathway and an up-sampling pathway'. Since EM images are
grayscale, the model's input and output channels are set to 1. The architecture consists
of four stages of down-sampling and four corresponding up-sampling stages. Each
down-sampling block consists of two convolution layers per block, both with batch
normalization applied. The down-sampling pathway consists of two down-sampling
modules, followed by a self-attention module, and another down-sampling module,
allowing the model to focus on significant features at a coarser resolution.

The channel dimensions are progressively increased as 64, 128, 256, 512. In attention
mechanism?, the input feature map is first transformed through three linear projections
into the ‘Query’ (Q), ‘Key’ (K), and ‘Value’ (V) embedding spaces. Each embedding
typically has the shape R¥*W*C where H and W represent the spatial height and
width of the feature map, and C denotes the feature dimension. The attention weights
are computed using the dot product between the Query and Key, normalized to prevent
large values, thus we can derive the formula as follows:

T

Ve

In this equation QKT represents the dot product between Query and Key, calculating

Attention(Q, K, V) = softmax(

W,

the similarity between different positions. v/C is a scaling factor that prevents the dot
product from growing too large when the feature dimension is high. The softmax
operation normalizes the computed similarities into a probability distribution, ensuring
the attention weights sum to 1.

The up-sampling pathway mirrors the down-sampling pathway, employing symmetric
block types, including three up-sampling modules and a self-attention module. The
input to each up-sampling block differs slightly from that of the down-sampling blocks,
as it combines the output of the previous up-sampling block with the output from the
corresponding down-sampling block at the same level. This skip connection facilitates
the fusion of shallow and deep features, thereby enhancing the model’s performance.
A dropout rate of 0.1 is used for regularization to mitigate overfitting.
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Evaluation metrics

Structural Similarity Index (SSIM) is a widely used evaluation metric for measuring
the similarity between two images. SSIM is particularly useful in tasks such as image
reconstruction, compression, and denoising, as it assesses perceived visual quality by
comparing structural information, luminance, and contrast between two images. Unlike
traditional pixel-wise metrics like mean squared error (MSE), SSIM aligns with human
visual perception of image quality. Given two images x and y, the SSIM index is
defined as:

(zﬂxﬂy + Cl)(zo-xy + C3)
Wz + p2 + C) (0% + 02 + Cy)

SSIM(x,y) =

where u, and u, are the local means of images x and y representing luminance,
02 and 0'33 are the local variances of x and y, representing contrast, gy, is the
covariance between x and y, representing structural similarity, and C; and C, are
constants that stabilize the computation by preventing division by zero. SSIM values
range from [-1, 1], where 1 indicates perfect similarity, values close to 0 indicate low
similarity, and negative values suggest significant differences between the images.

Peak Signal-to-Noise Ratio (PSNR) is a widely used evaluation metric to measure the
similarity between a processed image and a reference image. It is based on pixel-wise
error, i.e., MSE, and expresses the ratio of signal strength to noise in a logarithmic scale.
Given a reference image x and a processed image y, PSNR is defined as:

MAX?

PSNR(X, y) =10- IOglo (WE—M

),

where MAX is the maximum possible pixel value of the image. For example, for 8-
bit images, MAX=255. MSE(x,y) is the Mean Squared Error between the two
images, defined as:

N
1
MSE(x,y) =~ ) (= )%
i=1

where x; and y; are the pixel values of images x and y,and N is the total number
of pixels in the image. The PSNR value is expressed in decibels (dB) and reflects the
ratio between signal strength and noise. A higher PSNR indicates a higher similarity
between the images, with less noise.

Besides PSNR, and SSIM, we also use Fourier ring Correlation (FRC) and Fourier
Shell Correlation (FSC) to estimate the resolution of the recovered image/volume®*.
FRC is based on the Fourier transform of 2D images, and it calculates the correlation
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between the frequency components of the recovered and ground-truth 2D images in
annular frequency bands. The formula for FRC is:

Z kering(f) Fl (k)FZ* (k)

\/zkemgm | FL ()12 Srecrinacry | Fa (K12

FRC(f) =

Where F;(k) and F,(k) are the Fourier transforms of two images, F, (k) is the
complex conjugate of F,(k), and ring(f) refers to the frequency band at frequency
f in the Fourier space. FRC evaluates the similarity of 2D images in the frequency
domain by analyzing correlations at specific spatial frequencies.

Similarly, we have FSC for 3D volumes as follows:

Z keshell(f) Fy (k) Fz (k)

FSC(f) =
\/ZkEshell(f) | F1(K)|? Xkeshencr) | F2 (k) |2

where F;(k) and F,(k) are the Fourier transforms of the two 3D volumes, and
shell(f) refers to the spherical shell at frequency f in the 3D Fourier space. Further,
we derive the FRC/FSC resolution from FRC/FSC curve. The structural resolution was
determined using FRC/FSC analysis. Following standard cryo-EM protocols, we
applied the 0.5 correlation threshold to identify the spatial frequency at which two
independent reconstructions maintain structural consistency, ensuring the measured
resolution reflects authentic biological features rather than stochastic noise.

In addition to the evaluation metrics calculated through comparison with ground truth,
the article also employs several no-reference image quality metrics to assess the quality
of the reconstructed images, particularly in the absence of ground truth images. These
methods include parameter-free resolution and NIQE™>S. Parameter-free resolution is a
metric designed to assess the resolution of an image without requiring any prior
knowledge or reference parameters. It is based on the analysis of the image’s spatial
frequencies, evaluating how well fine structures are resolved. It is particularly useful
when assessing images where high-frequency components indicate sharper details. The
metric does not require the specification of any parameters such as thresholds or scaling
factors, making it inherently robust to various imaging conditions. For details, please
refer to Descloux's work®.

The NIQE index is a widely used no-reference image quality assessment metric. It is
designed to predict perceptual quality without the need for reference images. NIQE
operates by first extracting a set of natural scene statistics from the image and then
comparing these statistics to a pre-established model of natural image features. The
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model captures typical image structures, such as textures and edges, that are naturally
expected in high-quality images. The NIQE score is calculated as:

N
NIQE = %Zl(fi — m)"C-(f; — m)

where f; represents the extracted features from the image, m is the mean of the
natural image feature distribution, and C is the covariance matrix of these features. A
lower NIQE score indicates higher image quality.

During the evaluation process, to fix the slight misalignment between the real degraded
image and the ground truth image caused by separate acquisition processes, Scale-
Invariant Feature Transform (SIFT)’ and Optical Flow® algorithms were employed to
register the reconstructed image with the ground truth image (SI Fig. 11).

Confidence intervals: To quantify the precision of detection performance, we
computed 95% confidence intervals (Cls) using the Wilson score method for binomial

proportions’

. This approach provides robust interval estimates that account for
sampling variability while maintaining accuracy across extreme probability ranges. The

interval is defined as:

z2 Jp(l—p) z2

72
1+—

where p is the observed proportion (e.g., detection rate), n is the total sample size,
and z=1.96 corresponds to the 95% confidence level in the standard normal distribution.
The Wilson score method was selected over asymptotic approximations (e.g., Wald
intervals) due to its superior coverage properties, particularly for small sample sizes or
near-boundary proportions (e.g., >99% detection rates). This formulation ensures
statistically rigorous uncertainty quantification in classification tasks.

Baseline settings

The baseline methods used in this study include two unsupervised approaches,
SCUnet!'® and ZS-deconvnet!!, as well as the state-of-the-art supervised learning-based
method EMDiffuse'?.

SCUnet integrates Swin Transformer blocks with convolutional layers to establish
hierarchical feature learning for EM denoising, where we specifically adopted its noise-
level=50 grayscale model (https://replicate.com/cszn/scunet) which provides the best
reconstructions. ZS-DeconvNet implements zero-shot microscopy enhancement via
Noise2Noise-based training on in-domain EM data, deployed through its ImageJ plugin
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with 250-epoch CPU training (3-4 days per task). EMDiffuse is trained on paired EM
datasets (Zenodo:10205819) to implement supervised diffusion processes through its
open-source framework (https://github.com/Luchixiang/EMDiffuse/), iteratively
refining structural features specific to EM imaging.

Stitching for Large EM Image During Reconstruction

To effectively recover large degraded images using our model—which is trained on
small 128 x 128 patches—we propose a stitching strategy to align adjacent image
patches seamlessly (SI Fig. 12). Specifically, large images are divided into overlapping
128 x 128 patches, each overlapping its neighbors by 12.5% (16 pixels). Initially, we
generate a Gaussian noise image matching the degraded image size and similarly divide
it into overlapping patches. During each subsequent iteration of the reconstruction,
overlapping regions between neighboring patches are averaged, creating a cohesive
intermediate image. This intermediate image is again segmented into overlapping
patches for the next step. This method reduces artifacts and ensures smooth transitions
between patches, significantly enhancing the overall reconstruction quality.

Flow Matching-based inference time acceleration
The computational efficiency of EM Generalist is constrained by two key limitations:
(1) the inherent 1000-step diffusion sampling process, and (2) the computationally
intensive gradient calculation required for conditional score function estimation. To
alleviate these constraints, we adopt a diffusion model architecture based on flow
matching'*!*. Flow matching is a technique where a continuous velocity field is learned
to deterministically transport a simple base distribution (such as Gaussian noise) to the
target data distribution. Rather than following the stochastic reverse process of typical
diffusion models, flow matching directly learns the dynamics of this transformation via
an ordinary differential equation (ODE). Specifically, if we denote the latent variable
at time step t as X;, the generative process is governed by:

0x;

ot Ve (Xe),
where v;(X;) represents the instantaneous velocity field at time t. This velocity field
essentially characterizes the “speed” and “direction” with which X; should be adjusted
to morph into a sample from the data distribution. This ODE formulation enables high-
quality sample generation with significantly fewer steps than the iterative denoising
used by conventional diffusion models.

The iterative sampling procedure based on flow matching can be derived via a simple
Euler integration. Let X, denote the latent variable at time t and consider two
successive time points, the update equation then becomes:

0%o (X, 1)

Xt—l = Xt + Atvg (Xt’ t) = Xt + At at
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Here, vg(X;,t) denotes the estimated velocity field parameterized by 6—equivalent
to the derivative of the estimated denoised latent variable K,(X;t) =X;—t
vg(X¢,t) —and At represents the discretized time interval. This update rule is
analogous to the reverse diffusion update used in DDPM but replaces the expensive
1000-step-iteration with much fewer step iterations (as few as 100 steps) by the learned
velocity field. Consequently, the sampling process becomes considerably faster while
preserving the model's overall performance.

Follow the predefined posterior sampling approach, we can formulate the posterior
sampling approach for flow matching as follows:

0Xy(X,, t
Pl (1 )W Iy~ Ao, ) I
t

X1 = X¢ + AL
Here, the first term represents the flow matching sampling process, and the second term
enforced data consistency. By taking the gradient for X, rather than x,, the
approximation of the conditional term can further accelerate the inference process by
skipping the heavy calculation for gradient with respect to the diffusion model. The
integration of flow matching with the new gradient calculation formulation reduced
reconstruction time of an isotropic 128x128%128-pixel volume from 40 minutes to 1.5
minutes on a single NVIDIA A800 GPU, achieving a 26.7x speedup without

performance degradation (SI Fig. 13).

Our implementation for flow matching utilizes the same model architecture the
diffusion model, featuring a U-Net structure enhanced with residual blocks, channel
multiplication, and self-attention mechanisms. The training protocol comprised
200,000 optimization steps executed across multiple GPUs with a batch size of 256,
requiring approximately 24 hours of computation on NVIDIA A40 hardware. We
employed the Adam optimizer with an initial learning rate of 10~*, incorporating a
1,000-step warmup phase to ensure training stability. Furthermore, we applied
Exponential Moving Average (EMA) to model parameters with a decay rate of 0.999
to enhance model convergence and robustness during training. During reconstruction,
the hyper-parameter a can be selected from the range [0, 1] to impose data consistency
constraints of varying strengths (normally 0.3), where 1 indicates no constraint and 0
corresponds to full enforcement of data consistency. Based on empirical evaluation, o
is typically set to 0.3, and users are encouraged to manually adjust this hyper-parameter
for different datasets to optimize reconstruction quality.
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