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 29 

SI Fig. 1. (a) Uncurated EM images generated by the diffusion foundation model, 30 

alongside the Fréchet Inception Distance (FID) value calculated between 2500 training 31 

images and 2500 generated images. (b) Randomly selected EM images from training 32 

dataset (1.7M patches). 33 

 34 
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 36 

SI Fig. 2. Visualization of the effect of the parameter step size (gradient scaling 37 

coefficient in the likelihood term) on denoising reconstruction results. The results show 38 

that a small step size (e.g., 1 or 3) leads to overly smoothed and blurred images, while 39 

a large step size (e.g., 50) introduces noise and artifacts. Optimal step size values (e.g., 40 

15) balance the image prior from the diffusion model and the data consistency, yielding 41 

high-quality results.  42 

 43 
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 45 

SI Fig. 3. (a) Super-resolution results of EM Generalist applied to mouse brain images 46 

down-sampled by factors of 2-, 3-, and 4-fold, alongside comparisons with the ground 47 

truth. (b) Quantitative evaluation of the reconstruction results. As the downsampling 48 

factor increases and effective information is progressively lost, the reconstruction 49 

quality gradually declines. Nevertheless, even under 4-fold downsampling, EM 50 

Generalist achieves a FRC resolution below 35 nm (pixel size = 4.0 nm), with a PSNR 51 

of 26 and a SSIM of 0.75, demonstrating its ability to significantly recover the original 52 

image details. 53 
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 55 

SI Fig. 4. (a) Recovery results of EM Generalist for mouse brain EM images with slight 56 

defocus, moderate defocus, and severe defocus, alongside comparisons with the 57 

ground truth. (b) Quantitative evaluation of the reconstruction results. For images 58 

with severe defocus, EM Generalist significantly mitigates the impact of defocus, 59 

achieving a PSNR of up to 29 and a SSIM of 0.72, with a FRC resolution below 30 nm 60 

(pixel size = 4.0 nm), demonstrating its robustness in challenging restoration scenarios.  61 
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 63 

SI Fig. 5. (a) Comparison of 6-fold super-resolution results (x-z plane, mouse liver 64 

dataset) between interpolation, EMDiffuse and EM Generalist. EM Generalist 65 

demonstrates superior reconstruction quality as visualized by the highlighted regions 66 

(orange dashed boxes). (b) Quantitative metrics (PSNR, SSIM, FRC resolution) of EM 67 

Generalist reconstruction also surpass those of interpolation and EMDiffuse. 68 
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 70 

SI Fig. 6. EM Generalist achieves 10-fold super-resolution on raw anisotropic fly brain 71 

vEM data (resolution: 4×4×40 nm). Selected slices (0, 20, 40, …, 100) of raw images 72 

and reconstructions along yz-plane (a) and xz-plane (b) highlight the restoration of fine 73 

structures. Green borderlines in (a) and pink borderlines in (b) show that EM Generalist 74 

recovers clear boundaries of neuronal cells and mitochondria in different layers.  75 
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 77 

SI Fig. 7. Isotropic reconstructions of synaptic vesicles in fly brain data at 10-fold 78 

super-resolution using EM Generalist. Orange dashed boxes denote known anisotropic 79 

slices, while other green dashed are reconstructed slices. Since the vesicles marked in 80 

green are present in both the upper and lower known planes, they are correctly and 81 

consistently recovered across all intermediate reconstructed slices. In contrast, vesicles 82 

marked in blue, observed only in the lower plane, appear predominantly in the latter 83 

half of the reconstructed volume. The reconstructed images successfully approximate 84 

the spherical morphology of these vesicles across different reconstructed planes, 85 

effectively recovering their 3D structures. 86 
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 88 
SI Fig. 8. Reconstruction of another mouse brain dataset (4×4×4 nm resolution, down-89 

sampled to 16 nm axial resolution, from 90 

https://elifesciences.org/articles/25916/figures#videos). EM Generalist accurately 91 

recovers vesicles in both (a) x-y (interpolated slice) and (b) x-z planes, matching the 92 

number and location in the ground truth.  93 
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 95 

SI Fig. 9. (a) Merger error: The red masks in vEM image (left) and segmentation map 96 

(right) highlight an example of a merger error, where an individual dendritic spine is 97 

incorrectly segmented together with adjacent regions. (b) Over-segmentation error: The 98 

red masks in vEM image (left) and segmentation map (right) highlight a complete 99 

neural process within the vEM image, which has been erroneously divided into separate 100 

segments by the segmentation result.101 
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 102 

SI Fig. 10. The architecture of the diffusion foundation model for EM Generalist is a 103 

U-net model, comprising an encoder and a decoder (hidden layer dimension: 128 ,64, 104 

32, 16, 8; layers: 64, 128, 256, 512, 1024). Attention blocks are integrated into the third 105 

and final layers to enhance model performance. 106 

  107 

Architecture of diffusion model:

Convolution 1x1

Down Sampling

Up Sampling

Attention

Dropout 0.1

Copied Blocks

Blocks

Skip Connection

Input

128

64x64

128

32x32

256 256

1

128x128

64 64

16x16

512 512

8x8

1024

512512+1024

256+512 256

128+256 128

64+128 64 1

128x128

64x64

32x32

16x16

Output

a



 108 

SI Fig. 11. To address the misalignment issues of the ground truth image and degraded 109 

image in real paired imaging datasets, we use preprocessing procedures offered by the 110 

alignment method in the supervised baseline, EMDiffuse. Both degraded images and 111 

the results from EM Generalist or other baseline methods were aligned using optical 112 

flow and SIFT-based registration before metric computation. We performed alignment 113 

on the recovered images rather than on the raw images, as the alignment procedures 114 

alter the noise distribution of the raw data, thereby degrading the denoising performance 115 

of EM Generalist. The bottom row showcases optical flow and SIFT alignment results, 116 

with the orange dashed box highlighting regions of significant mismatch. This 117 

alignment ensures fair and accurate performance evaluations for different methods. 118 
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 120 

SI Fig. 12. The large-scale image generation process using a diffusion model trained 121 

on 128×128 patches. During each denoising step, the large image is divided into 122 

overlapping 128×128 patches with a 16-pixel overlap margin. After denoising, the 123 

patches are reassembled into the full image, with overlapping regions blended by 124 

averaging. 125 
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 127 

SI Fig. 13. Flow matching, a novel variant of diffusion model, is used to accelerate the 128 

reconstruction process in EM Generalist framework. (a) A comparison between the 129 

ground truth image, and the recovered results by flow matching and diffusion model 130 

for 6-fold axial super-resolution tasks on kidney and liver vEM test data. (b) 131 

Evaluations for the flow matching and diffusion model results. Flow matching can 132 

recover images over 20 times faster, and hold a comparable evaluation result with the 133 

diffusion model-based approach.  134 
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 136 

SI Table 1: Lists of training datasets (a) and 3D test datasets (b), including their sample 137 

types, pixel sizes, imaging equipment and source links. 138 

  139 

Pixel size Equipment Source

CEM500K 2-20 nm multiple https://elifesciences.org/articles/65894

Tobacco Leaf Chloroplast 3.6 nm SBF-SEM https://www.ebi.ac.uk/empiar/EMPIAR-11831/

Human hepatocellular carcinoma cell 4 nm FIB-SEM https://www.ebi.ac.uk/empiar/EMPIAR-11849/

Myelin 5 nm FIB-SEM https://www.ebi.ac.uk/empiar/EMPIAR-11214/

Human brain 4 nm ssSEM https://h01-release.storage.googleapis.com/data.html

Microphage 4 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_macrophage-2

Mouse brain 3.3 nm FEI Verios SEM https://zenodo.org/records/10205819

Mouse Heart 4.4 nm FEI Verios SEM https://zenodo.org/records/10205819

Mouse Liver 4.4 nm FEI Verios SEM https://zenodo.org/records/10205819

Hela cell 4 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_hela-3

T cell 8 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_ctl-id8-4

Mouse Kidney (3D) 8 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_mus-kidney

Mouse Liver (3D) 8 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_mus-liver

Mouse Skin (3D) 8 nm FIB-SEM https://openorganelle.janelia.org/datasets/jrc_mus-skin-1

a Training data

b 3D test data

Pixel size Equipment Source

Mouse Brain CA1 hippocampus region 5 × 5 × 5 nm SEM https://www.epfl.ch/labs/cvlab/data/data-em

Fly brain 4 × 4 × 40 nm SEM https://www.janelia.org/project-team/flyem/manc-connectome

Mouse Brain 4 × 4 × 4 nm FIB-SEM https://elifesciences.org/articles/25916/figures#videos



Sample Preparation and Imaging Details 140 

The experimental validation samples for denoising task (plant stigma, kidney, HeLa 141 

cells, heart, and mouse oocytes) were collected from Electron Microscopy Platform, 142 

School of Life Sciences, Peking University, originating from experiments conducted 143 

by multiple independent research groups. And for super-resolution and deblurring tasks, 144 

we prepared the mouse brain cortex sample.  145 

 146 

(1) Stigma, kidney, human HeLa cells, heart, and mouse oocytes: Imaging was 147 

performed using a Helios dual-beam scanning electron microscope at an accelerating 148 

voltage of 2 kV. Images were acquired with dwell times of 500 ns, 1 µs, 3 µs, and 10 µs, 149 

where the first three were used to produce noisy images, and the images captured at 150 

10 µs served as ground truth. Three magnifications were applied: 15,000× (pixel size 151 

8.98 nm) for stigma and kidney tubules, 20,000× (pixel size 6.73 nm) for kidney 152 

Glomerulus, mouse oocytes, and human HeLa cells, and 40,000× (pixel size 3.36 nm) 153 

for imaging mitochondria in kidney cells. Subsequently, by manually adjusting the 154 

defocus and stigmator (X and Y axes) settings, we acquired blurred-clear paired images 155 

at a dwell time of 3 µs, ensuring that the imaging area matched the noisy region, and 156 

the pixel size remained consistent with that of the noisy images for each category. 157 

 158 

(2) Mouse brain cortex data: Animals were anesthetized and perfused with 15 mL PBS 159 

followed by 30 mL fixative mixture containing 2% PFA (EMS), 2.5% glutaraldehyde 160 

(EMS), 2.1% sucrose (EMS), and 0.1 M sodium cacodylate buffer (pH=7.4) (Sigma-161 

Aldrich). Mouse brain was cut into small sizes and fixed with fixative 48-72 h. Then, 162 

the samples were fixed with 2% OsO4 aqueous solution (EMS) and 1.5% potassium 163 

ferrocyanide (EMS) in 0.1 M sodium cacodylate for 1h at 4oC. Subsequently, the 164 

samples were incubated with 1% thiocarbohydrazide (EMS) for 20 min at RT, 2% 165 

OsO4 aqueous solution for 30 min at RT, and 2% Neodymium (Sigma-Aldrich) at 4oC 166 

overnight. Tissues were washed three times (5 min each) using H2O between each step. 167 

On the next day, the samples were dehydrated through a graded ethanol series (30, 50, 168 

75, 85, 95, 100%, 7 min each, all cooled at 4°C) followed by immersion into 1:1 and 169 

2:1 mixtures of acetone and EMbed 812 embedding kits (EMS) at room temperature 170 

for 1h and pure Embed 812 resin overnight on a rotator. Immersed samples were then 171 

incubated in pure resin and placed in embedding moulds (Ted Pella) in a pre-warmed 172 

oven (60°C) for 48 to 72 h. After polymerization, the resin-embedded tissue was cut 173 

into thick sections of 100 nm. The sections were mounted on a silicon wafer.  174 

 175 

Imaging was performed using a Zeiss GeminiSEM 360 scanning electron microscope 176 

at an accelerating voltage of 2 kV. The ground truth pixel size was 4 nm, and the dwell 177 

time was 1.6 μs. For each task, only one imaging condition was altered. For super-178 

resolution tasks, the dwell time was kept constant at 1.6 μs, while the pixel size was 179 

varied to 16 nm, 12 nm, and 8 nm, respectively. For defocus tasks, the focus was 180 

manually adjusted until the images appeared blurred. For ultra-large images, the pixel 181 



size remained 4 nm, with the total number of pixels reaching approximately 320 182 

megapixels. 183 

 184 

Publicly Available EM Datasets Collection 185 

To clearly document the sources and characteristics of various public EM datasets used 186 

in this paper, we provide detailed information in Supplementary Information (SI) Table 187 

1. Both the training data and test data are included. 188 

 189 

Model architecture and implementations for EM Generalist 190 

We employed the ‘UNet2DModel’ from the Hugging Face ‘diffusers’ library as the 191 

basic architecture of our diffusion model, As depicted in SI Fig. 10, the model consists 192 

a down-sampling pathway and an up-sampling pathway1. Since EM images are 193 

grayscale, the model's input and output channels are set to 1. The architecture consists 194 

of four stages of down-sampling and four corresponding up-sampling stages. Each 195 

down-sampling block consists of two convolution layers per block, both with batch 196 

normalization applied. The down-sampling pathway consists of two down-sampling 197 

modules, followed by a self-attention module, and another down-sampling module, 198 

allowing the model to focus on significant features at a coarser resolution. 199 

 200 

The channel dimensions are progressively increased as 64, 128, 256, 512. In attention 201 

mechanism2, the input feature map is first transformed through three linear projections 202 

into the ‘Query’ (Q), ‘Key’ (K), and ‘Value’ (V) embedding spaces. Each embedding 203 

typically has the shape ℝ𝐻×𝑊×𝐶, where 𝐻 and 𝑊 represent the spatial height and 204 

width of the feature map, and 𝐶 denotes the feature dimension. The attention weights 205 

are computed using the dot product between the Query and Key, normalized to prevent 206 

large values, thus we can derive the formula as follows: 207 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝐶
)𝑉. 208 

In this equation 𝑄𝐾𝑇 represents the dot product between Query and Key, calculating 209 

the similarity between different positions. √𝐶 is a scaling factor that prevents the dot 210 

product from growing too large when the feature dimension is high. The softmax 211 

operation normalizes the computed similarities into a probability distribution, ensuring 212 

the attention weights sum to 1. 213 

 214 

The up-sampling pathway mirrors the down-sampling pathway, employing symmetric 215 

block types, including three up-sampling modules and a self-attention module. The 216 

input to each up-sampling block differs slightly from that of the down-sampling blocks, 217 

as it combines the output of the previous up-sampling block with the output from the 218 

corresponding down-sampling block at the same level. This skip connection facilitates 219 

the fusion of shallow and deep features, thereby enhancing the model’s performance. 220 

A dropout rate of 0.1 is used for regularization to mitigate overfitting.  221 



 222 

Evaluation metrics 223 

Structural Similarity Index (SSIM)3 is a widely used evaluation metric for measuring 224 

the similarity between two images. SSIM is particularly useful in tasks such as image 225 

reconstruction, compression, and denoising, as it assesses perceived visual quality by 226 

comparing structural information, luminance, and contrast between two images. Unlike 227 

traditional pixel-wise metrics like mean squared error (MSE), SSIM aligns with human 228 

visual perception of image quality. Given two images 𝑥 and 𝑦, the SSIM index is 229 

defined as:  230 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝐶1)(𝜎𝑥2 + 𝜎𝑦2 + 𝐶2)
, 231 

where 𝜇𝑥 and 𝜇𝑦 are the local means of images 𝑥 and 𝑦 representing luminance, 232 

𝜎𝑥
2  and 𝜎𝑦

2  are the local variances of 𝑥  and 𝑦 , representing contrast, 𝜎𝑥𝑦  is the 233 

covariance between 𝑥 and 𝑦, representing structural similarity, and 𝐶1 and 𝐶2 are 234 

constants that stabilize the computation by preventing division by zero. SSIM values 235 

range from [-1, 1], where 1 indicates perfect similarity, values close to 0 indicate low 236 

similarity, and negative values suggest significant differences between the images. 237 

 238 

Peak Signal-to-Noise Ratio (PSNR) is a widely used evaluation metric to measure the 239 

similarity between a processed image and a reference image. It is based on pixel-wise 240 

error, i.e., MSE, and expresses the ratio of signal strength to noise in a logarithmic scale. 241 

Given a reference image 𝑥 and a processed image 𝑦, PSNR is defined as:  242 

PSNR(𝑥, 𝑦) = 10 ⋅ log10⁡(
MAX

2

MSE(𝑥, 𝑦)
), 243 

where MAX is the maximum possible pixel value of the image. For example, for 8-244 

bit images, MAX=255 . MSE(𝑥, 𝑦)  is the Mean Squared Error between the two 245 

images, defined as:  246 

MSE(𝑥, 𝑦) =
1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

, 247 

where 𝑥𝑖 and 𝑦𝑖 are the pixel values of images 𝑥 and 𝑦, and 𝑁 is the total number 248 

of pixels in the image. The PSNR value is expressed in decibels (dB) and reflects the 249 

ratio between signal strength and noise. A higher PSNR indicates a higher similarity 250 

between the images, with less noise. 251 

 252 

Besides PSNR, and SSIM, we also use Fourier ring Correlation (FRC) and Fourier 253 

Shell Correlation (FSC) to estimate the resolution of the recovered image/volume4. 254 

FRC is based on the Fourier transform of 2D images, and it calculates the correlation 255 



between the frequency components of the recovered and ground-truth 2D images in 256 

annular frequency bands. The formula for FRC is:  257 

FRC(𝑓) =
∑ 𝐹1(𝑘)𝐹2

∗(𝑘)
𝑘∈ring(𝑓)

√∑ |𝑘∈ring(𝑓) 𝐹1(𝑘)|2∑ |𝑘∈ring(𝑓) 𝐹2(𝑘)|2
, 258 

Where 𝐹1(𝑘) and 𝐹2(𝑘) are the Fourier transforms of two images, 𝐹2
∗(𝑘) is the 259 

complex conjugate of 𝐹2(𝑘), and ring(𝑓) refers to the frequency band at frequency 260 

𝑓 in the Fourier space. FRC evaluates the similarity of 2D images in the frequency 261 

domain by analyzing correlations at specific spatial frequencies. 262 

 263 

Similarly, we have FSC for 3D volumes as follows: 264 

FSC(𝑓) =
∑ 𝐹1(𝑘)𝐹2

∗(𝑘)
𝑘∈shell(𝑓)

√∑ |𝑘∈shell(𝑓) 𝐹1(𝑘)|2∑ |𝑘∈shell(𝑓) 𝐹2(𝑘)|2
, 265 

where 𝐹1(𝑘)  and 𝐹2(𝑘)  are the Fourier transforms of the two 3D volumes, and 266 

shell(𝑓) refers to the spherical shell at frequency 𝑓 in the 3D Fourier space. Further, 267 

we derive the FRC/FSC resolution from FRC/FSC curve. The structural resolution was 268 

determined using FRC/FSC analysis. Following standard cryo-EM protocols, we 269 

applied the 0.5 correlation threshold to identify the spatial frequency at which two 270 

independent reconstructions maintain structural consistency, ensuring the measured 271 

resolution reflects authentic biological features rather than stochastic noise. 272 

 273 

In addition to the evaluation metrics calculated through comparison with ground truth, 274 

the article also employs several no-reference image quality metrics to assess the quality 275 

of the reconstructed images, particularly in the absence of ground truth images. These 276 

methods include parameter-free resolution and NIQE5,6. Parameter-free resolution is a 277 

metric designed to assess the resolution of an image without requiring any prior 278 

knowledge or reference parameters. It is based on the analysis of the image’s spatial 279 

frequencies, evaluating how well fine structures are resolved. It is particularly useful 280 

when assessing images where high-frequency components indicate sharper details. The 281 

metric does not require the specification of any parameters such as thresholds or scaling 282 

factors, making it inherently robust to various imaging conditions. For details, please 283 

refer to Descloux's work5. 284 

 285 

The NIQE index is a widely used no-reference image quality assessment metric. It is 286 

designed to predict perceptual quality without the need for reference images. NIQE 287 

operates by first extracting a set of natural scene statistics from the image and then 288 

comparing these statistics to a pre-established model of natural image features. The 289 



model captures typical image structures, such as textures and edges, that are naturally 290 

expected in high-quality images. The NIQE score is calculated as: 291 

NIQE = √
1

𝑁
∑(𝐟𝑖 −𝐦)𝑇𝐂−1(𝐟𝑖 −𝐦)

𝑁

𝑖=1

 292 

where 𝐟𝑖  represents the extracted features from the image, 𝐦 is the mean of the 293 

natural image feature distribution, and 𝐂 is the covariance matrix of these features. A 294 

lower NIQE score indicates higher image quality. 295 

 296 

During the evaluation process, to fix the slight misalignment between the real degraded 297 

image and the ground truth image caused by separate acquisition processes, Scale-298 

Invariant Feature Transform (SIFT)7 and Optical Flow8 algorithms were employed to 299 

register the reconstructed image with the ground truth image (SI Fig. 11).  300 

 301 

Confidence intervals: To quantify the precision of detection performance, we 302 

computed 95% confidence intervals (CIs) using the Wilson score method for binomial 303 

proportions9. This approach provides robust interval estimates that account for 304 

sampling variability while maintaining accuracy across extreme probability ranges. The 305 

interval is defined as: 306 

CI =
𝑝 +

𝑧2

2𝑛 ± 𝑧√
𝑝(1 − 𝑝)

𝑛 +
𝑧2

4𝑛2

1 +
𝑧2

𝑛

 307 

where p is the observed proportion (e.g., detection rate), n is the total sample size, 308 

and z=1.96 corresponds to the 95% confidence level in the standard normal distribution. 309 

The Wilson score method was selected over asymptotic approximations (e.g., Wald 310 

intervals) due to its superior coverage properties, particularly for small sample sizes or 311 

near-boundary proportions (e.g., >99% detection rates). This formulation ensures 312 

statistically rigorous uncertainty quantification in classification tasks. 313 

 314 

Baseline settings 315 

The baseline methods used in this study include two unsupervised approaches, 316 

SCUnet10 and ZS-deconvnet11, as well as the state-of-the-art supervised learning-based 317 

method EMDiffuse12.  318 

 319 

SCUnet integrates Swin Transformer blocks with convolutional layers to establish 320 

hierarchical feature learning for EM denoising, where we specifically adopted its noise-321 

level=50 grayscale model (https://replicate.com/cszn/scunet) which provides the best 322 

reconstructions. ZS-DeconvNet implements zero-shot microscopy enhancement via 323 

Noise2Noise-based training on in-domain EM data, deployed through its ImageJ plugin 324 

https://replicate.com/cszn/scunet


with 250-epoch CPU training (3-4 days per task). EMDiffuse is trained on paired EM 325 

datasets (Zenodo:10205819) to implement supervised diffusion processes through its 326 

open-source framework (https://github.com/Luchixiang/EMDiffuse/), iteratively 327 

refining structural features specific to EM imaging. 328 

 329 

Stitching for Large EM Image During Reconstruction 330 

To effectively recover large degraded images using our model—which is trained on 331 

small 128 × 128 patches—we propose a stitching strategy to align adjacent image 332 

patches seamlessly (SI Fig. 12). Specifically, large images are divided into overlapping 333 

128 × 128 patches, each overlapping its neighbors by 12.5% (16 pixels). Initially, we 334 

generate a Gaussian noise image matching the degraded image size and similarly divide 335 

it into overlapping patches. During each subsequent iteration of the reconstruction, 336 

overlapping regions between neighboring patches are averaged, creating a cohesive 337 

intermediate image. This intermediate image is again segmented into overlapping 338 

patches for the next step. This method reduces artifacts and ensures smooth transitions 339 

between patches, significantly enhancing the overall reconstruction quality. 340 

 341 

Flow Matching-based inference time acceleration 342 

The computational efficiency of EM Generalist is constrained by two key limitations: 343 

(1) the inherent 1000-step diffusion sampling process, and (2) the computationally 344 

intensive gradient calculation required for conditional score function estimation. To 345 

alleviate these constraints, we adopt a diffusion model architecture based on flow 346 

matching13,14. Flow matching is a technique where a continuous velocity field is learned 347 

to deterministically transport a simple base distribution (such as Gaussian noise) to the 348 

target data distribution. Rather than following the stochastic reverse process of typical 349 

diffusion models, flow matching directly learns the dynamics of this transformation via 350 

an ordinary differential equation (ODE). Specifically, if we denote the latent variable 351 

at time step t as 𝐱𝑡, the generative process is governed by: 352 

∂𝐱𝑡
∂t

= 𝑣𝑡(𝐱𝑡), 353 

where 𝑣𝑡(𝐱𝑡) represents the instantaneous velocity field at time t. This velocity field 354 

essentially characterizes the “speed” and “direction” with which 𝐱𝑡 should be adjusted 355 

to morph into a sample from the data distribution. This ODE formulation enables high-356 

quality sample generation with significantly fewer steps than the iterative denoising 357 

used by conventional diffusion models. 358 

 359 

The iterative sampling procedure based on flow matching can be derived via a simple 360 

Euler integration. Let 𝐱𝑡 denote the latent variable at time t and consider two 361 

successive time points, the update equation then becomes: 362 

𝐱𝑡−1 = 𝐱𝑡 + Δ𝑡𝑣𝜃(𝐱𝑡, 𝑡) = 𝐱𝑡 + Δ𝑡
∂𝐱̂0(𝐱𝑡, 𝑡)

∂𝑡
. 363 

https://github.com/Luchixiang/EMDiffuse/


Here, 𝑣𝜃(𝐱𝑡, 𝑡) denotes the estimated velocity field parameterized by 𝜃—equivalent 364 

to the derivative of the estimated denoised latent variable 𝐱̂0(𝐱𝑡, 𝑡) = 𝐱𝑡 − 𝑡365 

𝑣𝜃(𝐱𝑡, 𝑡) —and Δ𝑡  represents the discretized time interval. This update rule is 366 

analogous to the reverse diffusion update used in DDPM but replaces the expensive 367 

1000-step-iteration with much fewer step iterations (as few as 100 steps) by the learned 368 

velocity field. Consequently, the sampling process becomes considerably faster while 369 

preserving the model's overall performance.  370 

 371 

Follow the predefined posterior sampling approach, we can formulate the posterior 372 

sampling approach for flow matching as follows:  373 

𝐱𝑡−1 = 𝐱𝑡 + Δ𝑡
∂𝐱̂0(𝐱𝑡, 𝑡)

∂𝐱𝑡
− (1 − 𝑡)𝛼∇𝐱̂0∥ 𝑦 −𝒜(𝐱̂0(𝐱𝑡, 𝑡)) ∥

2. 374 

Here, the first term represents the flow matching sampling process, and the second term 375 

enforced data consistency. By taking the gradient for 𝐱̂0  rather than 𝐱𝑡 , the 376 

approximation of the conditional term can further accelerate the inference process by 377 

skipping the heavy calculation for gradient with respect to the diffusion model. The 378 

integration of flow matching with the new gradient calculation formulation reduced 379 

reconstruction time of an isotropic 128×128×128-pixel volume from 40 minutes to 1.5 380 

minutes on a single NVIDIA A800 GPU, achieving a 26.7× speedup without 381 

performance degradation (SI Fig. 13).  382 

 383 

Our implementation for flow matching utilizes the same model architecture the 384 

diffusion model, featuring a U-Net structure enhanced with residual blocks, channel 385 

multiplication, and self-attention mechanisms. The training protocol comprised 386 

200,000 optimization steps executed across multiple GPUs with a batch size of 256, 387 

requiring approximately 24 hours of computation on NVIDIA A40 hardware. We 388 

employed the Adam optimizer with an initial learning rate of 10−4, incorporating a 389 

1,000-step warmup phase to ensure training stability. Furthermore, we applied 390 

Exponential Moving Average (EMA) to model parameters with a decay rate of 0.999 391 

to enhance model convergence and robustness during training. During reconstruction, 392 

the hyper-parameter 𝛼 can be selected from the range [0, 1] to impose data consistency 393 

constraints of varying strengths (normally 0.3), where 1 indicates no constraint and 0 394 

corresponds to full enforcement of data consistency. Based on empirical evaluation, α 395 

is typically set to 0.3, and users are encouraged to manually adjust this hyper-parameter 396 

for different datasets to optimize reconstruction quality. 397 

  398 
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