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1 Additional data details

Featurization and data augmentation are described in the Methods section of the main text. The MSA featurization pipeline is
adapted from AlphaFold2, while the MSA pairing scheme follows that of AlphaFold3. Additional details on data and feature
processing are provided below.

1.1 Filtering
We extensively processed the Plinder dataset to construct the training and validation sets for PhysDock, as follows:

1. Removing systems with a resolution greater than 9 A.

2. Removing systems containing RNA, DNA, and peptides.
3. Removing systems with ligands that have missing atoms.
4. Removing systems present in the benchmark dataset.

5. Removing systems with only a ligand or only a receptor.

6. Removing systems in the bio assembly where atoms, especially ligand atoms, have clashes (non-hydrogen atom distances
less than 1 A).

Ultimately, we obtained approximately 260,000 training and validation systems after filtering.

1.2 Metadata Processing
To accelerate dataset loading, we saved the following metadata:

1. pdb_id_meta_data: storing the structure determination method (e.g., x-ray diffraction), release date, resolution, and
all PDB chain IDs for each system.

2. chain_id_meta_data: storing the sequence of the specified chain_id, the sequence3 composed of CCD identifiers,
and the MDS5 code of the sequence. The MD5 code is used to retrieve existing MSA features and uniprot MSA features.

3. ccd_id_meta_data: storing all conformer features corresponding to each CCD conformer.
4. train _val_ sample_id_meta_ data: storing the sampling weight assigned to each training sample.

The weight for each sample is calculated based on the combined weight of the receptor and ligand. The receptor
weight, (Wreceptor_identity)> 1S determined by sequence identity, using a 40% sequence identity threshold. The ligand weight,
(Wigand_identity) uses a 100% identity (i.e., the weight is identical for ligands that are exactly the same).

W = Weeceptor X Wiigand = Wreceptor_identity X Wiigand_identity

The resulting weights are then used to guide the selection of the entire PDB structure for training, as well as to determine the
receptor and ligand for sample localization. Additionally, they are used to process the model input for training according to the
cropping strategy.

2 Model details

The network architecture and pseudocode (shown below) incorporate key innovations from AlphaFold2, AlphaFold3, Llama3,
and Stable Diffusion 3, but is specifically tailored for molecular docking tasks.

2.1 Model Inputs

The input features of the model can be broadly categorized into sequence-related features, conformer-related features, backbone-
related features, physical priors, and positional features. Below, we provide a brief description of each of these main feature
categories.
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Input Feature Shape Feature Type Description

msa_feat [Nimsa, Nioken 32] Sequence Feature MSA-related features obtained from the processing of MSA and deletion matrix.
target_feat [Nmsas Neoken, 32] Sequence Feature Sequence-related features derived from the processing of the sequence and MSA profile.
ref_feat [Natom, 32] Conformer Feature  Reference conformer node-related features generated for each residue or ligand by RDKit.
ref_pos [Natom, 3] Conformer Feature Randomly generated coordinated by RDKit.
ref_space_uid [Natom] Conformer Feature A unique ID of each conformer to distinguish atoms in different conformers.
rel_tok_feat [Nioken, Nioken; 32] ~ Conformer Feature Edge-related features for the reference conformer of ligand, zero for the receptor.
token_bonds [Nimsa, Nioken; 32]  Conformer Feature Covalent bonds for each atom in the reference conformer.
dgram_feat [Nioken; Nioken;40]  Backbone Feature Distance Gram features computed for backbone Cf3 atoms.
key_res_feat [Nioken, 7] Physical Priors Indicators to mark whether a token is a key residue.
pocket_res_feat [Nioken] Physical Priors Indicators to mark whether a token is a pocket residue.
residue_index [Nioken] Position Feature Residue index in each chain.
asym_id [Nioken] Position Feature Unique chain IDs.
entity_id [Nioken] Position Feature Unique entity IDs.
sym_id [Nioken) Position Feature IDs to distinguish different chains of the same entity.

Table 1. Details of model input features.

2.2 Primitives

Below, we will present the primary network layers that constitute PhysDock. All attention mechanisms incorporate a gating
mechanism, and some attention mechanisms introduce QK norm to stabilize the numerical values of the latent representations.

Algorithm 1 AdalLayerNormZero

def AdaLayerNormZero({x; }{r})

1:

1+ silu(r)

x; < LayerNorm(s, affine = False)
shift < Linear(t)

scale < Linear(t)

gate < Linear(t)

X; < x; © (L +scale) + shift
return {x;},{gate}

Algorithm 2 FeedForward

def FeedForward({x;})

1:
2:
3:

x < silu(Linear(x)) ® Linear(x)
x < Linear(x)
return {x;}

Algorithm 3 Transition

def Transition({x;})
1: x; < RMSNorm(x;)
2: x; + FeedForward(x;)

3: return {x;}
o o
(ﬂ MSA (ﬂ MSA
o representation —( RMSNorm ) Linear c,,— ¢ o update
i (8:1,Crn) 5 (s,1,Crp)

Figure 1. MSATransition layer.
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Figure 2. PairTransition layer.

Algorithm 4 DiTTransition

def DiTTransition({x;},{t})
1: x;,8 + AdaLayerNormZero(x;,)
2: x; + FeedForward(x;) © g;
3: return {x;}

Algorithm 5 ScaledDotProductAttention

def SDPA({x;}{;})
1: ¢ + Linear(x)
2 kI + Linear(x)
3: V! < Linear(x)
4: affi < softmax (%qﬁﬁkﬁf +bf‘j)
50 Xj Za?jc’}
J

6: return {x;}

Algorithm 6 ScaledDotProductAttentionNobias

def SDPANoBias({x;})
1: g < Linear(x)
2: kI + Linear(x)
3: V! < Linear(x)
4 af}; + softmax; (ﬁqlﬂkﬁ?)
h .h

50 Xj Zaijcj
J

6: return {x;}

Algorithm 7 AttentionWithPairBias

def AttentionWithPairBias({x;},{¢})
x; + RMSNorm(x;)

bf‘l- < RMSNorm(z;)

gi < Linear(x;)

xi < SDPA(x;,2) © gi

return {x;}

AN
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Algorithm 8 MSAColumnAttention
def MSAColumnAttention({my; })

1: mg; < RMSNorm (m;)

2: myg; + SPDANobias(mg ")

3: return {my}

(o)
“buneb

Linear c,— (h,c)

Linear o, (nc) valies (r,h,c) ||

kwrncxﬂ j l { ‘
1]

dot -product attention
oyt
Linear ¢, — (h,c) 2 affinities weights u*)
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Figure 4. MSA Column attention.
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Algorithm 9 TriangleAttention

def TriangleAttention({z;; },transpose = False)
if transpose then
Zij < Zji
end if
Zij < RMSNOI‘III(Z,']')
bflj + Linear(z;;)
gij < Linear(z;;)
zij < SDPA(z;j, bl};)
Zi] < 2ij © 8ij
if transpose then
Zij < Zji
end if
return {z;; }

R e A A ol t

_
» -2
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Figure 5. TriangleAttention layer.

Algorithm 10 DiTAttention

def DiTAttention({x; },{zi; }, {t})

. x;,8i < AdaLayerNormZero(x;, )
: bfj < Linear(LayerNorm(z;;))

: x; < SDPA(x;,b}})

XX O

: return {x;}

D AW N =

Algorithm 11 TriangleUpdate
def TriangleUpdate({z;; }, transpose = False)

1: if transpose then
2 Zij < Zji
3: end if
4: z;j + RMSNorm(z;;)
5: gjj < Linear(z;;) © sigmoid(Linear(z;;))
6: kij < Linear(z;;) © sigmoid(Linear(z;;))
7. gij < sigmoid(Linear(z;;))
8: Zif <= L.Zijzuj
j

9: zjj < Linear(RMSNorm(z;;)) ® gij
10: if transpose then

11: Zij < Zji

12: end if

13: return {z;;}

Linear ¢, —+ ¢ sigmoid

pair repr.
(rrez)
o [ ) o ) o e s o a8 6]
pair update
il }_CRMswurm)-»( Linear ¢, -o right edges (r.c) (rrez)

Figure 6. TriangleUpdate layer.
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Algorithm 12 OuterProductMean
def OuterProductMean({my;})
1: mg; < RMSNorm(ms,-)
2: g5 + Linear(my;)
3: kg < Linear(my;)
4 Zjj gqsiksj
zij <= RMSNorm(z;;)
6: return {z;;}

wn

pair repr. (r,r,cz)

MSA repr. (s,r,c;,)

i

RMSNorm )—( Linear ¢, — ¢

RMSNorm }—{ Linear ¢, —c¢

Quter

Product SpoJ Linear ¢, —¢ H RMSNorm

Figure 7. OuterpRroductMean layer. Instead of directly calculating the mean, normalization is employed in the final step.

Algorithm 13 Timesteps

def Timesteps({t },num_channels, flip_sin_to_cos,downscale_freq_shift,scale)
1: half_dim < num_channels/ /2
exponent < —log(max_period) - arange(0, hal f_dim) /(hal f _dim — downscale_freq_shift)
emb_base < exp(exponent)
emb < t[:,None| - emb_base[None, :]
emb < scale - emb
emb + concat(sin(emb),cos(emb),dim = —1)
if flip_sin_to_cos then
emb < concat(emb|:,half_dim :],emb]:,: half_dim],dim = —1)
end if
if num_channels % 2 == 1 then
emb < pad(emb, (0,1,0,0))
end if
: return {emb}

R IR

—_ = = =
Pl A

Algorithm 14 TimestepEmbeddings

def TimestepEmbeddings({¢})
1: timesteps_proj < Timesteps(t)
2: conditioning < Linear(SiLU(timesteps_proj))
3. return {conditioning}

2.3 Layers

Below, we will illustrate the connection methods of all the key network layers.
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Algorithm 15 AtomTransformer

def AtomTransformer({s;},{zi; }, Nolocks)

1

2:
3:
4:
5:

for all / € [1,..., Nplocks) do
si += AttentionWithPairBias(s;, z; )
s; += Transition(s;)

end for

return {s;}

Algorithm 16 RelPosEmbedder

def RelPosEmbedder({asym_id}, {sym_id}, {entity_id}, {residue_index}, {rel_tok_feat})

1:

S_max <+ 2 # Window of chain index
r_max < 32 # Window of residue index
chain_same < (asym_id][...,None] == asym_id|[..., None,:])

entity_same < (entity_id][...,None] == entity_id|...,None,:])

residue_offset < residue_index]|...,None] — residue_index|..., None, :] +r_max
clipped_residue_offset + clamp(residue_offset, min = 0,max = 2 -r_max)

d_res < where(chain_same, clipped_residue_offset,2 -r_max + 1)

rel_pos_feat + one_hot(d_res,arange(0,2 -r_max + 2))

chain_offset < sym_id[...,None] — sym_id]...,None, :] + s_max

clipped_chain_offset <— clamp(chain_offset,0,2 - s_max)

d_chain + where(or(chain_same, not(entity_same)),2 -s_max + 1, clipped_chain_offset)
rel_chain_feat < one_hot(d_chain, arange(0,2 - s_max + 2))

. rel_feat < concat(rel_pos_feat,rel_tok_feat, entity_same]..., None], rel_chain_feat)

return Linear(rel_feat)

Algorithm 17 EvolutionTransformer

def EvolutionTransformer({m; }, {zi; }, Nolocks)

1:

R A A o

10:
11:
12:

forall/ € [1 R ---;Nblocks] do
my; += AttentionWithPairBias (my;, z;)
mg; += MSAColumnAdttention (my;)
my; += Trainsition(m;)
zij += OuterProductMean (m; )
zjj += TriangleUpdate(z;, transpose = False)
zij += TriangleUpdate(z;, transpose = True)
zij += TriangleAttention(z;;, transpose = False)
Zjj += TriangleAttention(z; j, transpose = True)
zij += Trainsition(z;;)

end for

return {my; }{z;;}
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Figure 10. Evolution Transformer Block.

Algorithm 18 TriangleTransformer

def TriangleTransformer({z;; }, Npiocks)
1: foralll € [1,..., Npjocks) do

2. z;j += TriangleUpdate(z;;, transpose = False)

3:  zij += TriangleUpdate(z;;, transpose = True)

4 z;j += TriangleAttention(z;;, transpose = False)
5. z;j += TriangleAttention(z;;, transpose = True)
6:  zjj += Trainsition(z;;)

7: end for

8: return {z;;}
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Algorithm 19 PairTransformer

def PairTransformer({s; }, {zij},Nolocks)

1: foralll € [1,..., Npjocks) do
2. z;j += TriangleUpdate(z;;, transpose = False)

3:
4:
5:
6:
7 S; +=
8: S; +=
9: end for

zij += TriangleUpdate(z;, transpose = True)
zij += TriangleAttention(z;;, transpose = False)
zij += TriangleAttention(z;;, transpose = True)
zjj += Trainsition(z;;)

AttentionWithPairBias(s;, z;;)
Transition(s;)

10: return {s;}{z;;}

atom atom
o embedder transformer

Linear ¢,—h

Aggregationr — a

 linear et -
(Hheaer—h— b 2 >
ﬁ MSA l ﬁ MSA
<J representation W\ + :Gﬂ representation
e e
(s.rem) (s.rCm)
] )
| Y y pair
_@ @ () —+ » _representation
(r.r.c;)

Figure 11. Update Atomwise representations after PairTransformer.

Algorithm 20 DiffusionTransformer

def DiffusionTransformer({s; }, {zi; }, {t}, Nbiocks)

: for all /

S [1 R ---;Nblocks] do

si += DiTAttention(s;, z;;,)

: end for

1
2
3:  s; += DitTransition(s;, )
4
5

. return {s;}
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Figure 13. Atomwise Diffusion Transformer Attention.

Algorithm 21 TemplatePairEmbedder

def TemplatePairEmbedder({z},dgram_feat)

1: z < Linear(RMSNorm(z)) + Linear(dgram_feat)
2: z ¢ TriangleTransformer(z)
3: z < Linear(ReLU(RMSNorm(z)))
4: return {z}
3 Loss

Our model employs only the diffusion loss as the final loss function .y, which integrates the Mean Squared Error (MSE) and
the smooth LDDT loss:

22 A 2
Loss = Oldifiusion * (I° + Oara) / (f - Odata)” - LMSE + Cldittusion * Lemooth_1dde

where Oitfusion 1 @ constant equals 4.0, Ogata 1S @ constant equals 16.0.

4 Training details

Training was conducted in two phases with a maximum crop size of 384: an initial 50,000 steps using bfloat16 (bf16) mixed
precision with a batch size of 48, followed by 200,000 steps using full-precision (fp32) training with the same batch size.
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5 Baseline details

In this study, baseline predictions were generated using existing docking methods, each producing 40 binding modes. For
classical docking tools, AutoDock Vina v1.2.3 was executed with an exhaustiveness of 32, a ligand binding site threshold of
20 ~ 25A a protein-ligand threshold of 4A a docking box size of 25Ax 25A x 25A and a grid spacing of 1AGlide was
performed as follows: (i) protein structures were optimized using the Protein Preparation in the Maestro module of Schrodinger
(v2022-3), including hydrogen addition, bond order assignment, completion of missing side chains and loops, removal of water
molecules located more than 5 A away from the ligand, optimization of the hydrogen-bond network, and energy minimization
using the OPLS-2005 force field until the heavy-atom RMSD converged to 0.3 A ; (ii) ligand preparation was carried out using
LigPrep, ultilizing the Epik module to generate possible protonation and ionization states at a target pH of 7.0 £ 2.0; (iii)
conformers were generated, and the one with the lowest energy—based on the OPLS-2005 force field—was selected as the
input for subsequent docking experiments; (iv) receptor grids were constructed using the Receptor Grid Generation module in
Schrodinger, with an inner box (centered on the co-crystallized ligand) of 10 A x 10 A x 10 A and an outer box extending
10A in all directions beyond the inner box; and (v) ligand—protein docking was performed using the Glide module in standard
precision (SP) mode.

For semi-flexible DL models, SurfDock first identifies amino acid residues within an 8A radius of the target ligand to
define the binding surface, computes physical features (including molecular surface, charge, hydrophobicity, and curvature),
and generates a PLY file for subsequent sampling. Interformer produces an initial UFF-optimized ligand conformer, and
independently defines the docking pocket as residues within a 10A distance from the target ligand. Uni-Mol Docking V2
(Uni-Mol version 1.0.0) takes both the ligand and the full complex structure as input, selects a region within a 10A radius of
the target ligand to define the docking center and grid size, and utilizes the UFF-optimized ligand from Interformer.

For flexible DL models, NeuralPLexer operates with default settings—batched structure sampling (40 samples, 40 steps,
block size 10) combined with Langevin simulated annealing. AlphaFold v3.0.0 was processed with seed 42 to generate 40
structures per complex and Chai-1 v0.5.2 was used in the MSA input mode without ESM representations. Both flexible
DL models use protein sequence and ligand SMILES notation to predict the protein—ligand complex. All experiments were
performed under a uniform setup, with every method executed using its default parameters to ensure consistency.
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6 Supplementary Figures
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Figure 14. Log-density visualization of 1,000 AlphaFold3-generated samples (PDB ID: 7AAO, seeds 41 and 42). The x- and
y-axes represent the first and second principal components of the RMSD distance matrix, respectively. Red points denote the
Top-5 ranked samples.
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Figure 15. Analysis of the PhiBench dataset using MMseqgs2 clustering at various sequence identity thresholds. The left panel
illustrates the variation in the total number of clusters as the sequence identity threshold increases from 0.1 to 0.9. The right
panel presents a detailed distribution of the number of protein chains per cluster.
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Figure 16. Performance of PhysDock on three datasets, categorized by sequence similarity to the Plinder training set
(PoseBusters: 428 samples, subsets: 8/ 112/ 308 for low/ medium/ high similarity; DeepDockingDare: 356 samples, subsets: 4/

206/ 146; PhiBench: 206 samples, subsets: 6/ 98/ 102). Docking success rates are computed under two criteria: PAL-RMSD <
2.0 A, and PB-valid & PAL-RMSD < 2.0 A.
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Figure 17. Glide scores for 40 compounds docked to CB1 and CB2 receptors using PhysDock. Each point represents a ligand,

color-coded by molecular weight.

17/37



CB1 Receptor CB2 Receptor

GT_6PKG GT_6PKF

PhysDock Prediction PhysDock Prediction ==
...... hydrogen bond  <==<<< hydrophobic interaction

Figure 18. The combined pattern graph predicted by Physdock and the overlapping graph of Ground Truth.
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SPECS: Molecular Weight Distribution across Glide Score Bins
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Figure 19. (a) Violin plot showing the distribution of molecular weights for SPECS compounds across different Glide score
bins from PhysDock screening against the NTRK3 kinase. (b) Glide scores of known drug candidates docked to the NTRK3
kinase using PhysDock plotted against their ICsg values, with points color-coded by molecular weight. (¢) Glide scores of
low-affinity ligands docked to the NTRK3 kinase using PhysDock grouped by ICs( categories, with points color-coded by
molecular weight.
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7 Supplementary Tables

Table 2. Docking success rates of existing methods with prior binding pocket information across three benchmark datasets.

Method PoseBusters DeepDockingDare PhiBench
PAL-RMSD PB-valid PAL-RMSD PB-valid PAL-RMSD PB-valid
PhysDock 408/428 389/428 317/356 309/356 171/206 160/206
SurfDock 347/428 337/428 291/355 242/355 132/184 131/184
Interformer 332/428 300/428 251/356 229/356 123/180 114/180
AlphaFold3 299/426 297/426 212/356 202/356 105/206 98/206
Uni-Mol Docking V2 257/428 209/428 142/356 135/356 98/184 96/184
Chai-1 267/428 264/428 140/356 127/356 92/206 87/206
DiffDock-L 232/428 150/428 81/344 68/344 74/186 66/186
Glide 228/428 199/428 142/356 120/356 47/185 45/185
Vina 179/428 172/428 122/355 119/355 47/198 45/198
DiffDock 186/427 104/427 75/344 66/344 57/186 48/186
DynamicBind 188/420 185/420 82/334 81/334 100/184 98/184
NeuralPLexer 84/419 57/419 15/333 11/333 37/186 31/186
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Table 3. Interaction recovery rates and ground-truth interaction counts across three benchmark datasets.
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PoseBusters

Model hydrogen bonds hydrophobic interactions salt bridges | pi-stacking | pi-cation interactions
PhysDock* 72.2 75.6 87.6 64.0 43.1
Uni-Mol Docking V2* 66.8 56.4 79.9 68.2 66.7
SurfDock* 64.7 60.3 80.4 50.6 55.0
Glide* 51.0 56.2 75.8 44.3 26.9
DiffDock-I* 54.9 43.8 67.7 50.7 32.5
DynamicBind 56.2 52.3 76.4 38.7 21.2
Interformer* 46.1 45.0 56.5 53.6 0.0
Vina* 39.7 41.0 49.3 40.9 19.5
DiffDock* 41.8 37.1 52.2 36.7 22.5
AlphaFold3 48.2 37.6 17.6 11.5 10.4
Chai-1 44.9 26.1 17.7 8.0 6.9
NeuralPLexer 16.6 14.0 20.7 11.4 8.5

Interaction counts — Hydrogen bonds: 1688, Hydrophobic interactions: 1323, Salt bridges: 369,
Pi-stacking: 170, Pi-cation interactions: 52

DeepDockingDare
Model hydrogen bonds hydrophobic interactions | salt bridges | pi-stacking | pi-cation interactions
Uni-Mol Docking V2* 56.3 52.1 83.2 54.5 62.9
SurfDock* 56.9 56.3 78.4 38.8 46.3
PhysDock* 43.0 59.3 38.7 44.9 23.5
Interformer* 34.5 40.8 48.5 42.1 41.7
Vina* 30.3 36.7 48.0 42.4 38.8
Glide* 33.7 39.5 33.7 37.8 14.3
DiffDock-I* 30.7 25.6 48.9 23.2 26.6
DiffDock* 25.8 23.7 47.7 23.3 26.5
DynamicBind 30.3 22.9 53.2 17.1 14.8
AlphaFold3 30.8 24.0 31.5 32.1 13.6
Chai-1 27.7 15.4 22.4 10.7 7.8
NeuralPLexer 9.4 12.4 9.3 16.2 1.1

Interaction counts — Hydrogen bonds: 893, Hydrophobic interactions: 1548, Salt bridges: 97,

Pi-stacking: 41, Pi-cation interactions: 23

PhiBench
Model hydrogen bonds hydrophobic interactions | salt bridges | pi-stacking | pi-cation interactions
Uni-Mol Docking V2* 63.4 49.0 85.9 63.4 50.8
SurfDock* 57.2 48.7 82.7 35.1 38.0
PhysDock* 52.6 53.5 51.9 58.2 17.8
DiffDock-I* 53.4 37.6 73.6 34.9 29.5
Glide* 43.0 42.7 79.2 31.8 17.4
Interformer* 37.8 36.0 51.1 43.6 28.2
DynamicBind 47.5 36.8 57.4 29.6 14.9
DiffDock* 39.7 32.5 62.4 26.2 17.6
Vina* 34.7 31.6 60.1 21.7 24.2
Chai-1 46.3 18.9 20.2 11.5 6.8
NeuralPLexer 27.1 16.7 30.6 9.0 12.9
AlphaFold3 45.2 30.0 14.1 0.0 5.0

Interaction counts — Hydrogen bonds: 1002, Hydrophobic interactions: 583, Salt bridges: 164,

Pi-stacking: 33, Pi-cation interactions: 38




Table 4. Experimental binding free energies and Glide scores for all compounds docked to CB1 and CB2 receptors using
PhysDock.
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CB1_PhysDock

CB2_PhysDock

Name Molecules CB1_AG_exp Glide CB2_AG_exp Glide
kcal/mol
( ) (kcal/mol) (keal/mol) (kcal/mol)
MK-0364 [2] /O\%JLSUQ” -13.49 -11.501 -9.23 -8.935
ACEA [1] I}HU -12.15 -10.315 -7.82 -7.45
AM-11542 [2] W -12.12 -10.46 -13.59 -10.699
D,
ACPA [1] w -11.88 -10.554 -8.44 -6.228
THC [2] -11.65 -9.42 -10.08 -9.064
SR-147778[2] %&’@0 -11.53 -10.111 -8.73 -5.99
AM-251[2] Q(;/ () -11.08 -9.582 -7.69 -8.926
O‘j CO
WIN-55,212-2[2] A -10.96 -11.669 -11.84 -10.683
o
R-methanandamide }w}xﬂg -10.57 -10.48 -8.36 -9.114
(1]
2-AG [1] \wz\f; -9.93 -10.498 -9.39 -7.308




CB1_PhysDock

CB2_PhysDock

Name Molecules CB1_AG_exp . CB2_AG _exp .

(kcal/mol) Glide (kcal/mol) Glide
(kcal/mol) (kcal/mol)

anandamide [1] JJJ‘/U -9.9 -11.072 -7.84 -6.321
PNR-4-20 [1] d = -9.33 -11.823 -12 -11.691
UR-144 [2] 9.3 -10.945 -11.93 -8.665
SR-144528 [2] QiYgQ -8.73 -10.767 -12.58 -11.277
VJ-115 [1] ( /@ -7.52 -9.995 -8.6 -10.809
CBD [2] x\/@? -7.24 -8.063 -7.334 7.97
AM-630 [2] 7.2 -9.244 -10.23 -9.005
GW842166X [3] OF*%%E >-6.17 -10.313 -9.96 -8.805
JWH-151 [3] "’\ >-6.82 110.712 -10.26 -10.469
L-759,633 [4] -6.55 -10.098 -10.5 -9.939




CB1_PhysDock

Name Molecules CB1_AG_exp Giid CB2_AG_exp CB2_CI;3Ih dysDock
(kcal/mol) ide (kcal/mol) 1ae
(kcal/mol) (kcal/mol)
N
GW-405,833 [5] . gj -7.26 -7.924 -11.49 -10.384
(
PF-03550096 [5] . h@ -11.05 -9.975 -7.96 -10.176
HO- J‘
. ()
APD371 [5] ;Z‘)sﬁ/ifgj >-6.82 -9.33 -11.2 -9.222
Cannabilactone [5] H\F/‘Q%Q -8.73 -8.439 12.4 -8.363
HU-211 [5] -7.78 11.11 >-6.82 -10.772
716] ke%o/ﬁr\g -11.72 -11.718 -6.78 -9.113
96] Q% o -10.52 -10.441 -8.16 -10.763
10 [6] VO,CE)YO’Y\O -11.89 -12.325 -7.68 -11.092
18 [6] OC,%,Q* -11.21 -10.946 -7.29 -11.063
Otenabant [7] " ;Q 12.49 10.646 6.98 9.999
Yo 50 - - - -




CB1_PhysDock

CB2_PhysDock

Name Molecules CB1_AG_exp , CB2_AG_exp .
(kcal/mol) Glide (kcal/mol) Glide
(kcal/mol) (kcal/mol)
12 [7] {}%YUYQ -12.22 -12.67 -7.58 -11.8287
15 [7] Q: ¢ -13.08 -12.912 -7.69 -11.463
{}@Q’\r\
25 [7] O%Yvo -12.34 -12.565 -6.98 -10.512
29 [7] &W -11.63 -13.944 >-6.82 -11.969
30 [7] ’CS;WQ/Y‘Q -11.12 -12.697 >-6.82 -11.914
32 [7] Fa-Uoaoe -11.46 -13.797 >-6.82 -9.266
n\ ‘ /Q
AM1241 [8] I O - -7.23 -9.062 -10.67 -10.612
e
24 [9] / /( >-6.82 -9.184 -11.9 -9.68
36 [9] /% -8.46 -9.719 -13.44 -9.342
50 [9] >-7.16 -8.95 -11.81 -9.964




Table 5. Docking results of kinase inhibitors across different models
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Name

Molecules

Stage

IC50 (nM)

PhysDock_Glide

(kcal/mol)
L
Repotrectinib " b Approved 0.1 -7.2
o m\/(
Entrectinib j Approved 4.3 -10.7
pp
C
Larotrectinib ,\—/.'Q ’(O Approved 5-11 -10.0
Lestaurtinib Phase Il 25 -8.9
Selitrectinib @ Phase | 2.5 7.4
X,
CH7057288 —b,a—ﬁé} Preclinical 5.1 -12.0
Altiratinib Nﬂﬂl{ﬁ Preclinical 0.83 11.8
o
CPD-085 dé?x%"?. Preclinical 3.8 -14.9
Compound 30f \W Preclinical 0.55 9.7
CPD-141 . 1 Preclinical 1.6 111.3
&
CPD-145 O Preclinical 0.9 -11.5
QQ}L\*&&
CPD-053 ‘j—@“mc»qf‘t'é? Preclinical 1.5 116
3
o)
CPD-211 M T Preclinical 2 -11.1
L0
o
CPD-143 Mo % No progress 0.9 -16.7
“’\—MO
o
CPD-159 ' No progress 0.9 -11.6




Table 6. Experimental /Cs values and Glide scores for known drug candidates and weak binders docked to NTRK3 kinase
using PhysDock.
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PhysDock_Glide

Name Molecules IC50 (uM) s
B30 [10] g k( = <:fJ NA 11.4
7n [11] M% >10 -12.7
7m [11] 5@“'%é >10 -12.9
71 1] C\g(ﬂ“’g“’ >10 122
7k [11] Cgog\(qd >10 11.9
7 [11] d < >10 -11.3
7i [1] éoﬂrqé >10 -10.3
7h [1] ;g—\fr%{? >10 12.4
79 [1] :’CO*Q" >10 -10.2
7f [11] dog\(\qé >10 11.8




PhysDock_Glide

Name Molecules IC50 (uM)
(kcal/mol)
7e [11] qurf >10 -10.2
7d [11] :g' o >10 111.0
7c 11 >10 11.7
[11] :i:” s
7b [11] ™ >10 9.9
Lo
Q -
7a [11] JC’E:rYODJQ >10 9.7
6n [12] )/&*ﬁ\éfr >10 -10.9
6k [12] AT >10 8.6
6 [12] ‘«A,@aﬂﬁf >10 9.9
6i [12] X&(}’\Cﬁ‘ >10 -10.1
69 [12] O\xgyfﬁf >10 -10.4




PhysDock_Glide

Name Molecules IC50 (uM) eoamal
32h [13] «C(»\Oi\% >1 -8.8
32e [13] Q%Q% >1 -10.8
32¢ [13] \‘3\@—5}}2;3 >1 -11.9
32b [13] d&p*t; ~1 6.9
32a [13] %QFQ >1 -10.5
26k [13] Fogrepanus >1 9.8
26h [13] (p,;cf\f}o* >1 9.1
269 [13] ng\,U\rb* >1 11.4
26c [13] S oy >1 -11.4
26a [13] @;gfo” >1 11.0




PhysDock_Glide

Name Molecules IC50 (uM) (kcal/mol)
23c [13] Jﬂ}uﬁﬁﬁ >1 -10.4
23b [13] S g >1 9.2
23a [13] ) >1 5.1
21b [13] Qé}v% >1 8.5
21la [13] QQ_)—Q >1 9.8
19¢ [13] vgwb)ﬂ >1 10.3
[13] 9\"/\0
19b q >1 9.6
162 [13] g Ch >1 -9.0
16y [13] ﬁ\)_ofxﬁ >1 7.8
16w [13] C@)‘Q«QX >1 8.8




PhysDock_Glide

Name Molecules IC50 (M) o)
16v [13] ﬂ){jx@ >1 7.4
16t [13] S0 >1 9.6
16s [13] O YRULD >1 -9.9

o
160 [13] g : Q >1 9.7
16m [13] QQ%Q >1 9.2
{ +*
16i [13] gﬂg)‘@ >1 9.3

16h [13] ’d};dx'ﬂ >1 -9.6
169 [13] g O >1 -10.0
16f [13] &”ﬁ&dwﬁ? >1 -10.2
16d [13] d},\d«ﬂ >1 -10.2




PhysDock_Glide

Name Molecules IC50 (uM)
(kcal/mol)

16¢ [13] U};dx‘“Q >1 6.6

16aa [13] \ﬂ,\d{ﬁ >1 7.9

16a [13] gﬁQ)b >1 9.3

|u\ \

22 [14] e /@/ NA 7.9

19 [14] bv#g“g‘ NA 127
o

16 [14] W NA 13.8
Q

7 [14] ?:% NA 110.5
o

5_1 [15] Oy NA 95

O {
5 2 [14] ;?*W NA -10.0




References

1.

10.

11.

12.

13.

14.

15.

Yang, J. F. et al. Binding modes and selectivity of cannabinoid 1 (cb1) and cannabinoid 2 (cb2) receptor ligands. ACS
chemical neuroscience 11, 3455-3463 (2020).

. Ji, B. et al. Prediction of the binding affinities and selectivity for cbl and cb2 ligands using homology modeling, molecular

docking, molecular dynamics simulations, and mm-pbsa binding free energy calculations. ACS chemical neuroscience 11,
1139-1158 (2020).

. Markt, P., Feldmann, C. & Rollinger, J. M. Discovery of novel cb2 receptor ligands by a pharmacophore-based virtual

screening workflow. J. medicinal chemistry 52, 369-378 (2009).

. Gareau, Y. et al. Structure activity relationships of tetrahydrocannabinol analogues on human cannabinoid receptors.

Bioorganic Medicinal Chem. Lett. 6, 189—194 (1996).

. Han, S., Thatte, J., Buzard, D. J. & Jones, R. M. Therapeutic utility of cannabinoid receptor type 2 (cb(2)) selective

agonists. J. medicinal chemistry 56, 8224-8256 (2013).

. Fulp, A., Bortoff, K. & Zhang, Y. Peripherally selective diphenyl purine antagonist of the cbl receptor. J. medicinal

chemistry 56, 8066-8072 (2013).

. Amato, G., Manke, A. & Wiethe, R. Functionalized 6-(piperidin-1-yl)-8,9-diphenyl purines as peripherally restricted

inverse agonists of the cbl receptor. J. medicinal chemistry 62, 6330-6345 (2019).

. Bingham, B. et al. Species-specific in vitro pharmacological effects of the cannabinoid receptor 2 (cb2) selective ligand

am1241 and its resolved enantiomers. Br. journal pharmacology 151, 1061-1070 (2007).

. Frost, J. M. et al. Indol-3-ylcycloalkyl ketones: effects of nl substituted indole side chain variations on cb(2) cannabinoid

receptor activity. J. medicinal chemistry 53, 295-315 (2010).

Qin, Q. et al. Discovery of novel indazole derivatives as second-generation trk inhibitors. Eur. J. Medicinal Chem. 276,
116640 (2024).

Zhu, D. et al. 2-amino-2,3-dihydro-1h-indene-5-carboxamide-based discoidin domain receptor 1 (ddr1) inhibitors: Design,
synthesis, and in vivo antipancreatic cancer efficacy. J. medicinal chemistry 62, 74317444 (2019).

Pan, S. et al. Structural optimization and structure-activity relationship studies of 6,6-dimethyl-4-(phenylamino)-6h-
pyrimido[5,4-b][1,4]oxazin-7(8h)-one derivatives as a new class of potent inhibitors of pan-trk and their drug-resistant
mutants. J. medicinal chemistry 65, 2035-2058 (2022).

Wang, G. et al. Rational design and crystallographic analysis of novel isoform-selective trka inhibitors for cancer therapy.
Acta pharmaceutica Sinica 13, 440-443 (2023).

Albaugh, P. et al. Discovery of gnf-5837, a selective trk inhibitor with efficacy in rodent cancer tumor models. ACS
medicinal chemistry letters 3, 140—145 (2012).

Zhuo, L. S. et al. Discovery of next-generation tropomyosin receptor kinase inhibitors for combating multiple resistance
associated with protein mutation. ACS medicinal chemistry letters 64, 15503—-15514 (2021).

37/37



	Additional data details
	Filtering
	Metadata Processing

	Model details
	Model Inputs
	Primitives
	Layers

	Loss
	Training details
	Baseline details
	Supplementary Figures
	Supplementary Tables
	References

