During the preparation of this work the authors used chatGPT in order to enhance the clarity and coherence of the written text. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
7. References
1. Tingting Dong, Mingku Zhu, Jiawen Yu, Rongpeng Han, Cheng Tang, Tao Xu, Jingran Liu and Zongyun Li. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.) BMC Plant Biology (2019) 19:136 doi: 10.1186/s12870-019-1731-0.
2. Low, J.W., Ortiz, R., Vandamme, E., Andrade, M. et al. (2020). Nutrient-dense orange-fleshed sweetpotato: Advances in drought-tolerance breeding and management practices for sustainable next-generation varieties. Frontiers in Sustainable Food Systems, 4(50). Link
3. Ortiz, R., Vandamme, E., Low, J.W., et al. (2020). Sweet potato as a key crop for food security under the conditions of global climate change: A Review. Plants, 12(13), 2516. Link
4. Christos Dordas. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture: A review. Agronomy for Sustainable Development, 28(1), 33–46. https://doi.org/10.1051/agro:2007051
5. Yang Y, Chen Y, Bo Y, Liu Q, Zhai H. Research Progress in the Mechanisms of Resistance to Biotic Stress in Sweet Potato. Genes. 2023; 14(11):2106. https://doi.org/10.3390/genes14112106.
6. Xie, SY., Fang, B., Chen, J. et al. Comparative analyses of RNA-seq and phytohormone data of sweetpotatoes inoculated with Dickeya dadantii causing bacterial stem and root rot of sweetpotato. BMC Plant Biol 24, 1082 (2024). https://doi.org/10.1186/s12870-024-05774-2.
7. Xu Y, Wang L-X, Chen C, Ma S-S, Zhou R, Xiong A-S. Virus-Free Sweet Potato Industry: Development Status and Production Suggestions. Horticulturae. 2024; 10(9):979. https://doi.org/10.3390/horticulturae10090979
8. Kai Luo, Jie Zhu, Boyu Xia, Jie Zhang, Xiulin Su, Haixia Wen, Yuqi Li. Effects of pesticide treatment against nematode disease on soil bacterial community structure and sweet potato yield and quality. Food Energy Secur. 2024;13:e533. https://doi.org/10.1002/fes3.533.
9. Sun, Y., Li, M., Wang, Y., Li, L., Wang, M., Li, X., Xu, M., Loake, G. J., Guo, M., & Jiang, J. (2020). Ceratocystis fimbriata Employs a Unique Infection Strategy Targeting Peltate Glandular Trichomes of Sweetpotato (Ipomoea batatas) Plants. Phytopathology, 110(12), 1923–1933. https://doi.org/10.1094/PHYTO-05-20-0165-R.
10. Cong, H., Li, C., Wang, Y., Zhang, Y., Ma, D., Li, L., & Jiang, J. (2023). The Mechanism of Transcription Factor Swi6 in Regulating Growth and Pathogenicity of Ceratocystis fimbriata: Insights from Non-Targeted Metabolomics. Microorganisms, 11(11), 2666. https://doi.org/10.3390/microorganisms11112666.
11. Meiyan Liu, Ying Gong, Houjun Sun, Jian Zhang, Liming Zhang, Jian Sun, Yonghua Han, Jinjin Huang, Qian Wu, Chengling Zhang, Zongyun Li. Characterization of a novel chitinase from sweet potato and its fungicidal effect against Ceratocystis fimbriata. Journal of Agricultural and Food Chemistry 2020, 68(29):7591–7600. https://doi.org/10.1021/acs.jafc.0c01813.
12. Li, C., Cong, H., Cao, X., Sun, Y., Lu, K., Li, L., Wang, Y., Zhang, Y., Li, Q., Jiang, J., & Li, L. (2024). CfErp3 regulates growth, conidiation, inducing ipomeamarone and the pathogenicity of Ceratocystis fimbriata. Fungal genetics and biology : FG & B, 170, 103846. https://doi.org/10.1016/j.fgb.2023.103846.
13. Wang B, Wang S, Geng Q ,et al.A novel strategy combining perillaldehyde with polyamines based on polyamine metabolism in Ceratocystis fimbriata for the postharvest control of sweetpotato black rot[J].Postharvest Biology and Technology, 2024, 211(000):15.DOI:10.1016/j.postharvbio.2024.112784.
14. Wang, B., Wang, S., Geng, Q., Zhang, N., Zhuo, Q., Zhou, Q., Zeng, H., & Tian, J. (2024). Effects of Perillaldehyde and Polyamines on Defense Mechanisms of Sweet Potatoes against Ceratocystis fimbriata. Journal of agricultural and food chemistry, 72(49), 27479–27494. https://doi.org/10.1021/acs.jafc.4c07055
15. Parada-Rojas, C. H., Stahr, M., Childs, K. L., & Quesada-Ocampo, L. M. (2024). Effector Repertoire of the Sweetpotato Black Rot Fungal Pathogen Ceratocystis fimbriata. Molecular plant-microbe interactions : MPMI, 37(3), 315–326. https://doi.org/10.1094/MPMI-09-23-0146-FI。
16. Deng, H., Wang, F., Wu, Q., Sun, H., Ma, J., Ni, R., Li, Z., Zhang, L., Zhang, J., & Liu, M. (2024). Novel Multiresistant Osmotin-like Protein from Sweetpotato as a Promising Biofungicide to Control Ceratocystis fimbriata by Destroying Spores through Accumulation of Reactive Oxygen Species. Journal of agricultural and food chemistry, 72(3), 1487–1499. https://doi.org/10.1021/acs.jafc.3c07663。
17. Chen, W., Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X., Yu, S., Xiong, L., & Luo, J. (2013). A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular plant, 6(6), 1769–1780. https://doi.org/10.1093/mp/sst080.
18. Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., Sung, D. Y., & Guy, C. L. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant physiology, 136(4), 4159–4168. https://doi.org/10.1104/pp.104.052142.
19. Singh, D. P., Maurya, S., Yerasu, S. R., Bisen, M. S., Farag, M. A., Prabha, R., Shukla, R., Chaturvedi, K. K., Farooqi, M. S., Srivastava, S., Rai, A., Sarma, B. K., Rai, N., & Behera, T. K. (2023). Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Scientific reports, 13(1), 21023. https://doi.org/10.1038/s41598-023-48269-0.
20. Yin, H., Liu, W., Hu, X., Jia, J., Liu, M., Wei, J., Cheng, Y., Gong, X., Li, Q., Yan, W., Jia, J., Gao, L., Fernie, A. R., & Chen, W. (2025). A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay. Molecular plant, 18(2), 366–382. https://doi.org/10.1016/j.molp.2025.01.011.
21. Shen, S., Zhan, C., Yang, C., Fernie, A. R., & Luo, J. (2023). Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Molecular plant, 16(1), 43–63. https://doi.org/10.1016/j.molp.2022.09.007.
22. Ming, L., Fu, D., Wu, Z. et al. Transcriptome-wide association analyses reveal the impact of regulatory variants on rice panicle architecture and causal gene regulatory networks. Nat Commun 14, 7501 (2023). https://doi.org/10.1038/s41467-023-43077-6。
23. Zhang, S. S., Yang, H., Ding, L., Song, Z. T., Ma, H., Chang, F., & Liu, J. X. (2017). Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis. The Plant cell, 29(5), 1007–1023. https://doi.org/10.1105/tpc.16.00916。
24. Han, X. T., Yang, D., Sun, M. J., Wei, F. G., Li, S. Y., & Di, X. (2025). Integrated transcriptomic and targeted-metabolomic analysis reveal the co-upregulation and mechanism of saponin and starch biosynthesis in Panax notoginseng. Industrial Crops and Products. https://www.sciencedirect.com/science/article/pii/S092666902500189X
25. Liang, H., Sun, H., Shao, C., Lv, B., Zhu, J., & Cao, W. (2025). Metabolic, transcriptional, and hormonal responses of Panax ginseng to nitrogen deficiency. Current Plant Biology. https://www.sciencedirect.com/science/article/pii/S2214662825000155。.
26. Chen, M., Xu, S., Ye, Y., Lin, K., Lan, W., & Cao, G. (2025). Integrative analysis of transcriptome and metabolome reveals the light quality-mediated regulation of adventitious shoot proliferation in Chinese fir. Preprints.org. https://www.preprints.org/frontend/manuscript/b39bb0597be9c1a0285f36eaf5f985e1/download_pub.
27. Yang, C., Shen, S., Zhou, S., Li, Y., Mao, Y., Zhou, J., Shi, Y., An, L., Zhou, Q., Peng, W., Lyu, Y., Liu, X., Chen, W., Wang, S., Qu, L., Liu, X., Fernie, A. R., & Luo, J. (2022). Rice metabolic regulatory network spanning the entire life cycle. Molecular plant, 15(2), 258–275. https://doi.org/10.1016/j.molp.2021.10.005.
28. Wang, S., Alseekh, S., Fernie, A. R., & Luo, J. (2019). The Structure and Function of Major Plant Metabolite Modifications. Molecular plant, 12(7), 899–919. https://doi.org/10.1016/j.molp.2019.06.001.
29. Li, C., Chen, Z., Deng, Y., Jiang, S., Su, Y., Yang, S., Lin, Y., & Tian, D. (2023). iTRAQ-based protein profiling and functional identification of four genes involved in rice basal resistance against Magnaporthe oryzae in two contrasting rice genotypes. Stress biology, 3(1), 39. https://doi.org/10.1007/s44154-023-00118-w.
30. Yin, Y., Qiao, S., Kang, Z., Luo, F., Bian, Q., Cao, G., Zhao, G., Wu, Z., Yang, G., Wang, Y., & Yang, Y. (2024). Transcriptome and Metabolome Analyses Reflect the Molecular Mechanism of Drought Tolerance in Sweet Potato. Plants (Basel, Switzerland), 13(3), 351. https://doi.org/10.3390/plants13030351.
31. Jiang, K., Møller, B. L., Luo, S., Yang, Y., Nelson, D. R., Jakobsen Neilson, E. H., Christensen, J. M., Hua, K., Hu, C., Zeng, X., Motawie, M. S., Wan, T., Hu, G. W., Onjalalaina, G. E., Wang, Y., Gaitán-Espitia, J. D., Wang, Z., Xu, X. Y., He, J., Wang, L., … Huang, W. C. (2024). Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin's orchid. Molecular plant, S1674-2052(24)00394-0. Advance online publication. https://doi.org/10.1016/j.molp.2024.12.010.
32. Singh S, Chhatwal H, Pandey A .Deciphering the Complexity of Terpenoid Biosynthesis and Its Multi-level Regulatory Mechanism in Plants[J].Journal of Plant Growth Regulation, 2024, 43(10). https://doi.org/10.1007/s00344-024-11347-2.
33. Silvia Laura Toffolatti, Giuliana Maddalena, Alessandro Passera, Paola Casati, Piero Attilio Bianco, Fabio Quaglino. 16 - Role of terpenes in plant defense to biotic stress[J]. Biocontrol Agents and Secondary Metabolites,2021, 401–417. https://doi.org/10.1016/B978-0-12-822919-4.00016-8.
34. Zhou, S., Zhan, C., Zhu, J., Yang, C., Zhao, Q., Sun, Y., Zhou, J., Shen, S., & Luo, J. (2025). Molecular and biochemical evolution of casbene-type diterpene and sesquiterpene biosynthesis in rice. Journal of integrative plant biology, 10.1111/jipb.13836. Advance online publication. https://doi.org/10.1111/jipb.13836.
35. Zhan, C., Lei, L., Guo, H., Zhou, S., Xu, C., Liu, Z., Wu, Z., Deng, Y., Miao, Y., Han, Y., Zhang, M., Li, H., Huang, S., Yang, C., Zhang, F., Li, Y., Liu, L., Liu, X., Abbas, H. M. K., Fernie, A. R., … Luo, J. (2023). Disease resistance conferred by components of essential chrysanthemum oil and the epigenetic regulation of OsTPS1. Science China. Life sciences, 66(5), 1108–1118. https://doi.org/10.1007/s11427-022-2241-0.
36. Gao, F., Zhou, X., Yang, D., Chen, J., Kgosi, V. T., Zhang, C., Ma, J., Tang, W., Liang, Z., & Sun, H. (2024). Potential Utility of Bacillus amyloliquefaciens SFB-1 as a Biocontrol Agent for Sweetpotato Black Rot Caused by Ceratocystis fimbriata. Genes, 15(12), 1540. https://doi.org/10.3390/genes15121540.
37. Dong, T., Zhu, M., Yu, J., Han, R., Tang, C., Xu, T., Liu, J., & Li, Z. (2019). RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.). BMC plant biology, 19(1), 136. https://doi.org/10.1186/s12870-019-1731-0.
38. Singh, D. P., Maurya, S., Yerasu, S. R., Bisen, M. S., Farag, M. A., Prabha, R., Shukla, R., Chaturvedi, K. K., Farooqi, M. S., Srivastava, S., Rai, A., Sarma, B. K., Rai, N., & Behera, T. K. (2023). Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Scientific reports, 13(1), 21023. https://doi.org/10.1038/s41598-023-48269-0.
39. Yin, H., Liu, W., Hu, X., Jia, J., Liu, M., Wei, J., Cheng, Y., Gong, X., Li, Q., Yan, W., Jia, J., Gao, L., Fernie, A. R., & Chen, W. (2025). A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay. Molecular plant, 18(2), 366–382. https://doi.org/10.1016/j.molp.2025.01.011.
40. War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant signaling & behavior, 7(10), 1306–1320. https://doi.org/10.4161/psb.21663.
41. Harish, G.N., Singh, R., Sharma, S. et al. Changes in defense-related antioxidative enzymes amongst the resistant and susceptible soybean genotypes under whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) stress. Phytoparasitica 51, 63–75 (2023). https://doi.org/10.1007/s12600-022-01028-9.
42. Ugalde J. M. (2023). The echo from outside: ASCORBATE PEROXIDASE 1 modulates cytosolic effector-triggered reactive oxygen species. Plant physiology, 192(1), 23–24. https://doi.org/10.1093/plphys/kiad089.
43. Amjad, M., Wang, Y., Han, S., Haider, M. Z., Sami, A., Batool, A., Shafiq, M., Ali, Q., Dong, J., Sabir, I. A., & Manzoor, M. A. (2024). Genome wide identification of phenylalanine ammonia-lyase (PAL) gene family in Cucumis sativus (cucumber) against abiotic stress. BMC genomic data, 25(1), 76. https://doi.org/10.1186/s12863-024-01259-1.
44. Kerchev, P. I., & Van Breusegem, F. (2022). Improving oxidative stress resilience in plants. The Plant journal : for cell and molecular biology, 109(2), 359–372. https://doi.org/10.1111/tpj.15493.
45. Ngadze, E., Icishahayo, D., Coutinho, T. A., & van der Waals, J. E. (2012). Role of Polyphenol Oxidase, Peroxidase, Phenylalanine Ammonia Lyase, Chlorogenic Acid, and Total Soluble Phenols in Resistance of Potatoes to Soft Rot. Plant disease, 96(2), 186–192. https://doi.org/10.1094/PDIS-02-11-0149.
46. Giner J. L. (2019). Batatasenol, a Major Triterpenol from Sweet Potato Skins. Chemistry & biodiversity, 16(3), e1800439. https://doi.org/10.1002/cbdv.201800439.
47. Ivane, N. M. A., Wang, W., Ma, Q., Wang, J., & Sun, J. (2024). Harnessing the health benefits of purple and yellow-fleshed sweet potatoes: Phytochemical composition, stabilization methods, and industrial utilization- A review. Food chemistry: X, 23, 101462. https://doi.org/10.1016/j.fochx.2024.101462.
48. Yuan, H., Jiangfang, Y., Liu, Z., Su, R., Li, Q., Fang, C., Huang, S., Liu, X., Fernie, A. R., & Luo, J. (2024). WTV2.0: A high-coverage plant volatilomics method with a comprehensive selective ion monitoring acquisition mode. Molecular plant, 17(6), 972–985. https://doi.org/10.1016/j.molp.2024.04.012.
49. Yuan, H., Cao, G., Hou, X., Huang, M., Du, P., Tan, T., Zhang, Y., Zhou, H., Liu, X., Liu, L., Jiangfang, Y., Li, Y., Liu, Z., Fang, C., Zhao, L., Fernie, A. R., & Luo, J. (2022). Development of a widely targeted volatilomics method for profiling volatilomes in plants. Molecular plant, 15(1), 189–202. https://doi.org/10.1016/j.molp.2021.09.003.
50. Zhou, Z., Luo, M., Zhang, H., Yin, Y., Cai, Y., & Zhu, Z. J. (2022). Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nature communications, 13(1), 6656. https://doi.org/10.1038/s41467-022-34537-6.
51. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature methods, 12(4), 357–360. https://doi.org/10.1038/nmeth.3317.
52. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature biotechnology, 33(3), 290–295. https://doi.org/10.1038/nbt.3122.
53. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8.
54. Varet, H., Brillet-Guéguen, L., Coppée, J. Y., & Dillies, M. A. (2016). SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PloS one, 11(6), e0157022. https://doi.org/10.1371/journal.pone.0157022.
55. Tan, R. X., Wolfender, J. L., Ma, W. G., Zhang, L. X., & Hostettmann, K. (1996). Secoiridoids and antifungal aromatic acids from Gentiana algida. Phytochemistry, 41(1), 111–116. https://doi.org/10.1016/0031-9422(95)00599-4.
56. Singh, D., Sharma, U., Kumar, P., Gupta, Y. K., Dobhal, M. P., & Singh, S. (2011). Antifungal activity of plumericin and isoplumericin. Natural product communications, 6(11), 1567–1568.
57. Li, X., Wang, Q., Li, H., Wang, X., Zhang, R., Yang, X., Jiang, Q., & Shi, Q. (2022). Revealing the Mechanisms for Linalool Antifungal Activity against Fusarium oxysporum and Its Efficient Control of Fusarium Wilt in Tomato Plants. International journal of molecular sciences, 24(1), 458. https://doi.org/10.3390/ijms24010458.
58. Kong, Q., Zhang, L., An, P., Qi, J., Yu, X., Lu, J., & Ren, X. (2019). Antifungal mechanisms of α-terpineol and terpene-4-alcohol as the critical components of Melaleuca alternifolia oil in the inhibition of rot disease caused by Aspergillus ochraceus in postharvest grapes. Journal of applied microbiology, 126(4), 1161–1174. https://doi.org/10.1111/jam.14193.
59. Ding, Y., Huffaker, A., Köllner, T. G., Weckwerth, P., Robert, C. A. M., Spencer, J. L., Lipka, A. E., & Schmelz, E. A. (2017). Selinene Volatiles Are Essential Precursors for Maize Defense Promoting Fungal Pathogen Resistance. Plant physiology, 175(3), 1455–1468. https://doi.org/10.1104/pp.17.00879.
60. Das, P. P., Kumar, A., Mohammed, M., Bhati, K., Babu, K. R., Bhandari, K. P., Sundaram, R. M., & Ghazi, I. A. (2025). Comparative metabolites analysis of resistant, susceptible and wild rice species in response to bacterial blight disease. BMC plant biology, 25(1), 178. https://doi.org/10.1186/s12870-025-06154-0.
61. Yu, L., Wang, Y., Wang, X., Han, S., Wang, L., & Wang, X. (2025). Transcriptomic, metabonomic and proteomic analyses reveal that terpenoids and flavonoids are required for Pinus koraiensis early defence against Bursaphelenchus xylophilus infection. BMC plant biology, 25(1), 185. https://doi.org/10.1186/s12870-025-06192-8.
62. Zhao, L., Shu, Y.L., Liang, L.Y., Wang, Y.J., Godana, E.A., Zhang, X.Y., Zhang, H.Y. (2022). Integrated transcriptomic and metabonomic analysis reveal mechanisms of disease resistance in apples induced by Wickerhamomyces anomalus. Biological Control, 173, 105005. https://doi.org/10.1016/j.biocontrol.2022.105005.